Measurements of the CO-to-H₂ Conversion Factor and Dust-to-Gas Ratio in Nearby Galaxies

Karin Sandstrom (MPIA)

Collaborators: Adam Leroy, Fabian Walter, KINGFISH team, HERACLES team

> Galactic Scale Star Formation Heidelberg - August 1, 2012

Measuring the CO-to-H₂ Conversion Factor.

 $\sum_{H2} = \alpha_{CO} I_{CO}$ $\alpha_{CO} = 4.35 M_{\odot} pc^{-2} (K km s^{-1})^{-1}$ $A_{CO} = 2 \times 10^{20} cm^{-2} (K km s^{-1})^{-1}$

note: a_{CO} defined here for unresolved clouds, includes He

To measure α_{CO} :

observe CO
 use another tracer to get
 total amount of molecular gas
 compare with observed CO

Other ways to trace the total amount of molecular gas:

Dynamics (i.e. virial masses)

γ-rays

Modeling Line Emission Dust

Necessary assumptions: molecular cloud is virialized, no CO-free layer of H₂

Need to resolve GMCs. Hard to do outside the Local Group.

Previous results find little variation away from MW α_{CO} ~4.35

GMCs in center of NGC 6946 have α_{CO} ~ α_{CO,MW}/2 (Donovan Meyer et al. 2012)

Other ways to trace the total amount of molecular gas:

Dynamics (i.e. virial masses)

γ-rays

Modeling Line Emission

Dust

Necessary assumptions:

number of different gas components, velocity/density structure of cloud, etc.

Need to observe multiple molecular gas lines.

Measure galaxy center α_{CO} 5-10× lower than MW. (e.g. Israel 2009a,b)

Other ways to trace the total amount of molecular gas:

Dynamics
(i.e. virial masses)y-raysModeling Line
Emission

Necessary assumptions: dust & gas are well mixed, DGR & emissivity don't change with atomic/molecular phase

Dust

Need to observe dust mass tracer (typically far-IR + SED modeling).

Widely applied with various techniques...

Measuring the Conversion Factor with Dust.

 $DGR = \sum_{D} / (\sum_{HI} + \alpha_{CO} I_{CO})$

unknown

observable

- Fix DGR based on some model or expected DGR.
- Fix DGR based on nearby HI-only line-of-sight.
- Solve for both DGR & α_{CO} using spatially resolved measurements.

Measuring the Conversion Factor with Dust.

 $DGR = \frac{\Sigma_D}{(\Sigma_{HI} + \alpha_{CO}I_{CO})}$

unknown

observable

- Fix DGR based on some model or expected DGR.
- Fix DGR based on nearby HI-only line-of-sight.
- Solve for both DGR & α_{CO} using spatially resolved measurements.

Assumption: DGR constant on kpc scales.

Our Technique: Minimizing Scatter in DGR on kpc scales

assume DGR & Xco constant in this region

- both CO and H I are detected
 → Need good S/N maps of CO & HI.
- a range of I_{CO}/Σ_{HI} values are present
 - → Need many resolution elements.
- region is small, ok to assume DGR & Xco ~ constant
 - → Must select small chunk of galaxy, so need high resolution.

Our Technique: Minimizing Scatter in DGR on kpc scales

assume DGR & Xco constant in this region

- both CO and H I are detected
 → Need good S/N maps of CO & HI.
- a range of I_{CO}/Σ_{HI} values are present
 - → Need many resolution elements.
- region is small, ok to assume DGR & Xco ~ constant
 - → Must select small chunk of galaxy, so need high resolution.

Our Technique: Minimizing Scatter in DGR on kpc scales

 $I_{\rm CO}/\Sigma_{\rm HI}$

assume DGR & Xco constant in this region

- both CO and H I are detected
 → Need good S/N maps of CO & HI.
- a range of I_{CO}/Σ_{HI} values are present
 - → Need many resolution elements.
- region is small, ok to assume DGR & Xco ~ constant
 - → Must select small chunk of galaxy, so need high resolution.

Example of the Technique

Example of the Technique

The Observations

KINGFISH

Key Insights into Nearby Galaxies: A Far-IR Survey with Herschel

70-500 µm imaging & spectroscopy of 62 nearby galaxies with Herschel Kennicutt et al. 2011

3.6 - $24~\mu m$ from SINGS and LVL. (Kennicutt et al. 2003, Dale et al. 2009)

To get Σ_D : SED modeling from 3.6 - 350 µm (Aniano+ 2012) (preserves SPIRE 350 µm's 25" resolution while still covering the peak of the dust SED)

The Observations

THINGS

The HI Nearby Galaxies Survey

HI survey of 34 nearby galaxies with the VLA Walter et al. (2008)

Resolution of ~12"

HI column density determined directly from 21cm line.

The Observations

HERA CO-Line Emission Survey

CO J=(2-1) survey of 48 nearby galaxies with HERA on the IRAM 30m. Leroy et al. (2009)

Resolution of ~13"

Assume (2-1)/(1-0) = 0.7 average for HERACLES sample (Rosolowsky et al., in prep)

NGC0628 Results

NGC0628 Results

NGC0628 Results

NGC3938 Results

NGC3938 Results

NGC3938 Results

NGC6946 Results

NGC6946 Results

NGC6946 Results

- MW α_{CO} , no trend with radius.
- Flat MW α_{CO} profile + central unresolved dip.
- Overall gradient in α_{CO} with radius.
- Low α_{CO} everywhere, no clear radial trend.

- MW α_{CO} , no trend with radius.
- Flat MW α_{CO} profile + central unresolved dip.
- Overall gradient in α_{CO} with radius.
- Low α_{CO} everywhere, no clear radial trend.

- MW α_{CO} , no trend with radius.
- Flat MW α_{CO} profile + central unresolved dip.
- Overall gradient in α_{CO} with radius.
- Low α_{CO} everywhere, no clear radial trend.

- MW α_{CO} , no trend with radius.
- Flat MW α_{CO} profile + central unresolved dip.
- Overall gradient in α_{CO} with radius.
- Low α_{CO} everywhere, no clear radial trend.

What drives variations in α_{CO} ?

Metallicity?

Large metallicity gradient.

Small metallicity gradient.

α_{CO} & Metallicity

uniform metallicity selection from Moustakas et al. 2010

strong-line metallicities with Pilyugin & Thuan 2005 calibration measurements from HII region spectra

General trend for higher α_{CO} at low Z.

but... significant scatter in α_{CO} at given Z.

Dust-to-Gas Ratio

Linear trend with Z.

Less than a factor of 2 scatter.

Constant fraction of metals locked up in dust.

Metallicity isn't everything...

Is this what we expect?

- dust shielding controls C+/C/CO transition
- in MW only 30-50% of gas H₂ not in CO layer (Fermi Collab. 2010, Planck Collab. 2011)

e.g. Maloney & Black 1988, Bolatto et al. 1999, Wolfire et al. 2010, Glover & Mac Low 2011

Metallicity isn't everything...

Is this what we expect?

- dust shielding controls C+/C/CO transition
- in MW only 30-50% of gas H₂ not in CO layer (Fermi Collab. 2010, Planck Collab. 2011)

e.g. Maloney & Black 1988, Bolatto et al. 1999, Wolfire et al. 2010, Glover & Mac Low 2011

What drives variations in α_{CO} ?

What drives variations in α_{CO} ?

Azimuthal Variations in NGC 6946

Lower α_{CO} along the spiral arms.

Azimuthal Variations in NGC 6946

Lower α_{CO} along the spiral arms.

Disagreement with Virial Mass α_{CO} Measurements in the centers

4 Galaxies with virial mass based α_{CO}

Virial masses give ~MW or higher α_{CO} in centers of 2976, 4736 and 6946.

Disagreement with Virial Mass α_{CO} Measurements in the centers

4 Galaxies with virial mass based α_{CO}

Virial masses give ~MW or higher α_{CO} in centers of 2976, 4736 and 6946.

Several galaxies with muti-line modeling α_{CO} Modeling suggests low α_{CO} in

some galaxy centers

NGC 6946 5-10 times lower than MW - Israel & Baas 2001, Walsh et al. 2002, Meier & Turner 2004 Our conversion factors makes some galaxy centers have high star-formation efficiency.

Depletion Time: $\tau_{\text{DEP}} = 1/\text{SFE} = \Sigma_{\text{H2}}/\Sigma_{\text{SFR}}$

Our conversion factors makes some galaxy centers have high star-formation efficiency.

Depletion Time: $\tau_{\text{DEP}} = 1/\text{SFE} = \Sigma_{\text{H2}}/\Sigma_{\text{SFR}}$

Summary

- α_{CO} can vary by factor of 10 in nearby galaxies especially low in their centers.
- Metallicity not a key driver of α_{CO} at Z~Z_☉ and above. Expected if main effect is to change dust shielding and alter "CO-dark" gas layer.
- Low measured α_{CO} enhances SFE in some galaxy centers over predictions with fixed converison factor.
- Temperature & velocity dispersion of molecular gas are probably crucial drivers of α_{CO} .