Dense molecular gas and star formation across galaxy disks

Antonio Usero

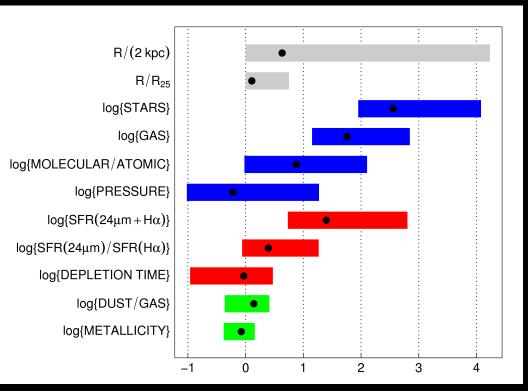
Observatorio Astronómico Nacional (Spain)

A. K. Leroy (NRAO, USA), A. Schruba (CALTECH, USA), and the HERACLES Team

Galactic Scale Star Formation: Observation meets Theory

University of Heidelberg, 29 July – 3 August 2012

Outline

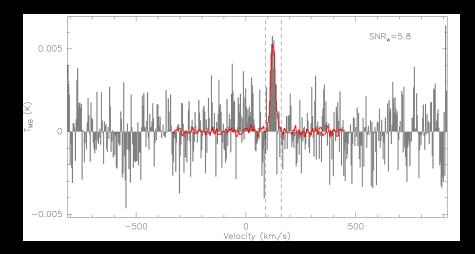

- Background: molecular lines and star formation laws
- The project
- Preliminary results:
 - Dense gas fraction
 - Star formation efficiency of the molecular gas
 - Star formation efficiency of the dense molecular gas
- Conclusions
- Remark: conversion factors

Background / Empirical star-formation laws in galaxies

- Molecular lines with different excitation densities constrain:
 - Average properties of molecular clouds.
 - Star formation (SF) laws.
- Different slopes in plots SFR vs. CO(1-0) (~most) and HCN(1-0) (dense) \rightarrow
 - Universal SF law for dense molecular gas (*threshold* theories).
 - Universal SF law for all molecular gas (e.g.,Krumholz'07, Narayanan'08).
- Most observations of dense gas in galaxies have poor resolution \rightarrow local physics is lost.
- This project: study the relation between dense molecular gas, star formation and environment at kpc scales in nearby disk galaxies (centers and beyond!).
 - Probes ensembles of clouds.
 - Relations with local environment can be studied.

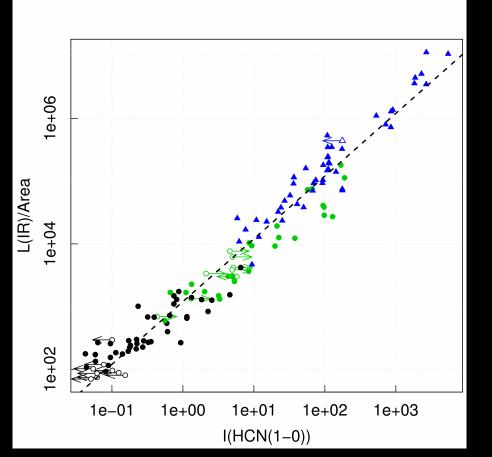
The project / Basics

- The HERA CO Line Extragalactic Survey (PI:F. Walter) \rightarrow Multiwavelength data
 - CO(2-1) spectral cubes of ~50 nearby galaxies at ~1kpc common resolution
 - Overlap with THINGS (VLA), SINGS+LVL (*Spitzer*), KINGFISH (*Herschel*), NGS (*GALEX*)
 - IRAM 30m observations of dense gas tracers
 - HCN(1-0) and HCO⁺(1-0) in \sim 100 pointings in \sim 30 HERACLES galaxies
 - 28" working angular resolution \rightarrow 1.5 kpc on average
 - $^{12/13}$ CO data for most pointings + other dense gas tracers (e.g., C₂H, HNC) for free
 - Pointings chosen so as to cover a wide range of ISM and SF conditions



The project / Observations

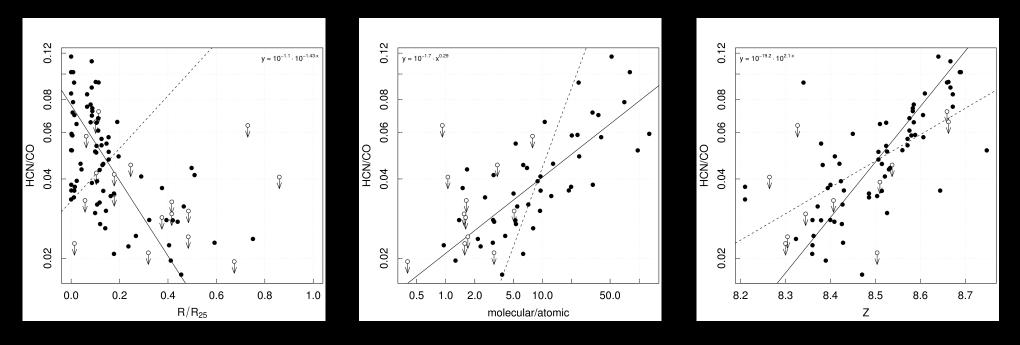
• Summary of detections



HCN(1-0) (gray) vs. CO(2-1) (red) at matching resolution observed at $r\sim 0.8R_{25}$ in NGC 6946

The project / the data in context

- HCN vs. IR plot compared with extragalactic data-set (Garcia-Burillo'12)
 - Compatible with previous results
 - Overlap with averages in normal star-forming galaxies
 - Covered ranges extended by \sim 1-2 orders of magnitude

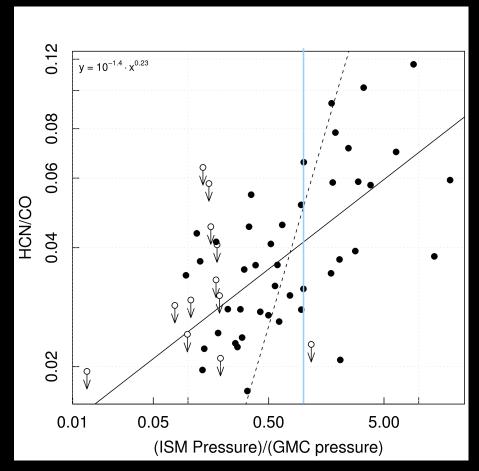

This project (black) vs. GB12 (green: normal galaxies; blue: (U)LIRG). X-units: K km/s; Y-units: L_{SUN}/pc².

The project / What we study here

- We focus on three ratios:
 - HCN/CO $\propto~$ Dense Gas Fraction (f_{_{DENSE}})
 - SFR/CO \propto Star Formation Efficiency of the molecular gas (SFE_{MOL})
 - SFR/HCN \propto Star Formation Efficiency of the dense molecular gas (SFE_{DENSE})
 - Fixed (molecular mass)/CO and (dense mass)/HCN conversion factors assumed (revised at the end of the talk)
- We select two environmental parameters:
 - H2/HI mass ratio \rightarrow process by which GMCs form
 - Metallicity (Moustakas'10) → "chemical" parameter
- SFR=H α +MIPS24 μ m cirrus-corrected (Leroy et al. 2012), but not critical
- Caveats:
- Most environmental parameters depend on radius
- The multi- λ array not fully assembled yet \rightarrow some plots have more points that others

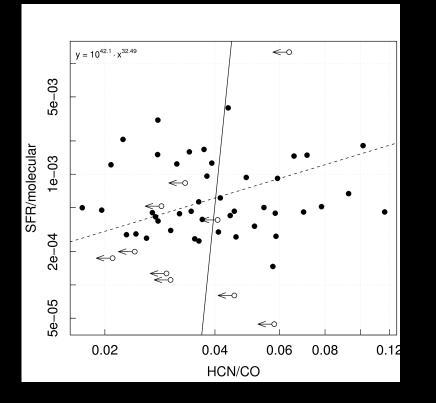
Results / HCN/CO ~ dense gas fraction (I)

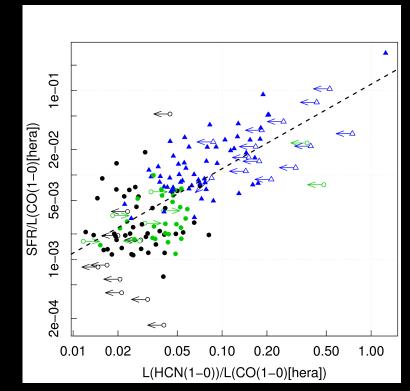
- HCN/CO ($\sim f_{DG}$) ratio steeply decreases with radius.
- HCN/CO increases with H2/HI.
- HCN/CO increases with Z.



- Taken at face value $\rightarrow f_{DG}$ shows systematic dependence on environment.
- H2/HI and Z covariant \rightarrow difficult to identify the main driver just from plots.

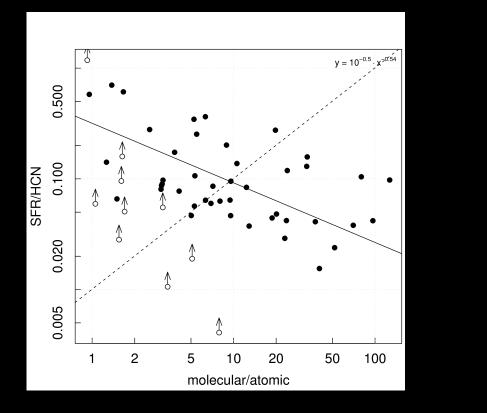
Results / HCN/CO ~ dense gas fraction (II)

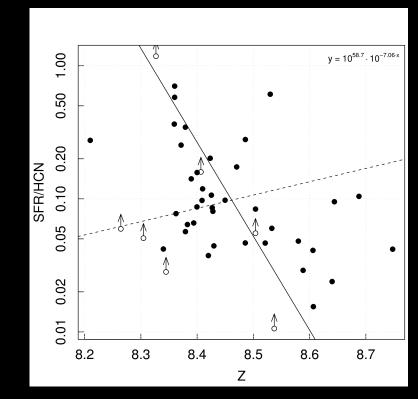

- We find evidence that HCN/CO ($\sim f_{DG}$) changes systematically across galaxy disks.
 - Driver?
 - Does it really reflect a change in true f_{DG}?


• HCN/CO shows no clear transition at $P_{ISM} \sim P_{GMC}$

Results / SFR/CO ~ star formation efficiency

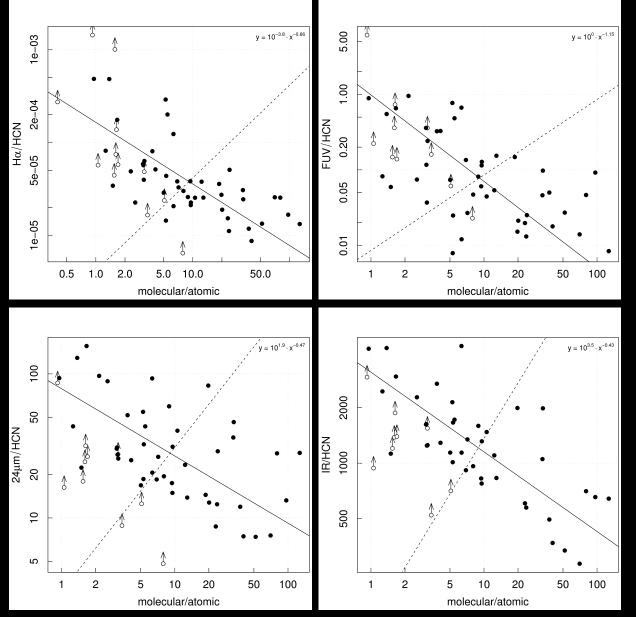
- SFE_{MOL}=(f_{DG})x(SFE_{DENSE})
- SFR/CO (~SFE_{MOL}) independent of HCN/CO (f_{DG}) in our sample
- Compatible with dispersion in extragalactic observations.
- Are the variations in SFE_{DENSE} random?





This project (black) vs. GB12 (green: normal galaxies; blue: (U)LIRG). Y-units: 1/Myr.

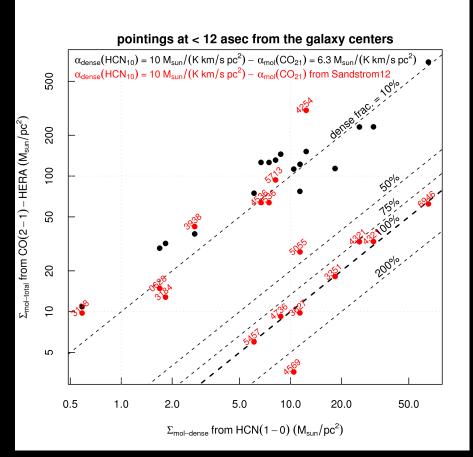
Results/ SFR/HCN~star formation efficiency of dense gas


- SFR/HCN (~SFE_{DENSE}) decreases with H2/HI and Z.
- SFE_{DENSE} shows systematic dependence on environment (lower at galaxy centers!)

Y-units: (M_{SUN}/pc²/Myr)/(Kkm/s).

Results / SFR/HCN~star formation efficiency of dense gas

- Systematic variations of SFR/HCN confirmed by all our SFR tracers.
- If you expect constant SFE_{DENSE}, blame HCN.


[Halpha]=erg/s/sr; [FUV]=MJy/sr; [24um]=MJy/sr; [IR]=L_{SUN}/pc²; [HCN]=K km/s.

Conclusions

- Dense gas tracers (HCN, HCO⁺) observed across the disks of HERACLES galaxies.
- We find systematic dependence of HCN/CO and SFR/HCN on environment \rightarrow The average properties of molecular clouds change across galaxy disks.
- At face value, systematic trends in the dense gas fraction and the SFE of dense gas \rightarrow
 - High f_{DG} at high molecular/atomic and high Z (galaxy centers).
 - High SFE_{DENSE} at low molecular/atomic and low Z (galaxy disks).
- The variations f_{DG} and SFE_{DENSE} would be shallower if the $M_{DENSE}/L(HCN)$ factor increased with radius.

Last remark / Conversion factors

- If $M_{DENSE}/L(HCN)$ ratio increased with radius, the trends in SFE_{DENSE} and f_{DG} would be alleviated, more consistently with expectations from *threshold* theories.
- Sandstrom'12 (previous talk) finds radial gradients in $M_{MOL}/L(CO)$.

• New values for $M_{MOL}/L(CO) \rightarrow f_{DG} > 100\%!$, unless $M_{DENSE}/L(HCN) << MW$ value at galaxy centers (as found in (U)LIRG).

Conclusions

- Dense gas tracers (HCN, HCO⁺) observed across the disks of HERACLES galaxies.
- We find systematic dependence of HCN/CO and SFR/HCN on environment \rightarrow The average properties of molecular clouds change across galaxy disks.
- At face value, systematic trends in the dense gas fraction and the SFE of dense gas \rightarrow
 - High f_{DG} at high molecular/atomic and high Z (galaxy centers).
 - High SFE_{DENSE} at low molecular/atomic and low Z (galaxy disks).
- The variations f_{DG} and SFE_{DENSE} would be shallower if the $M_{DENSE}/L(HCN)$ factor increased with radius.
 - Results from Sandstrom'12 for $M_{MOL}/L(CO)$ support this possibility.