Star Formation in Disc Galaxies

Clare Dobbs

University of Exeter

Star Formation in Disc Galaxies

Star formation scales linearly with dense gas

- star formation is additive over galaxy?
- not so simple: Schinnerer, Meidt, Longmore

1. What produces dense (CO) gas? 2. What produces dense (10⁴ cm⁻³) gas? 3. What produces stars?

Friday, 3 August 12

I. Gravitational instabilities

Cowie 1981; Elmegreen 1978, 1982; Elmegreen & Elmegreen 1986; Shetty & Ostriker 2006; Dobbs 2008

Spacing between $\lambda_{max} = 2c_s^2/G\Sigma$, clouds ~ Mass of clouds ~ $M = \Sigma \left(\frac{\lambda_{max}}{2}\right)^2 = \frac{c_s^4}{G^2 \Sigma}$

clear in clumpy z~2 galaxies:

figure from Bournaud, Daddi, & Elmegreen 2008

2. Collisions / Coalescence / Agglomeration

Field & Saslaw 1965, Scoville & Hersch 1979, Casoli & Combes 1982, Kwan & Valdes 1983, 1987, Tomisaka 1984, 1986, Dobbs, Bonnell & Pringle 2006, Dobbs 2008, Tan 2000, Tasker & Tan 2009

separation of features α epicylic radius (shock strength) Dobbs 2008 section of galactic disc Dobbs, Bonnell & Pringle 2006

Evidence in nearby clouds (Greaves & White 1991, Vallee 1995, Schneider et al. 2010, Galvan-Madrid et al. 2010, Nakamura et al. 2012)

Friday, 3 August 12

C¹⁸O emission in Serpens Duarte Cabral et al. 2011

3. Colliding flows

Koyama & Inutsuka 2000, Heitsch et al. 2006, 2008, Vazquez-Semadeni et al. 2006,2011, Hennebelle et al. 2008, Banerjee et al. 2009, Inoue & Inutsuka 2008, 2012, Clark & Glover 2012

From Spiral shocks, Supernovae flows

Ntormousi et al. 2011: 2 adjacent supernovae bubbles also Gaczkowski

CO emission at edges of supershells LMC: responsible for only few % of clouds (Dawson, et al. in prep)

20 b et **Jawson**

4.Thermal instabilities

Field et al. 1969, Wolfire 1995, Burkert & Lin 2000, Audit & Hennebelle 2005, Piontek & Ostriker 2005, Koyama & Ostriker 2009, Heitsch et al. 2006, 2011, Tachihara et al. 2012

- very small structures (0.1 pc)

5. Parker instabilities

Mouschovias et al. 1974, 2011, Kosinski & Hanasz 2006, 2007

- Generally gravitational instabilities believed to dominate magnetic

Elmegreen 1982; Kim et al 1998; Kim et al. 2002

magnetic loops in the Galactic centre (Fukui et al. 2006)

Formation of dense clouds

- In fact all occur:
- no self gravity less massive, less coherent clouds
- spiral arms promote coalescence of gas clouds
- thermal instabilities lead to dense, small scale structure which coalesces into more massive clouds
- spiral shocks / feedback lead to 'colliding flows'

Numerical simulations

 Potential with 4 armed spiral component (also no spiral, model) with stars later)

- Heating and cooling (Glover & Maclow 2006)
- Self gravity
- Stellar feedback
- instantaneous, inserted above a critical density
- energy added= $\epsilon M(H_2) \times 10^{51}$ ergs as Sedov solution 160 M⊙
- I million particles (8 million later)

(thermal + kinetic)

Friday, 3 August 12

What do cloud properties tell us about cloud formation?

Mass spectrum

Dobbs, Burkert & Pringle 2011

(see also Tasker & Tan 2009, Tasker 2011, Hopkins 2012, Khoperskov, Fujimoto posters)

Friday, 3 August 12

Rotation

What do cloud properties tell us about cloud formation?

With spiral potential

more massive clouds formed by coalescence in spiral arms

No spiral potential

What do cloud properties tell us about cloud formation?

Virial parameter

Scale height in disc

Bound and unbound clouds (Dobbs et al. 2011): gravity not dominant in many clouds

Friday, 3 August 12

height (Acreman et al. 2012)

What do velocity flows in galaxies tell us about cloud formation?

Dobbs, Pringle & Burkert 2012

Gas flows in galaxies - 4 examples

Friday, 3 August 12

5,20% indicates level of feedback in the simulation

'Flocculent' spiral contains star particles rather than potential

l million gas particles

Gas flows in galaxies - 4 examples

Friday, 3 August 12

5,20% indicates level of feedback in the simulation

'Flocculent' spiral contains star particles rather than potential

l million gas particles

Take Cauchy strain tensor:

$$e_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Evaluate eigenvalues, λ_1 , λ_2 Then use $\alpha = \lambda_1 + \lambda_2$ (divergence), $\beta = |\lambda_1 - \lambda_2|$ ('measure of asymmetry') α shows convergence, $\alpha\beta$ plane indicates nature of flows (2D gas flows, neglect vertical dimension)

Maps of divergence (α)

Contours from grid of 100 pc resolution

Red - converging on 4 Myr Orange - converging on 10 Myr

Purple - diverging on 4 Myr Blue - diverging on 10 Myr

Gas converges / diverges on short timescales (< I Myr)

Gas gathered together independently of density

For other cases see paper!

What gas do GMCs form from? and How long do they take to disperse?

Use SPH to trace gas in GMCs to earlier and later times

density distribution?

Dobbs, Pringle & Burkert 2012

density distribution?

Gas flows in galaxies - 4 examples

Friday, 3 August 12

5,20% indicates level of feedback in the simulation

'Flocculent' spiral contains star particles rather than potential

l million gas particles

What gas goes in to GMCs?

Gas which forms GMCs is atypical <u>30 Myr</u> beforehand (overdense)

What gas goes in to GMCs?

Gas which forms GMCs is atypical <u>30 Myr</u> beforehand (overdense)

No spiral sudden phase change

Spiral 5% gradually more gas becomes dense (molecular)

When is gas in GMCs?

Very dense gas occurs 5-10 Myr around star formation

Moderately dense gas exists for much longer

What happens to gas which was in GMCs?

Gas also takes a long time (50 Myr to return to typical ISM)

For spiral 5% and flocculent models, gas is not completely recycled!

Evolution of a $2 \times 10^6 M_{\odot}$ GMC

8 million particles Cooling / heating Self gravity n=2 spiral potential Supernovae feedback

Evolution of individual cloud

y kpc

y kpc

log column density $[g/cm^2]$

 $\log \operatorname{column} \operatorname{density} [g/\mathrm{cm}^2]$

log column density $[g/cm^2]$

log column density $[g/cm^2]$

Lifetime of 2x10⁶ M_o GMC

- What is 'lifetime'?
- No obvious definition

Most gas in a cloud which is also in chosen 250 Myr cloud

Lifetime~20 Myr?

2.5%

Total mass of stars formed~ $5 \times 10^4 M_{\odot}$ Efficiency (stars formed / cloud mass) =

What about star formation?

Star formation from galactic scales:

What about star formation?

- Star formation from galactic scales:
- reproduce ~ linear relation
- but star formation too efficient

T=354 Myr Global simulation

Re-simulation 2

Molecular cloud evolution viewed from within the disc

Bonnell et al., in prep.

What reduces star formation efficiency?

Feedback

Dobbs, Pringle & Burkert 2011

see also Hopkins talk, Agertz poster

Friday, 3 August 12

on efficiency? feedback no feedback

Vazquez-Semadeni et al. 2010

Conclusions

Formation of dense clouds complex:

- observational and theoretical evidence for a variety of processes cloud coalescence, self gravity, thermal instabilities, supernovae flows
- cloud properties in good agreement with observations
- cloud formation mechanisms can be distinguished by velocity flows
- evolution of individual GMC very complex, involving clouds merging, splitting apart, accreting gas
- cloud lifetimes difficult to determine

 star formation too efficient - but both feedback and magnetic fields shown to reduce amount of star formation