Simulation of giant molecular cloud formation in the barred galaxy M83 (NGC5236) using Enzo

Yusuke Fujimoto, E. Tasker, A. Habe (Hokkaido University)

e-mail: yusuke@astro1.sci.hokudai.ac.jp

Abstract

We performed a three-dimensional hydrodynamical simulation of the barred galaxy M83 using Enzo, an adaptive mesh refinement code, and focus on the properties of the giant molecular clouds in the bar and spiral region. In the bar and spiral region, the number density of clouds exceeds that of the disc by a factor of 10-100. This increases the cloud-cloud collision rate, causing a change in the evolution of the cloud properties in each region.

1. Figure 2 indicates that cloud-cloud collisions are far more likely to occur in the bar and spiral regions.
2. Figure 3 & 4 suggest that the increase in cloud-cloud collision affects the distribution and properties of the clouds.
3. Figure 5 indicates that the rotation of the clouds is dependent on cloud-cloud collision, since the rotational evolution occurs fastest in the bar and spiral regions.

The Initial Structure of the Galactic Disc

- Observational gas distribution
 \[\rho(r, z) = \rho_0 \exp \left(-\frac{r^2}{225pc^2} \right) \sech^2 \left(\frac{z}{100pc} \right) M_\odot/pc^3 \]
 \(\text{H}_2 \) gas distribution from Lundgren et al. (2004) and Hernquist (1993)

- Stellar potential
 - disc + bar + spiral
 - \(10^5 \) fixed motion star particles
 - The pattern speed of the bar and spiral is \(54 \) km/s/kpc.

- Static dark matter potential
 \[\rho(r) \propto \frac{1}{(r/r_0)(1 + r/r_0)^2} \]
 NFW profile (Navarro, Frenk & White 1996)

The Code

- Enzo: a three-dimensional adaptive mesh refinement (AMR) hydrodynamics code
- Box size: \((50 \text{ kpc})^3\)
- Root grid: 128
- Resolution: \(~3\text{pc}\) (refinement level = 7)
- Initial gas temperature: \(10^4\)K
- Radiative cooling: down to 300K
- Self-gravity of gas
- * No star formation and feedback

Defining Clouds

Clouds were identified via a friends-of-friends scheme with cells of density \(n_{H_2} \geq 100\text{cm}^{-3} \)

Results

...until Yusuke made this fantastic poster
What Kills a Giant Molecular Cloud?

Elizabeth Tasker

James Wadsley McMaster University
Ralph Pudritz McMaster University
Jonathan Tan University of Florida
yt development team
The cold gas in a disc galaxy is organised into the giant molecular clouds.

These clouds are the nurseries for the majority of the stellar population.

Their properties and evolution govern the galaxy’s star formation rate.

But does the stellar child they produce also cause their death?
The hand that rocks the cradle

One way to kill a GMC is via the local effect of an internal energy injection

e.g. supernovae explosion, ionising winds
One way to kill a GMC is via the **local effect** of an internal energy injection
e.g. supernovae explosion, ionising winds

Alternatively, **global** cloud-cloud interactions may merge clouds or trigger star formation that destroys them
Compared the properties of GMCs formed in galaxy disc simulations with different star formation properties

<table>
<thead>
<tr>
<th></th>
<th>Self gravity + radiative cooling</th>
<th>Star formation</th>
<th>Diffuse heating</th>
<th>Localised energy injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>No SF</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SF only</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PE heat</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>SNe</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Disc is initially smooth and sits in a static background potential that gives a Milky Way-like flat rotation curve.

Gravitational instabilities occur as the disc cools (> 300 K), forming dense knots of gas that we recognise as the GMCs.

Friday, August 3, 12
What we did....

Star formation at a constant efficiency per free-fall time of 2%. Star particles are created with 1000 solar masses

Feedback type I: diffuse heating from dust grains

Heating term proportional to the gas density, with a radial dependence suggested by Wolfire et al. (2003)

Feedback type II: localised heating from SNe

Thermal energy is deposited into the cell the star particle is in over a dynamical time

10^{51} ergs per $55 \, M_\odot$ of star particles formed
What we did....

Flocculent, fragmented structure: no grand design spiral due to lack of satellite companions.
What we did....

Similar structure to simulation “No SF” but the densest clumps have been eroded by the star formation.
The diffuse heating inhibits the gravitational collapse, producing a more ordered filament structure. This reducing the gravitational scattering between the clouds, causing the disc velocity dispersion to be lower.
The SNe produces hot bubbles of gas that increase the velocity dispersion again, shaking up the ISM.
Continuous range of densities and temperatures, largely in pressure equilibrium.

Star formation reduces the amount of mass at the cooling floor over time.

Diffuse heating warms cooler gas to increase its pressure. Smaller range in T and ρ reflects a more coherent structure.

Gas is ejected out of the cold dense region by the SNe, expanding to produce hot, lower density bubbles of gas.

What we did....
What we did....

Find peaks in the gas density field with $n_{HI} > 100 \text{ cm}^{-3}$

Recursively search peak neighbours for cells also $n_{HI} > 100 \text{ cm}^{-3}$

Clouds are tracked through the simulation

Friday, August 3, 12
Cloud mass distribution

Simplest model
(no star formation or feedback)

Observed clouds (including atomic envelopes) have max masses $< 1.2 \times 10^7 M_\odot$

(Williams & McKee, 1997)

Not a bad match, although we do have a high mass tail due to repeated cloud collisions and agglomerations without anything to destroy the cloud.
SNe inhibit star formation still more, allowing the mass profile to approach that for the simulation without star formation.

Diffuse heating reduces the conversion of gas into stars, allowing clouds of a higher mass to persist longer.

SNe inhibit star formation still more, allowing the mass profile to approach that for the simulation without star formation.
Similarly, star formation and PE heat remove the extended tail in the other cloud properties....

... and SNe undoes all that work.
Similarly, star formation and PE heat remove the extended tail in cloud properties.

SNe don’t destroy clouds....

... they make them live longer?!

SNe revert the properties of clouds to those with no star formation.
Cloud identification: does it work?

Density peak identification is a simple approach, similar to observational identification.

But it produces a large number of small clouds within the same gravitationally bound structure.
Cloud identification: does it work?

When a SNe explodes, a wave of short-lived clouds are formed.

Are these truly separate entities, or should they be part of the main cloud’s evolution?
What we did next....

New cloud definition scheme!

Using the restricted 3-body solution for the gravitational potential of cloud and galaxy

Gas within the contours should be trapped and bound to the cloud

Cloud cells with velocity high enough to escape are removed

\[E_J = \Phi_{\text{eff}} \]
What we did next....

Does it work?

Density
Cloud boundaries unclear

Effective Potential
Clouds clearly distinct
What we did next....

Surface density

Temperature
What we did next....

After all of that... the difference in the mass plot between no-star formation and SNe simulations is now....

Nothing

(sometimes I hate research)
What we did next....

Gravitationally bound structures, not individual clouds.

Supernovae appear to suppress star formation, but do not destroy the cloud.

This allows the cloud evolution to tend back towards the non-star formation simulation.

Gravitational interactions are the dominate form of cloud evolution.
Initial fragmentation of disc. SNe at this stage totally suppress the SF

Simulation without any feedback has a greater SFR over the first 200 Myr of the simulation

In the last 100 Myr, both the simulations with only star formation and diffuse heating start to suffer from gas depletion and their SFR drops
Conclusions

- SNe explosions carry mass away from the cloud, suppressing its star formation rate.

- However, the asymmetric outflow means the clouds typically survive this explosion.

- In the simulations here, gravitational interactions are the most important process in determining cloud evolution.

- However, different types of feedback (e.g. earlier or RT) might change this result (also, Oscar Agertz’s poster).