The role of molecules in star formation Paul Clark, Simon Glover, Ralf Klessen (ITA, ZAH der Universität Heidelberg) Ian Bonnell (St Andrews University)

Correlation between molecular gas and the SFR

Bigiel et al. (2008)

Has lead to assumption that molecular gas is needed for star formation:

- Schaye 2004
- Krumholz & McKee 2005
- Elmegreen 2007
- Krumholz et al. 2009

Can now test the effect of chemistry on gas thermodynamics

- Use time dependent chemical network to track H_2 + CO formation (see Glover & Clark 2012b).
- Implemented in Gadget2 (Springel 2005).
- Sink particle to model the star formation (Bate, Bonnell & Price 1995).
- ISRF attenuation treated by TreeCol (Clark, Glover & Klessen 2012a).
- Self-consistent gas and dust temperatures.

Simplified PDR code that runs alongside a fluid code

Glover et al. (2010)

Suite of models that test the role of chemistry

Glover & Clark (2012a)

- $10^4 M_{\odot}$ clouds, with n ~300 cm⁻³.
- Initially virialised turbulent velocity field, $v_{RMS} \sim 2.5 \text{ km/s} (P(k) \propto k^{-4})$.
- 'Black + Drain' ISRF $(1.7G_0)$ + 3×10⁻¹⁷ s⁻¹ CR-ionisation rate.
- Gas has 'solar' composition (C, Si, O, dust, etc).

Increase the complexity of the chemical model

Do the star formation rates differ?

Glover & Clark (2012a)

Clouds with shielding

- SFRs are the same!
- Atomic gas is slightly delayed:
 - Higher mean molecular weight
 - Slightly higher Jeans mass.

Clouds without shielding

- Eventually forms a massive star at about 9 Myr.
- Looks almost like Pop III star formation.

Temperature distribution

Glover & Clark (2012a)

• Temperature distribution largely insensitive to the gas chemistry.

- Formation of H₂ heats gas.
- CO allows gas to cool down to CMB.
- Dust-gas coupling at $n > 10^5$ cm⁻³ regulates temperature.
- Dust temperature set by ISRF + CR-ionisation

Run with no shielding

Heating/cooling processes (no CO)

Glover & Clark (2012a)

Heating/cooling processes (with CO)

Glover & Clark (2012a)

Summary so far:

• Molecule formation has very little effect on the rate at which stars form.

• Molecular gas and star formation are correlated because they both require well-shielded gas.

Glover & Clark (2012a)

So why do we care?

Low metallicity star formation:

 \bullet Observed SFE to CO luminosity ratio (SFE/W_{CO}) is systematically higher as we look at progressively more metal-poor galaxies.

• Taylor, Kobulnicky & Skillman (1998); Leroy et al. (2007); Schruba et al. (2011).

• So either:

• metal-poor gas forms stars more efficiently than metal-rich gas (unlikely).

• Xco (N_{H2}/W_{CO}) is much higher than Milky Way value.

SFR + CO formation with decreasing metallicity

H₂ formation with Z

Glover & Clark (2012c)

Observed SFR/ W_{co} strongly depends on Z!

12CO(|-0)

Zo

ecreasing metallicity

X-factor with metallicity

Run	$W_{ m CO,max}$	$W_{\rm CO,mean}$	$X_{\rm CO}$ / $X_{\rm CO,gal}$
Z1-M Z1-A	$25.7 \\ 29.9$	$\begin{array}{c} 3.46\\ 3.23\end{array}$	$2.06 \\ 1.53$
Z03-M Z03-A	$\begin{array}{c} 37.0\\ 53.5\end{array}$	$\begin{array}{c} 1.34 \\ 1.27 \end{array}$	$4.76 \\ 1.97$
Z01-M Z01-A	$37.7 \\ 98.2$	$0.217 \\ 0.144$	$22.6 \\ 4.99$
Z003-M Z003-A	$\begin{array}{c} 38.7\\ 32.8\end{array}$	$\begin{array}{c} 0.045\\ 0.016\end{array}$	$\begin{array}{c} 66.3 \\ 10.0 \end{array}$
Z001-M Z001-A	8.16 25.6	$0.0068 \\ 0.0106$	$306.7 \\ 8.27$

Glover & Clark (2012b)

Temperature - density distribution

Summary so far:

• At low metallicities, where molecular formation becomes difficult, star formation proceeds in largely atomic gas.

• Star formation rate is insensitive to the metallicity of the gas.

• 'X-factor' is strongly metallicity-dependent (and likely time-dependent).

Glover & Clark (2012b)

But those clouds were pre-assembled... ... what happens when we try to form them?

Cloud formation in colliding flows:

Delay between CO formation and star formation?

Fast flow

Slow flow

Clark et al. (2012b)

• CO appears 2 Myr before star formation in both flows.

• H₂ can appear much earlier (depending on flow).

¹²CO (1- 0)

¹²CO (1- 0)

¹²CO (1- 0)

¹²CO (1- 0)

Summary:

- CO is tracer of star-forming gas, but is **not** needed for stars to form.
- At lower metallicities, CO is confined to denser, hotter cores.
- X_{CO} varies dramatically as we go to lower metallicities.
- CO seems to preceed star formation by about 2 Myr under local galactic conditions.