Measuring the evolution of the star formation rate efficiency of neutral atomic hydrogen gas from $z \sim 1-4$

Marc Rafelski

Galactic Scale Star Formation August 2012

Collaborators: Harry Teplitz Arthur Wolfe Hsiao-Wen Chen Xavier Prochaska UV UDF team

Damped Lyman Alpha Systems (DLAs)

- Definition of Damped Ly α System (DLA): N(HI) $\geq 2 \times 10^{20}$ cm⁻²
- Distinguishing characteristics of DLAs :
 - (I) Gas is Neutral
 - (2) Metallicity is low: [M/H]=-1.3 (more on this later)
 - (3) Molecular fraction is low: $f_{H2} \sim 10^{-5}$
- DLAs dominate the neutral-gas content of the Universe out to $z\sim4.5$
- DLAs cover 1/3 of the sky at z=[2.5,3.5]

Wolfe et al. 2005

Kennicutt-Schmidt (KS) Relation

 $\Sigma_{\rm SFR} = A \Sigma_{\rm gas}^N$

The Star Formation Rate (SFR) surface density goes as the total gas surface density to a power law

Can rewrite it with column density N:

$$\Sigma_{\rm SFR} = K \times (N/N_c)^{\beta}$$

$$N_c = 1.25 \times 10^{20} \text{ cm}^{-2} \quad \beta = 1.4 \pm 0.15$$
$$K = 2.5 \times 10^{-4} M_{\odot} \text{ yr}^{-1} \text{ kpc}^{-2}$$

Kennicutt, 1998

Log $\Sigma_{
m H}$ Heidelberg 2012: Marc Rafelski

3 / 30

Tightly Correlated HI and FUV emission in M83

Blue: FUV map (GALEX)

Red: HI contours (THINGS)

Bigiel et al. 2010a

Can we see DLAs in emission at $z \sim 3$?

10²³

- Gas Density \leftrightarrow SFR (KS)

Only high resolution image sensitive enough is the Hubble Ultra Deep Field (UDF)

Wolfe & Chen 2006 result:

• SFR efficiency of DLAs is a factor of \geq 10 below KS relation

Caveat:

• Wolfe & Chen 2006 search excluded objects with high surface-brightness cores ($\mu_V < 26.6 \text{ mag/arcsec}^2$) (i.e. LBGS)

Another possibility:

• Lyman Break galaxy cores may be embedded in DLAs, and may themselves exhibit *in situ* star formation

LBGs embedded in DLA Neutral Gas Reservoirs

In situ star formation in DLAs associated with LBGs

Solution: Ultra Deep u'-band image of UDF with Keck

Keck Telescopes

I σ depth = 30.7 mag/arcsec² Detection limit =27.6 mag/arcsec² FWHM = 1.3 arcsec

Use the u-band image to select 407 z~3 LBGS via their flux decrement from the Lyman break

Rafelski et al. 2009

48 compact, symmetric, and isolated z~3 LBGs in V-band

ID: 84	ID: 862	ID: 906	ID: 1217
	•		•
V=26.5	V=27.1	V=27.5	V=26.5
ID: 1273	ID: 1414	ID: 1738	ID: 1753
•		٠	• 2
V=26.2	V=27.1	V=26.2	V=27.4
ID: 2581	ID: 2595	ID: 2946	ID: 3052
	•	•	•
V=26.9	V=27.3	V=26.7	V=26.9
ID: 3112	ID: 3128	ID: 3174	ID: 3198
•		•	•
V=25.7	V=26.7	V=25.3	V=26.8
ID: 3219	ID: 3416	ID: 3481	ID: 3922
	•	•	•
V=27.2	V=25.0	V=27.3	V=26.3
ID: 4193	ID: 4302	ID: 4636	ID: 4766
•	•	•	•
V=26.9	V=27.0	V=26.7	V=26.2

ID: 4774	ID: 4830	ID: 5006	ID: 5275
			•
V=26.5	V=27.1	V=27.5	V=26.5
ID: 5346	ID: 5750	ID: 5856	ID: 5916
•		•	٠
V=26.2	V=27.1	V=26.2	V=27.4
ID: 6352	ID: 6504	ID: 6508	ID: 6595
	٠	•	
V=26.9	V=27.3	V=26.7	V=26.9
ID: 7025	ID: 7610	ID: 7738	ID: 7758
•	٠	•	•
V=25.7	V=26.7	V=25.3	V=26.8
ID: 7874	ID: 7986	ID: 8387	ID: 9394
٠	•	*	•
V=27.2	V=25.0	V=27.3	V=26.3
ID: 9570	ID: 9806	ID: 5601	ID: 6030
•		•	
V=26.9	V=27.0	V=26.7	V=26.2

Rafelski et al. 2011

Stack 48 isolated, compact, symmetric z~3 LBGs in the V-band (rest-frame FUV)

Rafelski et al. 2011

Radial surface brightness profile of stacked image

13/30

Goal: compare comoving SFR density in outskirts of LBGs to DLAs to obtain a SFR efficiency

Column density of gas varies with radius, we need a differential version of the comoving SFR density $(\dot{\rho_*})$

reviously:

$$\dot{\rho_*}(>N) = \int_N^{N_{\text{max}}} \Sigma_{\text{SFR}}(N') \frac{H_0}{c} f(N', X) dN'$$

Differential:

$$\frac{\Delta \dot{\rho_*}}{\Delta N} = \langle \Sigma_{\rm SFR}(N) \rangle \frac{H_0}{c} f(N, X) \quad \Rightarrow \frac{\Delta \dot{\rho_*}}{\Delta I}$$

Model differential comoving SFR density for DLAs

Comparison of model to data to determine efficiency

The KS relation for atomic dominated gas at z~3

Rafelski et al. 2011

The covering fraction of the outskirts of LBGs is consistent with the DLA covering fraction

The emission unlikely to be from molecular-dominated gas

atomic-dominated gas

molecular-dominated gas

Heidelberg 2012: Marc Rafelski

Comparisons to predictions from simulations (Gnedin & Kravtsov 2010)

Rafelski et al. 2011

What is responsible for the reduced SFR efficiency?

Metallicity of gas?

Background radiation field?

Role of molecular vs. atomic hydrogen gas?

Other possibilities?

To better answer this question, would like to measure SFR efficiency for a range of redshifts

Metal Abundances versus redshift

Rafelski et al. 2012 in press

Evolution of Background Radiation Field

Haardt & Madau 2012

Comparison of z~3 outskirts with z=0 outskirts

Rafelski et al. 2011

The Ultraviolet Hubble Ultra Deep Field

Measure SFR efficiency at z~I and z~2 Improve z~3 measurement with larger sample of LBGs Use existing i' band UDF data for measurement at z~4

NUV Coverage of UDF with WFC3

Epoch I: March 2 - March II 6 Orbits / 12 exposures per filter

Epoch 2: May 28 - June 4 10 Orbits / 20 exposures per filter

Epoch 3:

August 4 - September 19 14 Orbits / 28 exposures per filter + 2 failed orbits from above

Total:

30 Orbits / 60 exposures per filter90 Orbits in total by mid September

29th mag 10 sigma point source limit

UV dropout galaxies at z~1-3

Radial surface brightness profile of stacked LBGs at z~4

How do things change at z~4?

Summary

- Measured extended rest-frame FUV emission in outskirts of z~3 LBGs
- Star formation rate efficiency of atomic-dominated gas at z~3 is a factor of ~10 lower than predicted by Kennicutt-Schmidt relation for local galaxies at z=0
- Covering fraction of DLA gas consistent with LBG outskirts, while molecular gas insufficient to cover the LBG outskirts.
- Consistent with predictions from Gnedin and Kravtsov 2010 suggesting the metallicity could be the driver for the lower SFR efficiency
- Measured the metallicity evolution of neutral hydrogen gas out to $z\sim5$
- Obtaining NUV data with HST to measure the SFR effiency at $z\sim 1 \& 2$
- Preliminary measurement of the SFR efficiency at $z\sim4$