Star formation during the first three billion years:
the key to understandingalaxy formation
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qalactic-scale star formation
observation meets theory




Cosmic-scale star formation

average star formation history in the universe
from current observations

“The universe got tenure at z~2” — Hans-Walter Rix

the first 3 Gyrs
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However, upow closer examination...
only massive galaxies tenured by z~2; late-type progenitors
were still Ln the postdoc mode at that epoch

star formation histories of galaxies in halos of different final mass (at z=0)
derived from abundance matching approach

Behroozi et al. arxiv/1207.6105 (cf. also Moster et al., arxiv/1205.5807)
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Star formation rate relative to baryon accretion rate
of galaxy progenitors

Galaxies forming in small mass halos convert only a small fraction of accreted
gas mass into stars -> star formation at high z in such objects should be very
inefficient (level of suppression comparable to early type galaxies at z~0)
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expected in
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Behroozi et al. 2012
arxiv/1207.6105



Observations indicate that spival galaxies at low z
forme >g0% of thelr stars at z<2 \
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Star formation histories of galaxies in cosmological
simulations typically exhibit high star formation
rates at high z

this is the main reason galaxy formation simulations tend to produce
mostly early-type like galaxies with massive spheroids
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Most of L<LU* galaxies Look like this...

NGC 253

composite R, G, B image"
S. Mazlin et al. v
Star Shadows Remote Observatory/PROMPT

http://lwww.starshadows.com/gallery/display.cfm?imgliD=319




30 kpc

Stinson et al. 2010
MNRAS 408, 812
arXiv/1004.0675
projected stellar density
for 9 different simulated
galaxies of different
stellar masses

color of stellar particles
indicates their age
(blue=young;
reddish=old)



Scannapieco et al. 2009
MNRAS 396, 696

projected stellar density
In three projections (rows)
of four MW-sized simulated
galaxies (columns)

the stars in the simulated
galaxies are kinematically
hot, which is reflected in
prominent central
spheroidal component and
thick disk



re-simulation of the
Aquarius MW-sized halos

Scannapieco et al.
2011 MNRAS 417, 154

projected stellar surface
density in i-band for 8
simulated galaxies
(face-on and edge-on)



Fairly realistic MwW-like galaxy produced

L the Eris simulation
Guedes et al. 2011, ApJ 742, 76

Spheroidal component is largely built
from stars formed at z>2
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Expansion factor at which 50%

There is a distinct correlation between amount of early star

formation and fraction of stars that end up in the disk
—> formation of “bulgeless” galaxies requires very tnefficlent star formation at z>2

of stars were formed

comparison of galaxy formation simulations (“The Aquila project’)

(C. Scannapieco et al. 2012
B

, MNRAS 423, 726)
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Star formation at high z may be Less efficlent because galaxies have
Lower wmetallicities (and Less dust) and higher interstellar FUV fluxes
(smaller fraction of gas is shielded from FUV radiation)

M, = / M, (t)dt M, = / 5,dA

Adisk
: 3 gas Can we modulate star formation
2 = f(Ega,s,...) — istory simply by modulating gas
T Tsf consumption time scale? (i.e,

Kennicutt-Schmidt relation without modifying Zgas)
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Gas consumption thme is large in low-surface density and
Low-metallictty environments

Depletion time
(just another way of plotting the KS relation)
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Environmental dependence of star {orma‘c’ww
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ART simulation,

resolution ~50 p¢ Scale in kpc
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; PH, nH —1/2
= h _ e ( )
p Z where 7y, yr p—

Dynamical model for formation and destruction of H,
(cf. Robert Feldmann's talk earlier today)
Gnedin, Tassis & Kravtsov 2009, ApJ 697, 55
Gnedin & Kravisov 2011, ApJ 728, 88
Gnedin & Kravisov 2010, ApJ 714, 287
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inefficiency of gas conversion tnto stars tn low-metallicity,
high-redshift small-mass galaxies

—>» suppresses star formation in halos of Mh<101° Msun at high z

Gnedin & Kravtsov Kuhlen et al. 2011
2010, ApJ 714, 287 arXiv/1105.2376
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14 kpc

Inefficient star formation b Y Ltself will not solve
problems such as bargow concentration problem

(ba rYon distribution is too concentrated towards the aewte\/)

ART code simulations of a MW-sized object with peak resolution of 80 pc (physical)
within the disk, molecular hydrogen chemistry and 3d radiative transfer

Zemp, O. Gnedin, N. Gnedin, Kravtsov 2012, ApJ 748, 54
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Our simulations fail to reproduce the high column density
tail of the DLA NH distribution

=3 even though they include H, physics, radiative transfer, etc.

N . | | %\
=3 The culprit is the dense central concentration of gas in gaseous disks Denis Erk\m

(ubiquitous in simulations with inefficient feedback) (U.Chicago)

e.g., Hummels & Bryan 2012; Scannapieco et al. 2012 | (-21 T Ty
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Needl to model the star formation-feedback Loop
fully and correctly

In addition to correctly modelling gas
consumption time scale, we need to
model structure of gaseous disk (Zgas),
which is very likely modified by

fH2 (Egas) "848 dA feedback.

TSf,Hz Challenge going forward is to figure out
the correct balance of star formation
efficiency (should be quite low on
average) and seeming requirement that
feedback should be efficient

39 kpc, z=3.5 No feedback | 39kec.z=35 SN + radiation
pressure

. Agertz



New subgrid model for stellar feedback which takes into account momentum
injection due to radiation pressure and winds during early stages (< 4 Myr)
of stellar evolution (Agertz, Kravtsov, Leitner & Gnedin 2012, in prep.)

see Oscar Agertz’s poster for more details:

Stellar feedback and efficiency of star formation
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Power [erg s-!]

lmportance of early, pre-supernovae stellar feedback

(Agertz et al. ‘12, see also, Murray et al. 2005, 2010, Hopkins et al. 2011a,b,c,d;
Stinson et al. 2012, arxiv/1208.0002)

Energy: Evot = Egnit + EsNia + Ewind

Momentum: Ptot = PSNII + Pwind + Prad
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Early wmomentum tnjection generally makes stellar feedback
much more efficient in disrupting star forming clouds

and re-distributing gas within the disk
(cf. also, Hopkins et al. 2011a,b,c,d; Hummels & Bryan 2011)

temperature maps in simulations of isolated MW-sized disk

No feedback All feedback All feedback All feedback
40 Myr delayed cooling fixed taur=30

- -

Agertz et al. 2012
in prep
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Efficient feedback tends to self-regulate star formation efficiency
(i.e., normalization of the Kennicutt-Schwmlidt relation)
(Agertz et al. ‘12, in prep; cf. also, Hopkins et al. 2011; Dobbs et al. 2011)
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Preliminary results from cosmological simulations indicate that
Early stellar feedback can help to significantly reduce star
formation at high z
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Preliminary results from cosmological stmulations tndicate that
Early stellar feedback can help to significantly reduce star

formation at high z
(Stinson et al. ‘12, arxiv/1208.0002 = today)

buildup of stellar mass (relative to total halo mass) in galaxy formation
simulations with different feedback prescriptions/parameters
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merger tree of

galaxy formation

star
Sformation

the Cosmic Ouroboros: star formation,
feedback and the merger Tree of Galaxy Formation

SM.WLWLﬂYg

» Galaxy morphology is very sensitive to star

formation history during the first 3 Gyrs of
evolution of the universe (z>~2). Star
formation should be highly suppressed to
form late type disk galaxies.

At the same time, stellar feedback should be
very efficient to redistribute gas in the
forming disks and drive outflows.

Lots of progress in understanding what was
missing in simulations of galaxy formation.
The challenge going forward is to figure out
details of the star formation-feedback loop

(in particular how to reconcile
inefficiency of star formation required by
observations and basic physical
considerations AND need for strong and
efficient stellar feedback)



Sewsiti\/itg of the Schmiot-Kennleutt relation
to varying dust-to-gas ratio

test models simulated to z=3 but with different fixed dust-to-gas ratios and
interstellar UV fluxes show that the main difference is gas metallicity
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