Angela Adamo, adamo@mpia.de Max Planck Institut fur Astronomie

THE INFLUENCE OF ENVIRONMENT ON CLUSTER FORMATION

CLUSTER FORMATION AND ENVIRONMENT

× Some general statements (from the observer PoV)

× A look outside our Galaxy:

Cluster and star formation in the local Universe (< 100 Mpc)

Dwarf systems – Spirals – Starbursts (mergers)

extragalactic

× Scaling relations: Cluster formation versus SFR

STAR FORMATION (SF) IN GIANT MOLECULAR CLOUDS (GMC)

- × Star formation is hierarchical in space and time
- ★ turbulence → transient and inhomogeneous molecular clouds → localized compressed pocket of gas
- High-density regions, exceeding the critical mass for gravitational contraction, collapse (Jeans unstable clumps/cores)

SF FROM GMC TO CLUMP SCALES

Elmegreen (2011), Klessen (2011)

WHAT IS A STAR CLUSTER?

× A look at the local Universe:

Gravitationally bound

Surrounded by dust and ionized gas (first ~10 Myr)

Massive, 10³⁻⁶ Msun

Formed in a single burst

Compact, radius ~ 1-5 pc

Survive up to Hubble time!

WHY DO WE STUDY STAR CLUSTERS?

★ commonly produced in star formation events
→ Tracers of the host star formation history

- × Easy to model
 - \rightarrow Formed by a single stellar population
- Easy to detect (< 100 Mpc)</p>
 - \rightarrow Brighter then single stars

WHY DO WE STUDY STAR CLUSTERS?

commonly produced in star formation events
Tracers of the host star formation history

× Easy to model

 \rightarrow Formed by a single stellar population

× Easy to detect (< 100 Mpc)

 \rightarrow Brighter then single stars

OPEN ISSUES

× What fraction of stars does form in clusters?

- **×** Does this depend on environment?
- **×** Which fraction does survive?

× What fraction of stars does form in clusters?

× Does this depend on environment?

× Which fraction does survive?

STAR FORMATION RATE (SFR) AS FUNCTION OF THE ENVIRONMENT Review by

Kennicutt & Evans (2012)

LOW SF AND GAS DENSITY REGIMES

- K M_B > −18 mag (Dwarfs and Irregulars)
- ★ 60 local Dws and Irrs:

~50% (32) Do not have clusters

~10% (7) Have only clusters >100 Myr

~40% (21) have YSCs < 100 Myr

CLUSTER FORMATION IN DWARF GALAXIES

Billett et al (2002), Cook et al (2012), 5 dwarf starburst from literature

- In Dws and Irrs star formation happens in compact regions
- × Burst events are episodic and localised
- **×** The formation of clusters is a "complicated" process:
 - A central massive cluster is formed → stellar feedback quenches SF, lower mass clusters are formed after a few Myr (NGC1569, NGC1705, etc);
 - 2) More clusters are produced during the same burst event (NGC4449, IC 2574)
 - 3) At very low SF regime the galaxy is able to form a few (maybe one) clusters (Cook sample)

CLUSTER FORMATION IN DWARF GALAXIES

Billett et al (2002) Cook et al (2012) The sporadic formation of (massive) clusters could be correlated to the environment:

1) End of bar flows or shell collisions (30 Dor)

2) The lack of shear

- 3) Gravitational instability (GMCs size comparable to the local Jeans scale)
- 4) In nuclear regions, ambient density and pressure are high (very massive central clusters)

CLUSTER FORMATION IN DWARF GALAXIES Billett et al (2002) Cook et al (2012)

- × Dynamically spiral galaxies are more active:
 - 1) spiral wavemode as response to gravitational instability
 - 2) arms (interarms) have usually low (high) shear and tidal forces
 - 3) streaming motions
- → As consequence SFR per unit area is higher in the arms. However, the spiral arms do not increase the global SFR per unit molecular gas

Clusters form at a quite constant rate (N_{YSC} > a few 100s)

CLUSTER FORMATION IN SPIRALS

Elmegreen (2011) Sharon's talk

HARO 11

Luminous Blue Compact Galaxies (BCGs) show:

Perturbed morphologies \rightarrow likely produced by recent mergers with gas-rich low mass systems

Show intense starburst knots and high current star formation rates \rightarrow formed by hundreds of massive and very young star clusters

Low metallicity content

Low extinction \rightarrow UV-bright systems

Low stellar masses ($\leq 10^{10} M_{\odot}$)

Östlin et al. in prep

Adamo et al 2011b, MINRAS

@Hubble Heritage team

Adamo PhD thesis

CLUSTER FORMATION IN MERGERS

Adamo et al 2010

× Merger systems:

1) gas experience high compression and elevated external pressures

2) gravitational instabilities are not local but global

3) SFR increases \rightarrow higher cluster formation efficiency

4) very massive clusters are formed \rightarrow most massive YSC are found in mergers, M>= 1x10^7 Msun (W3 and W30, Bastian et al 2006; WS80, Whitmore & Zang 2002)

CLUSTER FORMATION IN MERGERS

How can we relate star formation to cluster formation?

Scaling relations

FRACTION OF STARS FORMING IN CLUSTERS

Larsen & Ritchler (2000) Adamo et al (2011)

Mv (brightest) \rightarrow is a young cluster and not the most massive

THE MOST LUMINOUS YSC INNEARBY GALAXIESLarsen (2002, 2009),
Adamo et al (2011), C

Larsen (2002, 2009), Bastian (2008), Adamo et al (2011), Cook et al. (2012) × Cluster formation efficiency → the fraction of star formation which happens in bound clusters

 $\Gamma(\%) = \frac{\text{Cluster formation rate}}{\text{Star formation rate}}$ Bastian (2008)

Methods to derive CFR:

 Assume a CMF, and the total stellar mass formed in clusters in the last 10 Myr → current SFR (Hα , L_{ir}, CMD of the stellar field population)

[Goddard et al (2010), Adamo et al (2011); Annibali et al (2011);Cook et al (2012)]

2) Assume a CMF, a cluster disruption model; perform a fit to the observed cluster luminosity function → constant SFR [Silva-Villa & Larsen (2011)]

CLUSTER FORMATION EFFICIENCY

D. Kruijssen's talk for an analytic fit to the data

Goddard et al 2010, Adamo et al 2011, Silva-Villa&Larsen (2011)

× Caveats

1) Cluster detection at larger distances is more challenging \rightarrow resolution problems, crowding

CLUSTER FORMATION EFFICIENCY

- × Caveats
- 1) Cluster detection at larger distances is more challenging \rightarrow resolution problems, crowding
- 2) different SFR indicators
- 3) are all the objects clusters? → derived Γ upper limit in some cases

CLUSTER FORMATION EFFICIENCY

- 1) Luminous BCGs are ideal systems to study high efficiency of cluster formation (high SFR, low extinction).
- 2) Cluster formation is not a local event but appears to be tightly related to the global properties of the host galaxies.
- 3) Not only size-of-sample effects but also environment play an important role on cluster formation.

