
Chapter 6

Formation of structure in the
Universe II: Formation of DM
Halos

Once the density perturbations δ are no longer small, i.e. the condition δ! 1 no longer
holds, we must abandon the perturbation theory and treat the problem of the growth
of structures in a non-linear way. A full treatment requires multi-dimensional numer-
ical models such as dark matter (DM) structure formation simulations using N-body
methods. The famous “Millennium Simulation” and “Mare Nostrum Simulation” are
examples of very massive computations of this kind, and you are encouraged to google
these simulations and see what kind of structure “real” simulations produce. What you
will notice is that initially the structure produces a kind of “foam” structure with large
voids, separated by walls, filaments and clumps of dark matter. In this chapter we
will try to understand these structures using simplified approximate models. We will
also try to make predictions for the statistical distribution masses of dark matter halos
formed from these structures.

6.1 Zel’dovich approximation
Before the density perturbations go completely non-linear, there is a phase where
the linear theory is no longer appropriate but a full non-linear treatment is not yet
necessary. We can use an intermediate method: the Zel’dovich approximation. In this
approximation we write the position of every dark matter particle "r(t) as

"r(t) = a(t)"x + b(t) "f ("x) (6.1)

The first term describes the usual expansion of the Universe and the second term
describes the peculiar velocities. The vector field "f ("x) is very closely related to the
peculiar velocities we derived in Section 5.1.6. The main new thing is that we now
follow the motion of the particles for distances that are no longer small, i.e. we push
this to the non-linear regime. It turns out that b(t) can be written in terms of the D+(t)
from that section:

"r = a
[

"x + D+(a) "f
]

= a
[

"x +
"u

H f (Ω)

]

(6.2)

We therefore follow each dark matter particle along a straight line (since "f does not
change with time). Whereever the flow converges we get an increase of density,
whereever it diverges the density goes down. It turns out that the result is the pro-
duction of voids separated by walls of dark matter. Zel’dovich called them pancakes.
This leads to a “foamy” structure. However, once the flow lines start crossing each
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other the Zel’dovich approximation breaks down, because it neglects the gravitational
interaction between the particles which cross each other.

6.2 Full non-linear modeling of dark matter structure formation
To really model the growth of structure in the non-linear regime requires large scale
3-D models. The method of choice has been “N-body modeling” so far. This type
of model computes the gravitional interactions between a huge set of point particles
i = 1 · · ·N that otherwise do not interact with each other. Each “particle” (which is
just a computer representation of a portion of dark matter mass) has a position "ri(t)
and velocity "vi(t) = d"ri(t)/dt and a mass mi. The equation of motion of particle i is

d2"ri(t)
dt2

=
∑

k!i

Gmkmi

|"rk − "ri|3
("rk − "ri) (6.3)

i.e. it feels the gravitational pull of all the other particles. In practice this sum
would require N2 operations for each time step of the simulation. For large N this
would be prohibitively computationally expensive. In practice various methods are
used to approximate this sum for gravitational interactions between distance particles.
Particle-Mesh (PM) methods compute the density of particles on a mesh and then use
a Fourier transformation to solve the Poisson equation. An improved version of this,
the Particle-Particle Particle-Mesh method (P3M) allows particles that are near to each
other to have direct interactions. A Tree Code handles distant gravitational coupling
by grouping distant particles into groups.

A famous code for making such models is the GADGET code of V. Springel. Famous
models are the Millennium Simulation and the Mare Nostrum simulation.

The results of these simulations show that, as predicted by the Zel’dovich approxi-
mation, large voids form, separated by dark-matter walls. At the intersection of the
walls you get even denser dark matter ridges, and where the ridges meet you get even
denser dark matter halos. These dark matter halos are the sites where galaxies and
galaxy clusters are formed.

The non-linear evolution of the perturbations induces non-Gaussianity, even if the
initial signal is gaussian. One can see this in the simplest way by realizing that δ
is limited from below by 1 (because we cannot have negative densities) while it is
unlimited from above (because we can increase the density by factors of many). This
necessarily skews the probability distribution function for the density toward large
densities, and thus breaks gaussianity.

6.3 Spherically symmetric model of DM halo formation
In Chapter 2 we made a model of the expanding Universe based on a spherically
symmetric set of concentric shells of dark matter. It turns out that we can use this
model almost 1-to-1 to model the formation of DM halos. Suppose that in an otherwise
homogeneous Universe filled with DM there is a spherical patch of somewhat higher
density. If we apply the model of Chapter 2 to this patch, we can simply ignore the
Universe outside of this patch, since by the laws of Newtonian dynamics the matter
inside the patch does not feel the matter outside the patch. The path is therefore like a
little mini-Universe. Since we assumed it to be slightly denser than the surrounding,
and we assume that the surrounding Universe has an exactly critical density, the patch
is super-critical. We know that this must collapse, as would a closed Universe. This is
a simple model of DM halo formation.

Conversely if the patch is assumed to be underdense, the expansion of the patch would
be faster than the Universe surrounding it, and a void is created. This is a simple model
for the formation of the voids seen in the full N-body simulations.
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Let us focus on a collapsing (overdense) patch with homogeneous density, and radius
R(t) embedded in an Einstein de Sitter Universe. For the purpose of later use, we
will cast this solution in a slightly adapted form, to embed it in an Einstein de Sitter
Universe. We assume that we know when the “turn around” point occurs, i.e. when
the patch has reached its maximum extent. The radius of this patch at this turn around
time is called Rta, as in Chapter 2. The time of the turn around after the Big Bang is
called tta, and the scale factor at that time ata. We have H = H0a−3/2 for the Einstein
de Sitter Universe, and we define Hta = H0a−3/2

ta . We now define three dimensionless
quantities:

x := a
ata

, y := R
Rta

, τ := Htat (6.4)

We also define the overdensity parameter ξ as follows:

ξ := ρ

ρcrit

∣

∣

∣

∣

∣

a=ata

(6.5)

i.e. the density in the patch in units of the critical density, evaluated at the time of
turn-around. One can show that:

τ =
2
3
x3/2 =

1
√
ξ

[

1
2

arcsin(2y − 1) −
√

y − y2 +
π

4

]

(6.6)

up to the turn around point. By expressing τ(y) we implicitly defined the function y(τ),
which is actually what we want. An explicit analytical form of y(τ) does, however, not
exist, so we will have to be content with this implicit form. The turn-around happens
at x = y = 1 and τ = 2/3. This implies that

ξ =

(

3π
4

)2

$ 5.55 (6.7)

For τ > 2/3 the solution is the reverse: τ→ 4
3 − τ. The solution collapses to a point at

τ = 4/3, which is at x = xc = 22/3.

The overdensity at the center of the collapsing halo compared to the average density
of the Universe can be written as:

∆ =

(

x
y

)3

ξ (6.8)

because the density of the background goes as 1/a3 ∼ 1/x3 while the density in the
halo goes as 1/y3. In chapter 5 we introduced, instead, δ ≡ ρ/ρ0, which is related to ∆
as

δ = ∆ − 1 (6.9)
Just as a consistency check: In the limit x → 0 you can verify that ∆→ 1, i.e. δ → 0,
as expected.

At early times (0 < x ! 1) we can linearize the solution (which is a bit cumbersome)
to obtain the following expression for δ:

δ =
3
5

(

3π
4

)2/3

x =
3
5

(

3π
4

)2/3 a
ata

(6.10)

This expression confirms that δ is linearly proportional to a, as we already derived
from linear perturbation theory.

Something that is often done is to use this linear expression to estimate the density
contrast δ at t = tta, even though we would actually have to use the full non-linear
solution for that. It would give, however, a reasonable (and much more easy-to-use)
estimate of the density at turn-around:

δlin,ta =
3
5

(

3π
4

)2/3

$ 1.04 (6.11)
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If we use the same method to estimate the density at the time of collapse, which is at
x = 22/3:

δlin,c =
3
5

(

3π
2

)2/3

$ 1.69 (6.12)

It turns out that we can turn the argument around and say that a halo is considered
collapsed when, in the linear theory, the δ reaches a value of 1.69. It turns out that
this is actually a good approximate criterion for collapse for any set of cosmological
parameters, i.e. not only for the Einstein de Sitter model.

In the full non-linear model, of course, the density at the time and location of collapse
should be infinite. In practice, however, the simple spherical halo model is not a
good model of reality. We saw earlier that we have an entire spectrum of modes.
Therefore, instead of going to infinite density, the halo will virialize. The trajectories
of the DM particles will come very close to each other shortly before a = ac and
they will gravitationally swing by each other, thus converting systematic motion into
random motion. This random motion can be regarded as a “temperature”. In other
words: after virialization we will, at a given spatial position in the DM halo, have
DM particles moving in different directions. The DM is then no longer strictly cold
anymore: It is hot, and has a temperature equal to the virial temperature.

We can estimate roughly what the size of such a virialized DM halo would be. Ac-
cording to the virial theorem, the kinetic energy of the particles must, on average, be
equal to half the potential energy. Since the collapse converts systematic (collapse-)
motion into random motions, we can estimate the size of the virialized DM halo by
equating the kinetic velocity at some dimensionless radius y to the potential energy at
that radius. This happens at y = 1

2 . The overdensity ∆v at that time compared to the
background density is given by Eq. (6.8) with y = 1/2 and x = xc = 22/3 (the time of
collapse):

∆v =

(

22/3

1/2

)3

× 5.55 $ 178 (6.13)

This is the overdensity of the halo once it has collapsed and virialized. Note that this
is much higher than the overdensity predicted from linear theory: 1 + δc = 2.67, but it
is not infinity either.

While both δc and ∆v are approximate estimates of the overdensity they can be used
as reference for characterizing dark matter halo properties. We will use them in fact
when we derive the Press-Schechter mass function below.

Note that this spherically collapsing DM halo model neglects the fact that (as one can
show rigorously, see script of Matthias Bartelmann) a tiny ellipticity at the beginning
will amplify, making the halo more elliptic as the collapse proceeds.

6.4 Press-Schechter mass function for halos
Although the spherical collapse model gives us some clues to the time scales of col-
lapse, we still need to somehow link it to the initial perturbations we studied in Chap-
ter 5. Only then will we be able to make estimates of the kind of DM halos that are
formed. Dark matter halos are the non-linear “end”-product of the growth of DM per-
turbations. Of course, they are not true end-products, because at some point in time
the halos start to be attracted to each other and they will merge. But let us postpone
that for a later section and concentrate on the halos produced by direct collapse of the
original perturbations. We wish to derive from the power spectrum of the density per-
turbations a sort of “initial mass function” for the halos before they attract each other
and merge.
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6.4.1 Relation between size scales and halo masses

Let us first define a relation between distance scales and mass. If we want to form a
DM halo of mass M, we need to collect matter from a sphere of radius R such that

4π
3
R3ρ0 = M (6.14)

where ρ0 is the background density. If we define ρ0 to be the background density
at the present time, then the above expression can also be used at z > 0 as long as
we understand R to be a distance scale in comoving "x coordinates (not in physical "r
coordinates). This will be convenient if we want to compare R to 1/k.

6.4.2 Basic idea of the Press-Schechter model

The central idea of the Press-Schechter model we are going to describe here is that
if we look at the linear density perturbation field δ("x, t) at some time t, there may be
regions where δ("x, t) > δc. According to the simple spherical collapse model described
above, by the time the linear perturbation exceeds δc, the true solution has already
collapsed and virialized. We can therefore use the linear perturbation theory to predict
which regions of space have already collapsed to form DM halos.

It is important to understand that this analysis cannot be done for each wave mode "k
separately. It is the sum of the modes at one specific location "x that may, or may not,
exceed δc. Also, we know from the previous chapter that if we do not introduce a
window functionWR("x− "x′) to smooth-out wave modes of k * 1/R, then the variance
σ2 diverges. This makes an analysis meaningless. We therefore have to work with a
smoothed version of δ("x, t):

 δR("x, t) =
∫

δ("x′, t)WR("x − "x′)d3x′ (6.15)

Now let us start with large R, so that all small-scale structures are washed out. Suppose
that at early enough times the  δR("x, t) will virtually nowhere exceed δc. We interpret
this that no DM halos of mass (4π/3)R3ρ0 have yet formed. Now let us gradually
decrease R. This means that new (higher "k) modes are added to the already existing
density perturbation. Now remember that for large enough k we have P(k) ∝ 1/k3,
and remember that this means that not only is this spectrum scale-free, but it also has
equal power per order of magnitude in k. This means that every time we decrease R
by a factor 10 we add perturbations of equal variance as the previous contribution. If
at the largest R the  δR("x, t) was not too small, then as you decrease R there will come
a point when  δR("x, t) will reach δc at some points in space. We interpret this that at
those points in space dark matter halos of typical size R and mass M = (4π/3)R3ρ0
are formed.

As we continue to decrease R we will obtain more and more points in space where
 δR("x, t) exceeds δc. In other words: smaller halos have also already formed, and the
smaller the halo size, the more of them we find.

6.4.3 Non-linear mass

At a given time there will be a typical size scale R∗ that just becomes, on average,
non-linear and forms DM halos of mass M∗. Halos of smaller mass have already been
formed and halos of larger mass have not yet been formed. This typical mass M∗ is
called the non-linear mass. It is defined such that the standard deviation squared σ2

R∗
at length scale R∗ corresponding to mass M∗ equals δ2

c:

σ2
R∗ = 4π

∫

k2dk
(2π)3P(k)Ŵ2

R∗(k) = δ
2
c (6.16)
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6.4.4 Derivation of the Press-Schechter mass function

If we assume that  δR("x, a) is a Gaussian random field at the time given by the scale
factor a, then we can write the probability of finding  δR("x, t) between some value  δ
and  δ + d  δ:

pR(  δ, a)d  δ =
1

√
2πσR(a)

exp












−
 δ2

2σ2
R(a)













d  δ (6.17)

Since σR(a) will grow with a, this probability distribution function changes with time.

According to the model assumption by Press & Schechter, the fraction F(M, a) of the
cosmic volume filled with halos of masses M or larger is given by the fraction of the
cosmic volume that has the linear filtered density δR("x, a) above δc. In formulae:

F(M, a) =
∫ ∞

δc

pR(  δ, a)d  δ = 1
2

erfc
(

δc√
2σR(a)

)

(6.18)

where erfc is the complementary error function. The function F(M, a) is some sort of
cumulative distribution function (though see a discussion on this slightly lateron).

To get the actual distribution, we must take the derivative of F(M, a) with respect to
M:

∂F(M, a)
∂M

=
1
2
∂

∂M
erfc

(

δc√
2σR(a)

)

(6.19)

The M-dependence is hidden in σR(a). We can write
∂

∂M
=
dσR
dM

∂

∂σR
(6.20)

Using
d
dx

erfc(x) = − 2
√
π
e−x2 (6.21)

we find
∂F(M, a)
∂M

=
1
√

2π
δc

σR(a)
d lnσR
dM

exp












−
δ2
c

2σ2
R(a)













(6.22)

With the definition
σR(a) = σRD+(a) (6.23)

(where σR is the variance measured today) we get the slightly more familiar form:

∂F(M, a)
∂M

=
1
√

2π
δc

σRD+(a)
d lnσR
dM

exp












−
δ2
c

2σ2
RD

2
+(a)













(6.24)

Before we can convert this into a number density of halos we must become aware of a
subtlety. Because F(M, a) is a cumulative distribution function, we might expect it to
be 0 for M = 0 and to go to 1 for M → ∞. However, from Eq. (6.18) we can see that

lim
M→0

F(M, a) = 1
2

and lim
M→∞

F(M, a) = 0 (6.25)

This means that at most half of our volume will be filled with halos of any mass. The
reason for this is because 〈  δ〉 = 0 by definition. So for every excursion above δc there
must be a compensating excursion below −δc.

As a result of this strange factor 1/2, in order to convert this into a comoving number
density (number density per "x-volume) for halos between mass M and dM we must
divide the above expression by half the mean volume of such halos: M/ρ0 with ρ0
being the DM density today:

N(M, a)dM =
√

2
π

ρ0δc
σRD+(a)

d lnσR
dM

exp












−
δ2
c

2σ2
RD

2
+(a)













dM
M

(6.26)

This is the famous Press-Schechter mass function. It turns out that it holds surprisingly
well up to full scale N-body calculations.
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6.4.5 Hierarchical structure formation

From the previous analysis we see that small halos form first, and then larger halos
form. But often the small-scale density perturbation are on top of a larger-scale one. In
fact, only in that way can they become non-linear in the first place. So after the small-
scale perturbations have become non-linear and formed small DM halos, at some point
the larger-scale perturbation on top of which the small scale perturbation “stood” also
becomes non-linear and virializes. In practice what happens is that the small halos
merge to form a bigger one. You can pictographically represent this with a “merger
tree”. According to large scale simulations, the virialization is, however, not expected
to lead to perfectly smooth halos: the original small-scale DM halo structures are
expected to remain present as “clumps” inside the larger DM halo. That is the case, at
least, if the DM is indeed cold. If the DM has some prior temperature, this could lead
to smoother halos.

6.4.6 Halo formation as a random walk

As we already noted, for the power spectrum shape of P(k) ∝ 1/k3 there is equal power
in each equal interval in ln(k). If we start from a smoothed-out  δ at large R (small k)
and we increase k with equal factors of, say, 2, then we essentially add perturbations
of similar amplitude in each step. If we look at a fixed position "x then this procedure
resembles a 1-D random walk in  δ.

During the procedure of gradually decreasing R the  δ at some given point could, at
some point "x, exceed δc. In that case we call "x part of a halo of the mass M corre-
sponding to R. Let us call this mass Mc for later reference. If we now continue our
random walk, it could happen that  δ drops below δc again. This is because in our more
massive halo we now get substructure, some of which may drop below δc. For the
sake of consistency, however, we still want our point "x to belong to the halo of mass
Mc. Moreover, although point "x may be also part of a sub-halo of mass M ! Mc that
is contained inside the halo of mass Mc, we consider the largest halo, i.e. that of mass
Mc, to be the one that counts. To account for this in the random walk picture we stop
the random walk essentially when it enters the > δc region. It is therefore some sort
of “absorbing barrier”.

Now let us calculate the probability ps(  δ, a) that  δ is reached via a path that never
crossed the absorbing barrier, i.e. an entirely “allowed” path. To calculate this we
define the “mirror point” of  δ:

 δm = δc + (δc −  δ) = 2δc −  δ (6.27)

As soon as a path reaches the absorbing barrier, it has 50% chance to return below
the barrier and 50% chance to continue above the barrier. Suppose it goes above the
barrier. Once we are an infinitesimal bit above the barrier the distance to  δ is still the
same as to  δm, so there is still 50% chance to go back to  δ as to  δm. So to study the
probability to reach  δ from that point is identical to studying the probability to reach
 δm. However, to reach  δm one must pass through “forbidden” territory. In other words:
Finding the probability to reach  δm is equivalent to finding the probability to reach  δ
via a path that at least once passed beyond the absorbing barrier.

So if we want to find the probability to reach  δ without ever passing the barrier we
must compute the probability of reaching  δ via any path, minus the probability of
reaching  δm:

ps(  δ) = 1
√

2πσR













exp












−
 δ2

2σ2
R













− exp












−
(2δc −  δ)2

2σ2
R

























(6.28)

We have now the probability of reaching  δ without ever exceeding δc on any scale
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down to R. To find the probability of  δ to exceed δc on some scale is thus

1 − Ps = 1 −
∫ ∞

δc

d  δps(  δ) = erfc
(

δc√
2σR

)

(6.29)

Here we do not run into the problematic factor 1/2. The rest of the derivation of the
Press-Schechter mass function is the same as before.

This method of a random walk is a powerful tool for further analysis of the statistics of
DM halos. One can analyze merger histories, for example. Please refer to the lecture
script of Matthias Bartelmann for further details.

6.5 Halo density profiles
The structure of DM halos can be complex. But some simple models can be made.
One simple approximation is to regard the virialized DM as a fluid with a pressure.
Let us make a spherical model of a DM halo in that approximation. We then have the
pressure equilibrium equation:

dp
dr
= −

GM(r)
r2 ρ (6.30)

where
M(r) = 4π

∫ r

0
ρ(r′)r′2dr′ (6.31)

and
p =

ρ

m
kT (6.32)

with m the DM particle mass. If we now take T=constant, then the equation of hydro-
static equilibrium can be brought into the form

d
dr

(

r2 d ln ρ
dr

)

= −
4πGm
kT

r2ρ (6.33)

One solution is the singular isothermal sphere:

ρ(r) =
σ2
v

2πGr2 with σ2
v =

kT
m

(6.34)

Another is a flat-core profile (Bonnor-Ebert sphere), which can e approximated by:

ρ(r) = ρ0

1 + (r/r0)2 (6.35)

which, by the way, becomes equal to the isothermal sphere for large r. Note that the
mass of this sphere diverges as r → ∞. Therefore this model can only describe the
inner parts of DM halos.

From numerical simulations it turns out that a more accurate profile approximation is:

ρ(r) = ρs
x(1 + x)2 with x := r

rs
(6.36)

This is the so-called Navarro-Frenk-White profile (NFW profile). It goes as 1/r3 for
large r and flattens to 1/r for small r.

The virial radius is often defined as the radius enclosing a mass with 200 times over-
density over the background. The 200 is just a convenient “approximation” of the
number 178 we derived earlier.

r200 =
( GM
100H2

)1/3
(6.37)
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The ratio
c =

r200

rs
(6.38)

is called the “concentration” of the halo.

Although the NFW-like profiles follow directly from N-body numerical simulations,
it is not clear from fundamental principles why they have this shape.
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