
Chapter 8

Observing the CMB

By observing the CMB sky at high angular resolution it has become possible to derive
several of the most important parameters of the Universe. There is a degeneration
in the derived parameters, so it is important to supplement the CMB data with other
observational constraints. And, of course, the analysis requires a good model of the
expansion of the Universe and the processes shaping the CMB.

From the fact that non-linear structures exist today in the Universe, the linear growth
theory predicts that density perturbations at z = 1100 (the time of CMB release) must
have been of the order of

δ(aCMB) =
δ(a = 1)
D+(aCMB)

! 10−3 (8.1)

Currently we know that non-linear structures in the Universe already existed at red-
shifts z = 10 or even higher, so this imples that δ(aCMB) ! 10−2 at least at small
scales.

After the CMB was found in 1965, fluctuations were sought at the relative level of
10−3, but they were not found. Eventually they were found at a level of 10−5. The
reason is that already before the CMB release the DM perturbations started growing
independently. While the radiation-Baryon fluid oscillated and therefore didn’t grow
in amplitude, the DM perturbations continued to grow. Before the DM dominated the
mass (i.e. z ! 3300) this growth was slow (logarithmic), while once DM dominate
the mass the growth was linear. Since DM has no coupling to the electromagnetic
spectrum, nor to the Baryons, this growth happenedwithout pumping the perturbations
in the CMB to equal levels. In fact, this can be seen as a proof of the existence of such
a DM as a non-interacting form of matter.

In this chapter we will investigate how the CMB perturbations at a level of 10−5 in fact
do appear and which effects shape their power spectrum.

8.1 Analysis of the CMB sky with spherical harmonics
Since we observe the CMB on the sky, which is a sphere, we have to use spherical
harmonics instead of plane waves to do a “Fourier analysis”. We observe the tempera-
ture fluctuation as a function of angular position on the sky δT ("θ). The decomposition
in spherical harmonics is then:

δT ("θ) =
∑

lm
almYml ("θ) (8.2)
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in which coefficients alm are complex. The spherical harmonics form an orthonormal
basis:

∫ 2π

0
dϕ

∫ π

0
sin θdθ Ym1∗l1 (θ, ϕ)Ym2l2 (θ, ϕ)δl1l2δm1m2 (8.3)

and the coefficients alm are given by

alm =
∫ 2π

0
dϕ

∫ π

0
sin θdθ δT (θ, ϕ)Ym∗l ("θ) (8.4)

The power spectrum is then defined by

Cl =
〈

|a2lm|
〉

(8.5)

Note thatCl only depends on l, because the indexm stands for directional dependence.
Since the CMB is isotropic, this directional dependence should vanish.

Note, however, that because the sun and the Earth are moving relative to the CMB
radiation, we observe a dipole on the sky. This is simply the doppler shift due to our
motion. We remove this dipole before we analyse the CMB.

A more meaningful quantity would, however, be l(l + 1)Cl, because it gives the total
power in the multipole l. This is shown in the figure.

8.2 The last scattering surface
As we saw in Chapter 7, the opacity that makes the early Universe opaque is electron
scattering. Electron scattering is not an emission process, and thus is not expected to
thermalize the radiation field. It only changes the direction of photons (more on that
in Section 8.3.4). When the Universe recombines around z # 1100 · · ·1300 the free
electrons needed for electron scattering get depleted, and each photon thus experiences
a “last scattering”. As we shall see, this happens at slightly different z depending on
how deep this event happens inside a gravitational potential well. On the sky we can
translate this in a (slightly) varying comoving distance. This defines a surface around
us on the sky at Dcom # 1.43 × 1010 parsec with slight dimples in it.

8.3 The effects shaping the CMB power spectrum
As we already mentioned in Chapter 7, the temperature of the CMB radiation drops
as T ∝ a−1 before and after the last scattering surface. The presence or absense of
the Baryons therefore does not appear to change the temperature. Perturbations in
the density of Baryons would therefore also not do this. So one may wonder why
there are any temperature perturbations observable at all. Indeed, the reasons for the
temperature fluctuations are a bit subtle. Let us discuss them in this section.

8.3.1 Sachs-Wolfe Effect

Suppose we are looking at a point on the last scattering surface that happens to be
in a gravitational potential well (compared to the average potential). The tempera-
ture fluctuations due to the so-called Sachs-Wolfe effect (do not confuse this with the
integrated Sachs-Wolfe effect) are due to two competing effects: (1) the redshift ex-
perienced by the photon as it climbes out of the potential well toward us and (2) the
delay in the release of the radiation, leading to less cosmological redshift compared to
the average CMB radiation.

The first contribution leads to a redshift of the order of:

δT1
T
=
δΦ

c2
(8.6)
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Verification: Since in our notation a potential well corresponds to δΦ < 0, we indeed
get redshift: δT1 < 0.

The second contribution is more tricky, and a proper treatment would require a general
relativistic approach. Loosely it works as follows. The CMB radiation is set free when
the ionization parameter x has dropped to less than one percent, which happens when
the temperature drops below about 3000 K. This is only a function of temperature, not
of density. Now, because of general relativity, the proper time goes slower inside the
potential well than outside. The cooling of the gas in this potential well thus also goes
slower, and it therefore reaches 3000 K at a later time relative to the average Universe.
The time delay (in terms of global time t) is:

δt
t
= −

δΦ

c2
(8.7)

This means that 3000 K is reached at a slightly larger (global) scale parameter a+δa >
a. Since in the Einstein-de-Sitter Universe we have a ∝ t2/3 we can write

δa
a
=
2
3
δt
t
= −

2
3
δΦ

c2
(8.8)

Now, from that point a = (acmb + δa) until today a = 1 the redshift due to expansion
is less by:

δz
z
= −

δa
a

(8.9)

which leads to a positive contribution to the temperature fluctuation δT that we observe
today:

δT2
T
= −

δz
z
=
δa
a
= −

2
3
δΦ

c2
(8.10)

The total is the sum of both contributions:
δT
T
=
δT1
T
+
δT2
T
=
1
3
δΦ

c2
(8.11)

This means that CMB radiation from a potential well leads to redshifted CMB radia-
tion, albeit at a redshift that is only 1/3 as much as one would naively expect. This is
known as the Sachs-Wolfe effect.

The power in the CMB power spectrum at large scales (small l) is caused by this effect.

8.3.2 Baryonic acoustic oscillations

We have already seen that perturbations on small scales oscillate (cf. Chapter 5). Let
us revisit the equation for the evolution of δ for a photon gas, Eq. (5.79), and write it
in the form:

d2δ
dt2
+ 2Hdδ

dt
=

c2

3a2
∇2δ +

32
3
πGρ0δ (8.12)

Now let us introduce the conformal time τ, defined by

τ =

∫ t

0

dt′

a(t′)
(8.13)

Note that for the standard model, for t → 0 we have τ → 0, i.e. the integral does not
diverge near t → 0 in spite of the fact that a(t)→ 0 for t → 0.

We can now write the second derivative d2δ/dt2 as

d2δ
dt2
=
1
a2
d2δ
dτ2
+ H

dδ
dt

(8.14)

so Eq. (8.12) becomes

d2δ
dτ2
+ 3Hadδ

dτ
=
c2

3
∇2δ +

32
3
πa2Gρ0δ (8.15)
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In Fourier space, where ω this time belongs to the conformal time τ, we thus obtain
the dispersion relation:

ω2 − 3Hai = c2

3
k2 −

32
3
πa2Gρ0 (8.16)

If we assume that we have large enough k and ω that we can ignore both the gravi-
tational term on the right and the term proportional to H on the left, then we arrive
at:

ω2 =
c2

3
k2 (8.17)

This means that we have solutions of the form

δ(x, τ) = δ0 cos(kx + ϕ) cos
(

c
√
3
k[τ − τstart(k)]

)

(8.18)

for τ ≥ τstart(k), with k and ϕ are arbitrary. The τstart is the conformal time at which
this mode enters the horizon and thus starts oscillating.

Equation 8.18 is a standing wave with an interesting property: The phase of the time-
oscillation is fixed by (c/

√
3)k[τ − τstart(k)]. At time τ − τstart(k) the phase is 0, and at

any later time we know what the phase is: It is not a random variable. This means that
for every wave number k we know what the phase of the oscillating standing wave is
at the time of the CMB release. For some modes this phase may be π/2, in which case
the density fluctuation has disappeared by the time of CMB release, but the motion is
maximum. For others the density fluctuation may be near maximum (phase 0 or π).
This gives a distinct wavy pattern in the power spectrum of the CMB, as can be seen
in the figure at scales below about 1 degrees.

8.3.3 Silk damping

As we saw from the exercises, the CMB is released at an ionization parameter x # 0.01
at redshift z # 1100. CMB release implies that the mean free path of the photons is
roughly equal to the scale of the particle horizon, or in other words, roughly equal
to the scale of the largest scale baryonic acoustic oscillations represented by the first
bump in the CMB power spectrum. At only a bit higher redshift (z # 1400) the
ionization parameter was near unity, meaning that the mean free path at that time was
about 100 times smaller than that scale. So for wave modes k 100 times the k of the
largest baryonic acoustic oscillation the radiation decouples already from the mode,
since photons can travel freely over one wavelength. Those waves therefore decouple
from the radiation pressure and do not behave as oscillations. They strongly damp out.

This damping already happens at scales about ten times larger than that, because even
if a wavelength covers 10 mean free paths, due to diffusion (a random walk of the
photon) a lot of radiation can diffuse from the peak of the wave to the valley and thus
strongly damp the wave.

Indeed, in the power spectrumwe see at scales below about 0.2 degrees the oscillations
are damped. This is called Silk damping.

8.3.4 Polarized light: Scattering

Electron scattering has the effect of polarizing the radiation. If the radiation field at
the last scattering surface is perfectly locally isotropic, all these polarizations cancel
out and we expect to observe no polarization. However, if the local radiation field is
not isotropic, then the resulting scattered radiation will display polarization. Also the
power spectrum of this polarization (lower panel in the figure) can give information
about the CMB release and can be used to test the model of how this takes place.
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8.4 Deriving the flatness of the Universe
The location of the baryonic acoustic oscillation peaks in the power spectrum can be
used to derive the fact that the Universe is flat. The idea is that if the Universe were
to be closed, then the spatial scales corresponding to a given angular scale of our
CMB sky would be smaller than for a flat Universe. Likewise, for an open Universe,
the angular scale would correspond to a much larger spatial scale. Since the baryonic
acoustic oscillation peaks are fixed to a spatial scale, their identification in the angular
power spectrum gives us a means to measure the curvature of the Universe. The result
is that the peaks are at the locations consistent with a flat universe.

8.5 Sunyaev-Zel’dovich effect
Clusters of galaxies contain hot virialized plasma. CMB photons entering such a
cluster could experience inverse Compton scattering against the hot electrons. The
effect is that CMB photons get boosted to shorter wavelengths. In a map of the sky at
the location of the cluster you therefore see a “hole” in the CMB at long wavelengths
and a “bump” in the CMB at shorter wavelengths. This effect is called the Sunyaev-
Zel’dovich effect, or the “SZ-effect”. It was first detected already in the 80s, but with
very recent new telescopes, including Planck, surveys of the sky focusing on the SZ
effect are likely to be discovering many new clusters.
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