
Chapter 9

Inflation

9.1 Introduction
We already discussed inflation as a theory for the formation of the perturbations in the
density of the early Universe. Inflation is in fact a convenient model for various other
reasons as well:

• Observations of the CMB show that the Universe is approximately uniform at
scales that are much larger than the particle horizon at the time of the CMB
release. Regions that were cuasally detached still had the same properties. In-
flation is a model by which these regions in fact were causally connected before
the onset of inflation but got ripped apart by the inflation. This is a natural
explanation for the homogeneity of the Universe at large scales.

• Inflation predicts that any pre-existing curvature of space (the Universe being
open or closed) would be flattened out by the extreme expansion. This is a
natural explanation for the observed flatness of the Universe today.

• The idea that the density perturbations in the universe originate from quantum
fluctuations of an “inflaton field” not only naturally predicts the power spectrum
correctly, but also predicts that the fluctuations are largely gaussian. This is
because the fluctuations in the gravitational potential are caused by a linear sum
of extremely many quantum fluctuations of the inflaton field. The central limit
theorem then predicts that the result should be gaussian.

• The same theory also predicts the existence of slight deviations from gaussian-
ity, because the fluctuations we observe in the CMB were the ones that were
created shortly before the end of inflation. The end of the inflation period there-
fore naturally introduces non-linear effects.

9.2 Conditions for inflation
For inflation to be able to causally disconnect regions that were, before, in causal
contact, the expansion must be so rapid that there exists an event horizon at a finite
distance from any point. This is equivalent to saying that the Hubble radius in comov-
ing coordinates must shrink in time:

d
dt

( c
aH

)

< 0 (9.1)

This implies, with H = ȧ/a, that

d
dt

( c
ȧ

)

< 0 (9.2)
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which implies, in turn,
ä > 0 (9.3)

In other words: inflation requires accelerated expansion. With the second Friedmann
equation without a cosmological constant

ä
a
= −

4πG
3

(

ρ +
3p
c2

)

(9.4)

and with the condition that ρ ≥ 0, this directly implies that

p < −
ρc2

3
(9.5)

for inflation to occur. We must therefore have a substance that has a negative pressure,
and sufficiently negative.

9.3 The inflaton field
9.3.1 The basic idea of inflation using an inflaton scalar field

Suppose the Universe is permeated by a scalar field:

φ($x, t) (9.6)

called the inflaton field. Suppose that at the Big Bang this field starts at a non-zero
value:

φ($x, 0) = φ0 > 0 (9.7)

(or at least at a value that is not the ground energy state). As we shall see below, this
may lead to the condition of negative pressure, thus leading to a rapid, exponential
expansion of the Universe (ä > 0). At some point in time, however, the conditions for
inflation cease to be fulfilled and inflation stops. Expansion is, from this time onward,
non-accelerating ä < 0, but still positive: ȧ > 0. It will proceed, from that point on-
ward, according to the usual radiation-dominated expansion. It is assumed that around
this time the inflaton field decays into other particles, which are the predecessors of
the particles from which we are made. This is called reheating of the Universe. How-
ever, it is not known how this happens. In fact, even the Nature of the inflaton field
is not known. At present its existence is purely speculation. However, the model of
inflation works very well to explain the many questions posed in Section 9.1.

9.3.2 Lagrangian, energy density and pressure of the inflaton field

The Lagrangian of a scalar field is of the form:

L = −
1
2
c2∂µφ∂µφ − V(φ) (9.8)

(note that we have gµν = diag(−1,+1,+1,+1)) where V(φ) is some potential for the
scalar field. A potential for a field typically gives the particles associated with that field
a mass. In fact, the entire idea of the Higg boson is to provide, through its coupling to
other particles, a potential to those particles and thus a mass. Likewise the Higgs gives
a mass to itself. Early theories of inflation (including the original model of inflation
by Alan Guth in 1980) in fact conjectured that the Higg field was the inflaton field,
but this has later been put into doubt (though some recent work by Shaposhnikov &
Bezrukov, arxiv/0710.3755, explains a possible way out of that problem).

The energy-momentum tensor for such a scalar field is:

Tµν = c2∂µφ∂νφ + gµνL (9.9)

78



Note that:
c∂0φ = c

∂φ

∂x0
= c

∂φ

∂(ct)
=
∂φ

∂t
=: φ̇ (9.10)

We can write the energy density T00 as

ρc2 =
1
2
φ̇2 + V(φ) + c2(∇φ)2 (9.11)

and the pressure Tii as
p =

1
2
φ̇2 − V(φ) − 1

6
c2(∇φ)2 (9.12)

If we assume homogeneity and isotropy, the spatial derivatives vanish and we get

ρc2 =
1
2
φ̇2 + V(φ) (9.13)

and
p =

1
2
φ̇2 − V(φ) (9.14)

9.3.3 Slow roll condition for inflation

Now, in Section 9.2 we saw that for inflation to occur we must have p < − 13ρc
2. In

terms of the inflaton field this condition becomes
1
2
φ̇2 − V(φ) < −1

3

(

1
2
φ̇2 + V(φ)

)

(9.15)

which leads to the condition:
φ̇2 < V(φ) (9.16)

for inflation to occur. If φ is also the only (or dominant) form of energy in the universe
at that time, then indeed the universe will expand in an accelerated way. Condition
Eq. (9.16) is called the slow roll condition. We will study when and how the slow
roll condition can be met. But let us first have a look at the equations governing the
time-evolution of the inflaton field, and its effect on the Universe.

9.3.4 Dimensional analysis

Before we continue, let us first do some dimensional analysis, to get a better feeling
for the numbers that we are dealing with:

[

V(φ)
]

=
erg
cm3

(9.17)
[

φ̇2
]

=
erg
cm3

(9.18)

[

φ
]

=

(

ergs2

cm3

)1/2

=

(gram
cm

)1/2
(9.19)

We can define a characteristic value for φ, the Planck value:

φPlanck =

√

mPlanck
lPlanck

(9.20)

with

mPlanck =

√

!c
G
= 2.17 × 10−5 gram (9.21)

lPlanck =

√

!G
c3
= 1.62 × 10−33 cm (9.22)

we get

φPlanck =
c
√
G
= 1.16 × 1014 gram

1/2

cm1/2
(9.23)

This value will play a role lateron. Note that this characteristic field strength has no
bearing anymore to !, so it is, in a sense, no longer a “Planck”-strength.
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9.4 Equations for the inflaton field coupled to Universe expansion
9.4.1 The equations

The expansion of the Universe is governed by the two Friedmann equations and the
equation of adiabatic expansion (Eqs. 4.9, 4.10 and 4.11), where, as usual, one of
these three equations is redundant. Let us, again as usual, drop the second Friedmann
equation (Eq. 4.10). The remaining equations are:

( ȧ
a

)2
=

8πG
3

ρ −
Kc2

a2
(9.24)

0 =
d
dt
(ρa3c2) + p d

dt
(a3) (9.25)

If we insert Eqs. (9.13 and 9.14) into these equations we obtain

H2 =
8πG
3c2

(

1
2
φ̇2 + V(φ)

)

−
Kc2

a2
(9.26)

φ̈ + 3Hφ̇ = −
dV(φ)
dφ

(9.27)

These two equations are sufficient to evolve both φ(t) and a(t). Whether or not accel-
erated expansion happens may not be obvious from these equations, but it will follow
automatically if one integrates them in time, given certain initial conditions.

9.4.2 Simplification of the equations during inflation

Suppose we start at some time t = tstart > 0 with a situation where the Kc2/a2 is not
negligible compared to the φ-dependent terms. Then, either the Universe collapses
(if K is sufficiently negative), in which case we would not be there. Or the Universe
expands, in which case the Kc2/a2 term becomes progressively smaller. If we start
with φ̇ = 0, then we have clearly (see above) the condition for accelerated expansion
met. If, over a time scale by which a substantially changes, the φ-field does not change
much, and thereby V(φ) does not change much, then the Kc2/a2 term quickly becomes
negligible compared to the other terms. Then Equation (9.26) quickly reduces to

H2 =
8πG
3c2

(

1
2
φ̇2 + V(φ)

)

(9.28)

to very good approximation. If the slow roll condition φ̇2 & V(φ) is also met, then we
obtain

H2 =
8πG
3c2

V(φ) (9.29)

Also, if the slow roll condition is met, we can derive (by taking the time derivative)
that

φ̈ &
dV(φ)
dφ

(9.30)

In that case Equation (9.27) reduces to

3Hφ̇ = −dV(φ)
dφ

(9.31)

9.4.3 A-posteriori check of conditions

Whether we can use Eqs. (9.29,9.31) depends on whether the conditions mentioned
above are met. What one can do is solve Eqs. (9.29,9.31) and verify a-posteriori
whether the conditions are indeed met at all times. If not, then we must fall back to
the original equations, Eqs. (9.26,9.27).
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If we take the square of Eq. (9.31) we obtain

9H2φ̇2 = (V ′(φ))2 (9.32)

where V ′ ≡ dV/dφ. If we then insert Eq. (9.29) we get
24πG
c2

φ̇2V(φ) = (V ′(φ))2 (9.33)

or equivalently

φ̇2 =
c2

24πG
(V ′(φ))2

V(φ)
(9.34)

The slow roll condition φ̇2 & V(φ) can thus be written as

c2

24πG
(V ′(φ))2

V(φ)
& V(φ) (9.35)

which reduces to
c2

24πG

(

V ′(φ)
V(φ)

)2

≡ ε & 1 (9.36)

So what about the φ̈ & V ′(φ) condition? If we take φ̇ from Eq. (9.31) and we insert
this into:

d
dt
φ̇ =

d
dt

(

−
V ′(φ)
3H

)

(9.37)

then we can work this out to:
d
dt
φ̇ = −

1
3H

V ′′(φ)φ̇ + V
′(φ)
3

Ḣ
H2

(9.38)

Now let us take the time derivative of Eq. (9.29)
d
dt
H2 = 2HḢ = 8πG

3c2
V ′(φ)φ̇ = H2V

′(φ)
V(φ)

φ̇ (9.39)

so that we can write
Ḣ
H2
=
1
2H

V ′(φ)
V(φ)

φ̇ (9.40)

Inserting this into Eq. (9.38) gives

d
dt
φ̇ = −

1
3H

V ′′(φ)φ̇ + 1
H
(V ′(φ))2

6V(φ)
φ̇ (9.41)

Now we use this in the condition Eq. (9.30),

−
1
3H

V ′′(φ)φ̇ + 1
H
(V ′(φ))2

6V(φ)
φ̇ & V ′(φ) = −3Hφ̇ (9.42)

By dividing out −φ̇ (because we assume here that φ̇ < 0) and dividing by 3H we get

1
3H2

V ′′(φ) − 1
H2
(V ′(φ))2

6V(φ)
& 3 (9.43)

Now replace H2 using Eq. (9.29) again so that we obtain

c2

8πG
V ′′(φ)
V(φ)

−
3
2
ε & 3 (9.44)

Since ε & 1 we thus get
c2

8πG
V ′′(φ)
V(φ)

≡ η & 1 (9.45)

(where we replaced the 3 with a 1 because that is equivalent).

The two slow-roll conditions are thus:

ε := c2

24πG

(

V ′(φ)
V(φ)

)2

& 1 and η := c2

8πG
V ′′(φ)
V(φ)

& 1 (9.46)
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9.5 Inflaton field with a quadratic potential
There are many possible forms of the potential V(φ) that one may try out to see if
inflationary behavior can be obtained. It is not known what the “correct” form should
be. The simplest form would be a quadratic potential, which is what we discuss here.

9.5.1 General behavior

Let us take the following potential (in units of erg/cm3):

V(φ) = qφ2 (9.47)

In quantum field theory, the parameter q can be associated with the mass of the corre-
sponding particle through:

m2 =
!2

c4
q (9.48)

But let us, for simplicity, stick to the q. We then have

V ′(φ)
V(φ) =

2qφ
qφ2
=
2
φ

and
V ′′(φ)
V(φ) =

2q
qφ2
=
2
φ2

(9.49)

The slow roll conditions can then be written (using φPlanck = c/
√
G) as

φ )
1
√
6π
φPlanck and φ)

1
√
4π
φPlanck (9.50)

respectively. These two conditions are, in this case, equivalent. One sees that this
condition is independent of q.

Inflation proceeds according to Eqs. (9.29,9.31) until φ drops below φPlanck/
√
4π. Dur-

ing the inflation H slowly decreases because V(φ) slowly decreases. In other words,
the variation time scale for H obeys

τvary =

(

d lnH
dt

)−1

)
1
H
:= texp (9.51)

where texp is the typical expansion time scale 1/H. Equivalently this can be written
as |Ḣ| & H2. This means that for a time scale substantially smaller than τvary we
can regard H as approximately constant. This leads, to very good approimation, to
exponential growth of the Universe:

a(t) ∝ eHt (9.52)

Let us write the Hubble constant at the end of inflation: Hinfl. When inflation ends,
H(t) will drop from Hinfl in the usual way of a radiation-dominated Universe:

H(t) = 1
2(t − t0)

=
Hinfl

2(t − tinfl)Hinfl + 1
(9.53)

where t0 is defined as
t0 = tinfl −

1
2H

(9.54)

9.5.2 Some consistency checks and calculations

If we want φ̇2 & V(φ), then this gives a lower limit on the duration τinfl of inflation,
assuming that during the inflation process φ goes from some initial φ0 an appreciable
way toward φ→ 0. Very roughly this yields the condition that τinfl ) 1/√q (or, given
an assumed time scale τinfl this puts a lower limit on q) 1/τ2infl).
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Interestingly, the same limit on τinfl can be obtained in another way, by using Eq. (9.29)
and putting φ = φPlanck/

√
4π for the end of inflation:

H2 =
8πG
3c2

qφ2 =
2G
3c2

qφ2Planck =
2
3
q (9.55)

The Hubble constant defines the expansion e-folding time scale τexp = 1/H. For
succesful inflation we want

τinfl ) τexp (9.56)

i.e. we want inflation to expand the Universe by many e-folding times. Inserting τexp =
1/H =

√

3/2q, and taking the square, we obtain

q)
3
2
1
τ2infl

(9.57)

Right after the end of inflation the inflaton field should, by definition, have an energy
density corresponding to the critical energy density:

ρc2 = ρcritc2 =
3H2c2

8πG
=
3H2

8π
φ2Planck (9.58)

Let us do this consistency test. If we take ρc2 , V(φ) = qφ2 and insert again φ =
φPlanck/

√
4π for the end of inflation, we obtain at the end of inflation:

ρc2 ,
q
4π
φ2Planck (9.59)

Inserting this into Eq. (9.58) we obtain

H2 ,
2
3
q (9.60)

This leads to the same equation as Eq. (9.55), showing that, as expected, at the end of
inflation the inflaton field has a density equal to the critical density at that time.

Finally, let us calculate the mass of the inflaton particle, assuming that inflation ends
at τinfl = 10−32 seconds. From q ) 1/τ2infl we obtain q) 1064 sec−2. This gives

mc2 = !
√
q = 6.5 × 107GeV = 6.5 × 104TeV (9.61)

This is well beyond what can be detected by the Large Hadron Collider, which is of
the order of 7 TeV. The field might thus be all around us today, but we would not
notice it.

9.6 Flatness of the Universe: Condition on inflation
Now that we have a model for inflation, let us see whether we can solve the flatness
problem of the Universe with this. Let us go back to Eq. (9.26), but assume the slow
roll condition, so that we obtain

H2 =
8πG
3c2

V(φ) − Kc
2

a2
(9.62)

Since V(φ) is approximately constant in time during inflation, the ratio of the curvature
term to the potential term goes as 1/a2. After inflation, the V(φ) turns into the energy
density ρc2 of matter through the assumed “reheating” phenomenon (the decay of the
scalar field particles into matter particles). This radiative matter ρ goes, however, as
1/a4. The ratio of the curvature to the radiative energy density term now goes as a2.

Knowing from what we know today (a = 1), i.e. that the curvature term |ΩK | & 0.01,
we can now calculate backwards to the end of inflation at t , 10−32 seconds with
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a , 10−26. Since ΩK ∝ a2 ever since the end of inflation, it must have been as small
as ΩK(tinfl) & 10−54. Assuming that at the start of inflation ΩK could have been of the
order of unity, the inflation must have increased a by at least 1027 = e62. This implies
an inflation of

τinfl ! 62τexp = 62
1
Hinfl

(9.63)

Let us put in some numbers. The radius of the currently visible Universe is 1.43×1010
parsec. At the end of inflation at t , 10−32 seconds, i.e. a , 10−26, this (comoving)
region corresponded to a size of the order of a few meters in diameter (though keep in
mind: the part of the Universe that was visible at that time was much smaller!). With
the minimal amount of inflation (62 e-folding times) this region started inflation at a
diameter of a few ×10−25 cm (less than 10−11 times the proton radius!). So, all that we
see today was, at the start of inflation, as tiny as 10−11 times the proton radius. The
Planck length is lPlanck = 1.62 × 10−33 cm, so this corresponded to a few ×108 Planck
lengths.

What about the curvature radius? Remember Eq. (4.34)

ΩK,0 = −K
c2

H20
= −Kr2H0 = −

(

rH0
Rcurv

)2

(9.64)

From WMAP observations we know that the curvature radius must be much larger
than the Hubble radius, hence |ΩK,0| & 1. How does this change with a? In comoving
coordinates the curvature radius stays constant: Xcurv =constant. This means that if
the current curvature radius is, say, 1000 times the radius of the visible Universe, then
it was (according to the above estimates) 1000×108 = 1011 Planck lengths at the start
of inflation and 1000×400 cm = 4 km at the end of inflation. What you see is that
the curvature radius scales in the same way as all other scales. The problem with the
flatness of the Universe today is not one of scale, but one of energy. And inflation can
solve this energy problem, as we showed above.

9.7 Homogeneity of the Universe: Condition on inflation
To solve the homogeneity problem of the Universe, we must make sure that there is
sufficient time before inflation starts. We need that time to ensure that information
can propagate at the light speed for typical distances of what later (=today) becomes
the visible Universe. And preferably we need many times that amount of time. Only
in this way the Universe can homogenize sufficiently well before inflation rips apart
regions that were before causally connected.

If we take ∼ 4 × 10−25 cm as the size of the to-become-visible-Universe at the start of
inflation, then we see that we need at least

τbefore !
4 × 10−25

c
, 10−35 sec (9.65)

before the onset of inflation to allow homogenization, but preferably more.

From demanding at least 62 e-foldings of expansion to occur over a time period of
10−32 seconds, we see that τexp , 10−34. The required time to homogenize is still 10
times shorter, so we could in principle even start inflation straight away and still have
time to homogenize a sufficiently large region before it is ripped apart. To say this in
another way: If we calculate the Hubble radius corresponding to τexp , 10−34, this
is rH = 3 × 10−24 cm, which is still about 10 times larger than what will become the
visible Universe. Note, however, that these estimate are all fairly rough.
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