Exercises for Introduction to Cosmology (WS2011/12)

Cornelis Dullemond
Exercise sheet 10

Since it is almost Christmas, the obligatory part of this exercise sheet is kept short. But if you like to learn about non-Gaussianity, bispectra and three-point correlation functions, you can also do the voluntary exercise. You can also get extra points if you do this exercise, in case you need to beef-up your average score.

1. Linear growth in the late Universe

For the Einstein-de-Sitter Universe ($\Omega_{m}=1, \Omega_{\Lambda}=\Omega_{K}=\Omega_{r}=0$) we know that the growth function is linear: $D_{+}(a)=a$. However, our Universe at present has $\Omega_{\Lambda, 0}=0.75, \Omega_{m, 0}=0.25, \Omega_{r, 0} \simeq \Omega_{K, 0} \simeq 0$. In the script an approximative function for $D_{+}(a)$ under these conditions was given.
(a) Show that this function is consistent with linear growth that is linear in a (i.e. $\delta \propto a)$ in the early Universe after the CMB release ($0 \ll z \lesssim 1100$).
(b) Once Ω_{Λ} is no longer negligible, the linear growth is no longer linear in a. Show this by making a plot of $D_{+}(a)$ (linear in $0 \leq a \leq 1$ and linear in $0 \leq D_{+} \leq 1$) by calculating $D_{+}(a)$ for the following values and interpolating between them: $a=0.1,0.25,0.5,0.75,1$.
2. Bispectrum, three-point-correlation and non-linearity [VOLUNTARY]

In the early Universe the density perturbations $\delta(\vec{x})$ are, as far as we can currently tell, a Gaussian random noise. Any Gaussian random noise is fully described by its power spectrum, or its Fourier-equivalent: the two-point correlation function. The purpose of this exercise is to learn about higher-order statistical quantities such as the bispectrum and its Fourier-equivalent: the three-point correlation function. Signals that have non-zero bispectrum contain more information than just the power spectrum; they are therefore non-Gaussian. Linear evolution equations preserve Gaussianity. Non-linear evolution equations induce a non-zero bispectrum. This is very general: it is not only relevant to cosmology. We will therefore explore this with a very trivial example of a real function $f(\vec{x}, t)$ obeying

$$
\begin{equation*}
\frac{\partial f(\vec{x}, t)}{\partial t}=C f^{n}(\vec{x}, t) \tag{36}
\end{equation*}
$$

where C is some arbitrary constant and n is either 1 (making the equation linear) or 2 (making it quadratic $=$ non-linear).
(a) Argue in words why, if $f(\vec{x}, 0)$ is a Gaussian random signal with $\langle f(\vec{x}, 0)\rangle=0$ to start with, it will remain Gaussian for $t>0$ if $n=1$.
(b) Argue in words why, if $f(\vec{x}, 0)$ is a Gaussian random signal with $\langle f(\vec{x}, 0)\rangle=0$ to start with, it will become non-Gaussian for $t>0$ if $n=2$.

Now let $\hat{f}(\vec{k}, t)$ be the Fourier transformed version of $f(\vec{x}, t)$:

$$
\begin{equation*}
\hat{f}(\vec{k}, t)=\int f(\vec{x}, t) e^{i \vec{k} \cdot \vec{x}} d^{3} x \quad, \quad f(x, t)=\frac{1}{(2 \pi)^{3}} \int f(k, t) e^{-i \vec{k} \cdot \vec{x}} d^{3} k \tag{37}
\end{equation*}
$$

(c) Show that for $n=1$ the equation for $\hat{f}(\vec{k}, t)$ can be written in the form

$$
\begin{equation*}
\frac{\partial \hat{f}(\vec{k}, t)}{\partial t}=C \int \hat{f}\left(\vec{k}_{1}, t\right) \delta_{D}\left(\vec{k}-\vec{k}_{1}\right) d^{3} k_{1} \tag{38}
\end{equation*}
$$

where δ_{D} is the Dirac-delta function.
(d) Show that for $n=2$ the equation for $\hat{f}(\vec{k}, t)$ can be written in the form

$$
\begin{equation*}
\frac{\partial \hat{f}(\vec{k}, t)}{\partial t}=\frac{C}{(2 \pi)^{3}} \iint \hat{f}\left(\vec{k}_{1}, t\right) \hat{f}\left(\vec{k}_{2}, t\right) \delta_{D}\left(\vec{k}-\vec{k}_{1}-\vec{k}_{2}\right) d^{3} k_{1} d^{3} k_{2} \tag{39}
\end{equation*}
$$

(e) Argue in words why Eq. (38) implies that modes of different \vec{k} do not couple to each other.
(f) Argue in words why Eq. (39) implies that modes of different \vec{k} do couple to each other. Which two modes can couple to mode \vec{k} ?

These results show that non-linear terms induce mode coupling. Each individual mode \vec{k} is no longer independent of the others. If we make use of the symmetry $\hat{f}(\vec{k})=\hat{f}^{*}(-\vec{k})$ this suggests that we should be able, for $t>0$, to find a correlation between $f(\vec{k}), f\left(\vec{k}_{1}\right)$ and $f\left(\vec{k}_{2}\right)$ for each combination for which $\vec{k}+\vec{k}_{1}+\vec{k}_{2}=0$:

$$
\begin{equation*}
\left\langle\hat{f}(\vec{k}) \hat{f}\left(\vec{k}_{1}\right) \hat{f}\left(\vec{k}_{2}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\vec{k}+\vec{k}_{1}+\vec{k}_{2}\right) B_{f}\left(\vec{k}_{1}, \vec{k}_{2}\right) \tag{40}
\end{equation*}
$$

where $B_{f}\left(\vec{k}_{1}, \vec{k}_{2}\right)$ is called the bispectrum of the function f.
(g) We know that the power spectrum $P_{f}(\vec{k})$ is related to the two-point correlation function in space $\langle f(\vec{x}) f(\vec{x}+\vec{y})\rangle$ (see derivation in the script). Derive, in a similar way, how the bispectrum $B_{f}\left(\vec{k}_{1}, \vec{k}_{2}\right)$ is related to the three-point correlation function in space $\left\langle f(\vec{x}) f\left(\vec{x}+\vec{y}_{1}\right) f\left(\vec{x}+\vec{y}_{2}\right)\right\rangle$.

