Exercises for Introduction to Cosmology (WS2011/12)

Cornelis Dullemond

Exercise sheet 10

Since it is almost Christmas, the obligatory part of this exercise sheet is kept short. But if you like to learn about non-Gaussianity, bispectra and three-point correlation functions, you can also do the voluntary exercise. You can also get extra points if you do this exercise, in case you need to beef-up your average score.

1. Linear growth in the late Universe

For the Einstein-de-Sitter Universe $(\Omega_m = 1, \Omega_{\Lambda} = \Omega_K = \Omega_r = 0)$ we know that the growth function is linear: $D_+(a) = a$. However, our Universe at present has $\Omega_{\Lambda,0} = 0.75, \Omega_{m,0} = 0.25, \Omega_{r,0} \simeq \Omega_{K,0} \simeq 0$. In the script an approximative function for $D_+(a)$ under these conditions was given.

- (a) Show that this function is consistent with linear growth that is *linear* in a (i.e. $\delta \propto a$) in the early Universe after the CMB release ($0 \ll z \lesssim 1100$).
- (b) Once Ω_{Λ} is no longer negligible, the linear growth is no longer linear in a. Show this by making a plot of $D_{+}(a)$ (linear in $0 \le a \le 1$ and linear in $0 \le D_{+} \le 1$) by calculating $D_{+}(a)$ for the following values and interpolating between them: a = 0.1, 0.25, 0.5, 0.75, 1.

2. Bispectrum, three-point-correlation and non-linearity [VOLUNTARY]

In the early Universe the density perturbations $\delta(\vec{x})$ are, as far as we can currently tell, a Gaussian random noise. Any Gaussian random noise is fully described by its power spectrum, or its Fourier-equivalent: the two-point correlation function. The purpose of this exercise is to learn about higher-order statistical quantities such as the *bispectrum* and its Fourier-equivalent: the *three-point correlation function*. Signals that have non-zero bispectrum contain more information than just the power spectrum; they are therefore non-Gaussian. Linear evolution equations preserve Gaussianity. Non-linear evolution equations induce a non-zero bispectrum. This is very general: it is not only relevant to cosmology. We will therefore explore this with a very trivial example of a real function $f(\vec{x}, t)$ obeying

$$\frac{\partial f(\vec{x},t)}{\partial t} = C f^n(\vec{x},t) \tag{36}$$

where C is some arbitrary constant and n is either 1 (making the equation linear) or 2 (making it quadratic = non-linear).

- (a) Argue *in words* why, if $f(\vec{x}, 0)$ is a Gaussian random signal with $\langle f(\vec{x}, 0) \rangle = 0$ to start with, it will remain Gaussian for t > 0 if n = 1.
- (b) Argue *in words* why, if $f(\vec{x}, 0)$ is a Gaussian random signal with $\langle f(\vec{x}, 0) \rangle = 0$ to start with, it will become non-Gaussian for t > 0 if n = 2.

Now let $\hat{f}(\vec{k},t)$ be the Fourier transformed version of $f(\vec{x},t)$:

$$\hat{f}(\vec{k},t) = \int f(\vec{x},t)e^{i\vec{k}\cdot\vec{x}}d^3x \quad , \quad f(x,t) = \frac{1}{(2\pi)^3}\int f(k,t)e^{-i\vec{k}\cdot\vec{x}}d^3k \quad (37)$$

(c) Show that for n = 1 the equation for $\hat{f}(\vec{k}, t)$ can be written in the form

$$\frac{\partial \hat{f}(\vec{k},t)}{\partial t} = C \int \hat{f}(\vec{k}_1,t) \delta_D(\vec{k}-\vec{k}_1) d^3k_1$$
(38)

where δ_D is the Dirac-delta function.

(d) Show that for n = 2 the equation for $\hat{f}(\vec{k}, t)$ can be written in the form

$$\frac{\partial \hat{f}(\vec{k},t)}{\partial t} = \frac{C}{(2\pi)^3} \int \int \hat{f}(\vec{k}_1,t) \hat{f}(\vec{k}_2,t) \delta_D(\vec{k}-\vec{k}_1-\vec{k}_2) d^3k_1 d^3k_2$$
(39)

- (e) Argue *in words* why Eq. (38) implies that modes of different \vec{k} do not couple to each other.
- (f) Argue *in words* why Eq. (39) implies that modes of different \vec{k} do couple to each other. Which two modes can couple to mode \vec{k} ?

These results show that non-linear terms induce *mode coupling*. Each individual mode \vec{k} is no longer independent of the others. If we make use of the symmetry $\hat{f}(\vec{k}) = \hat{f}^*(-\vec{k})$ this suggests that we should be able, for t > 0, to find a correlation between $f(\vec{k})$, $f(\vec{k}_1)$ and $f(\vec{k}_2)$ for each combination for which $\vec{k} + \vec{k}_1 + \vec{k}_2 = 0$:

$$\langle \hat{f}(\vec{k})\hat{f}(\vec{k}_1)\hat{f}(\vec{k}_2)\rangle = (2\pi)^3 \delta_D(\vec{k}+\vec{k}_1+\vec{k}_2)B_f(\vec{k}_1,\vec{k}_2)$$
(40)

where $B_f(\vec{k_1}, \vec{k_2})$ is called the *bispectrum* of the function f.

(g) We know that the power spectrum $P_f(\vec{k})$ is related to the two-point correlation function in space $\langle f(\vec{x})f(\vec{x}+\vec{y})\rangle$ (see derivation in the script). Derive, in a similar way, how the bispectrum $B_f(\vec{k}_1, \vec{k}_2)$ is related to the *three-point* correlation function in space $\langle f(\vec{x})f(\vec{x}+\vec{y}_1)f(\vec{x}+\vec{y}_2)\rangle$.