Exercises for
 Introduction to Cosmology (WS2011/12)

Cornelis Dullemond
Exercise sheet 9

1. Window function in 1-D

Consider a 1-D function $f(x)$. We want to convolve (i.e. smooth) with a window function $W_{R}\left(x-x^{\prime}\right)$ given by

$$
\begin{equation*}
W_{R}\left(x-x^{\prime}\right)=\frac{1}{\sqrt{2 \pi} R} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 R^{2}}\right) \tag{28}
\end{equation*}
$$

The purpose is to take out short wavelength noise (noise on scales $\lambda \ll R$), leaving the longer wavelength modes $(\lambda \gg R)$ untouched. The convolution is defined as

$$
\begin{equation*}
\tilde{f}(x)=\int_{-\infty}^{\infty} f\left(x^{\prime}\right) W\left(x-x^{\prime}\right) d x^{\prime} \tag{29}
\end{equation*}
$$

(a) Argue why the normalization of Eq. (28) is $1 /(\sqrt{2 \pi} R)$.
(b) Show that, in Fourier space, this convolution is simply a multiplication of $\hat{f}(k)$ and $\hat{W}(k)$.
(c) Show that, in Fourier space, we have

$$
\begin{equation*}
\lim _{k \rightarrow 0} \hat{W}(k)=1 \quad \text { and } \quad \lim _{k \rightarrow \infty} \hat{W}(k)=0 \tag{30}
\end{equation*}
$$

(d) Explain why this means that indeed the window function "takes out short wavelength noise (noise on scales $\lambda \ll R$), leaving the longer wavelength modes $(\lambda \gg R)$ untouched.".

2. Non-linear mass

As we saw in the lecture, we can at any point in time relate distance scales R with mass scales M through

$$
\begin{equation*}
M=\frac{4 \pi}{3} R^{3} \rho_{0} \tag{31}
\end{equation*}
$$

where ρ_{0} is the background density at the present time, so that R can be regarded as a comoving distance (a distance in \vec{x}-space, instead of $\vec{r}=a(t) \vec{x}$-space). The non-linear mass M_{*} at some time in the past is the mass for which the corresponding distance scale R_{*} is the scale at which the variance becomes δ_{c}^{2} :

$$
\begin{equation*}
\sigma_{R_{*}}^{2}=4 \pi \int_{0}^{\infty} \frac{k^{2} d k}{(2 \pi)^{3}} P(k) \hat{W}_{R_{*}}^{2}(k)=\delta_{c}^{2} \tag{32}
\end{equation*}
$$

(a) Argue why one can also approximately write this as

$$
\begin{equation*}
\sigma_{R_{*}}^{2} \simeq 4 \pi \int_{0}^{k_{*}} \frac{k^{2} d k}{(2 \pi)^{3}} P(k) \simeq \delta_{c}^{2} \tag{33}
\end{equation*}
$$

with a suitable k_{*}.
(b) Give an approximate expression for k_{*} in terms of R_{*}.

Let us approximate the power spectrum as

$$
P(k)=\left\{\begin{array}{ccc}
A k^{-3} & \text { for } & k>k_{0} \tag{34}\\
0 & \text { for } & k<k_{0}
\end{array}\right.
$$

where k_{0} is the length scale of the sound horizon at t_{eq}; we therefore simply ignore the $P(k) \propto k$ part and only focus on the $P(k) \propto 1 / k^{3}$ part. A is a function of the scale factor a : i.e. $A(a)$ which, in the matter-dominated phase obeys $A(a) \propto a$.
(c) Show that this implies

$$
\begin{equation*}
k_{*}=k_{0} \exp \left(2 \pi^{2} \frac{\delta_{c}^{2}}{A(a)}\right) \tag{35}
\end{equation*}
$$

(d) Use this expression to argue that small-mass halos form first, and larger-mass halos form later.

