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Assume a shock (the flow to the left and to the right side differs in density,
velocity and pressure) in a 1D-isothermal flow of an ideal gas:
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Calculate a relation between the two different velocities, which depends only

on the isothermal sound speed c; = %, with k& being Boltzmann’s constant,

T temperature and g molecular weight.

Hint: Apply Rankin-Hugoniot jump condition over the shock front (conser-
vation law of mass and momentum).
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Discretization of Space

1. Begin with the general continuity equation of hydrodynamics.
2. Switch to 1D case.
3. Assume a constant (space and time independent) velocity v(z,t) = vy.

4. Discretize the time derivative operator 9; as done in the first exercise, but
stay continuous in space so far, and calculate the resulting expression for
p"(z) in explicit form.

5. The discretized value of the density (at time ¢ = nAt) at location z =
iAx will be denoted as p}'. Now substitute the spatial spatial derivative
operator at grid point ¢ with d;p"(x) = ...
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6. Solve the resulting equations (a)~(c) numerically:
Code guidance:

e Choose the time evolution from t,,,;;, = 0 t0 t;0e = 50
e Choose a grid from Z,,5, = 0 t0 Ty = 100, Az =1

e Choose the following step function as the initial density distribution:
plx,t = tmin) = O(z — 45)O(55 — ), where the theta-function is
defined as

1 >0

o) = {0 <0

e Choose spatial boundary values p(0,t) = p(Zmaq,t) = 0.



e Choose vg = 1 and vg = —1.

Task to do:

e Determine the intrinsic upper timestep limit At.,;; for this specific setup
(Hint: For At > At..;+ all discretization schemes are unconditionally un-
stable for both velocity vy = +1.

Explain this critical timestep and derive an analytic expression for it.

e From now on use At = 0.8At..;+. Check for vy = +1 the stability of the
different discritization schemes:
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Extra work:

From the exercises above, we realize that catching the correct information
from the correct direction, i.e., upwind, is both physically and numerically
important. In real life, fluid does not necessarily flow in just one direction.
This exercise accomodates your code to a more general situation.

e Starting from the result of problem 4 replace vy with an arbitrary space-
dependent velocity distribution v(x). Now modify your code to get a
generally stable method.

e Use for testing v(z) = (—1)°(°=*) = 20(z — 50) — 1. Before running
the code, can you imagine what the exact solution looks like? Continuity
equation states that total mass should be conserved if there is no inflow or
outflow from the boundary. In this case, is the total mass conserved? Why
is this stable discretization method still not a solution of the continuity
equation?

e Does the differential form of continuity equation fail in this case?



