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Doner-Cell : a conservative scheme

In problem sheet 2 we achieve a stable discretization scheme independent of
the sign of the constant (space-independent) velocity v0. In the extra exercise
is was shown that this �Upwind� method is not conservative in the case of a
space-dependent velocity distribution v(x).

Now we want to achieve a conservative scheme (called �Donor-Cell�) in de-
scribing the expression ρ(x, t)v(x) as the density �ux over the interfaces between
the speci�ed grid points. Therefore we want to 'store' the density value (inte-
grated distribution over the cell) at the cell centers and the velocity at the
interface (a so called staggered mesh):

1. Begin with the 1D continuity equation of hydrohynamics.

2. Substitute the expression for the density �ux with F (x, t) = ρ(x, t)v(x, t)

3. Discritize the time deriative in �rst order approximation as usual.

4. The �ux will be stored at the cell interfaces (because it is a vector quantity
like the velocity itself). Discretize the �uxes (into or out of the cell i) in

a symmetric explicit method: ∂xF (x, t)→ Fn
i+1/2−F

n
i−1/2

∆x . That means the
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change of the density in the i'th cell is calculated from the density �ux
over the left and right interface of the cell:

With a positive velocity v(x) = 1, a grid spacing of ∆x = 1 and a timestep
∆t = 0.5 this picture would describe the analytic solution of the given dis-
tribution above after the time ∆t. Each �ux which is added to one cell
is substracted from another cell, that means, this scheme conserves the
density.

5. At each timestep we want to calculate these �uxes Fni−1/2 as the product of
the velocity vi−1/2 and the density from the corresponding Upwind scheme
(ρi−1 for positive and ρi for negative velocity at i−1/2). Calculate the �nal
expression for the new density of the i'th cell ρn+1

i . The �ux (for example
at the left interface) in Upwind condition can be written and later on
implemented pratically as Fi−1/2 = ρi−1max(vi−1/2, 0) +ρimin(vi−1/2, 0).

6. What would you get, if you would now simplify the problem by assuming
a space-independent velocity v0 = ±1? Compare the resulting expression
with the discretization schemes of problem sheet 2.

7. Program this scheme and test it with the initial density and velocity dis-
tribution from the problem sheet 2
Hints: Of course you have to store the velocities and �uxes at a speci�c
interger (not at i ± 1/2). Add therefore the value of 1/2 to the space
subscript of all vector quantities: vi−1/2 → vi etc.

Code guidance: In each timestep...

• calculate �rst the density �uxes at the interfaces using the Upwind scheme
Fi

• update afterwards the density distribution in conservative format ρn+1
i =

......

• in the end set the values for the boundary cell equals zero:
ρn+1

0 = ρn+1
imax = 0.
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Boundary Condition

Introduction:
Up to now we avoid such large time integrations, that the initial step function

reaches the border of the computational domain (beginning or end of the x-axis).
To describe the physics at this border correctly (for instance if the beginning of
the axis describes the solid earth surface and the end of the axis reaches 10 km
upwards into the atmosphere), we have to establish di�erent conditions at the
borders.

Furthermore it is useful to add some so called boundary, ghost or halo cells
to the computational domain, to use the same stencil (e.g. ρi−1−ρi

∆x ) in looping
over the physical domain (we have to add as many ghosts as our stencil is using
, at the moment only one at the each side, but this will change during the
following weeks):

Implement di�erent boundary condition into the prior conservative advection
code. When the step function hits one of the computational borders, the density

1. is assumed to shrink to zero (Dirichlet)

2. is assumed to be constant over the boundary (Zero Gradient)

3. should enter the domain at the opposite side again (the axis describes a
curved space, circle, i.e., periodic)
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