
12 Smoothed Particle
Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a technique for approximating the con-
tinuum dynamics of fluids through the use of particles, which may also be viewed
as interpolation points. SPH was originally developed in astrophysics. Since then it
has found widespread use also in other areas of science and engineering.

The principal idea of SPH is to treat hydrodynamics in a completely mesh-free
fashion, in terms of a set of sampling particles. Hydrodynamical equations of motion
are then derived for these particles, yielding a quite simple and intuitive formulation
of gas dynamics. Moreover, it turns out that the particle representation of SPH has
excellent conservation properties. Energy, linear momentum, angular momentum,
mass, and entropy (if no artificial viscosity operates) are all simultaneously con-
served. In addition, there are no advection errors in SPH, and the scheme is fully
Galilean invariant, unlike alternative mesh-based Eulerian techniques. Due to its
Lagrangian character, the local resolution of SPH follows the mass flow automati-
cally, a property that is convenient in representing the large density contrasts often
encountered in astrophysical problems.

12.1 Kernel Interpolants

At the heart of smoothed particle hydrodynamics lie so-called kernel interpolants.
In particular, we use a kernel summation interpolant for estimating the density,
which then determines the rest of the basic SPH equations through the variational
formalism.

For any field F (r), we may define a smoothed interpolated version, Fs(r), through
a convolution with a kernel W (r, h):

Fs(r) =

∫
F (r′)W (r− r′, h) dr′. (12.1)

Here h describes the characteristic width of the kernel, which is normalized to
unity and approximates a Dirac δ-function in the limit h → 0. We further require
that the kernel is symmetric and sufficiently smooth to make it at least differentiable
twice. One possibility for W is a Gaussian. However, most current SPH implemen-
tations are based on kernels with a finite support. Usually a cubic spline is adopted
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with W (r, h) = w( r
2h

), and
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8

π
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1− 6q2 + 6q3, 0 ≤ q ≤ 1

2
,

2 (1− q)3 , 1
2
< q ≤ 1,

0, q > 1,
(12.2)

in three-dimensional normalization. Through Taylor expansion, it is easy to see that
the kernel interpolant is at least second-order accurate due to the symmetry of the
kernel.

B-Spline Kernel:

Suppose now we know the field at a set of points ri, i.e. Fi = F (ri). The
points have an associated mass mi and density ρi, such that ∆ri ∼ mi/ρi is their
associated finite volume element. Provided the points sufficiently densely sample
the kernel volume, we can approximate the integral in Eqn. (12.1) with the sum

Fs(r) '
∑
j

mj

ρj
FjW (r− rj, h). (12.3)

This is effectively a Monte-Carlo integration, except that thanks to the compara-
tively regular distribution of points encountered in practice, the accuracy is better
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than for a random distribution of the sampling points. In particular, for points
in one dimension with equal spacing d, one can show that for h = d the sum of
Eqn. (12.3) provides a second order accurate approximation to the real underlying
function. Unfortunately, for the irregular yet somewhat ordered particle configura-
tions encountered in real applications, a formal error analysis is not straightforward.
It is clear however, that at the very least one should have h ≥ d, which translates
to a minimum of ∼ 33 neighbours in 3D.

Importantly, we see that the estimate for Fs(r) is defined everywhere (not only
at the underlying points), and is differentiable thanks to the differentiability of
the kernel, albeit with a considerably higher interpolation error for the derivative.
Moreover, if we set F (r) = ρ(r), we obtain

ρs(r) '
∑
j

mjW (r− rj, h), (12.4)

yielding a density estimate just based on the particle coordinates and their masses.
In general, the smoothing length can be made variable in space, h = h(r, t), to
account for variations in the sampling density. This adaptivity is one of the key
advantages of SPH and is essentially always used in practice. There are two options
to introduce the variability of h into Eqn. (12.4). One is by adopting W (r−rj, h(r))
as kernel, which corresponds to the so-called ‘scatter’ approach. It has the advantage
that the volume integral of the smoothed field recovers the total mass,

∫
ρs(r) dr =∑

imi. On the other hand, the so-called ‘gather’ approach, where we use W (r −
rj, h(ri)) as kernel in Eqn. (12.4), requires only knowledge of the smoothing length
hi for estimating the density of particle i, which leads to computationally convenient
expressions when the variation of the smoothing length is consistently included in
the SPH equations of motion. Since the density is only needed at the coordinates of
the particles and the total mass is conserved anyway (since it is tied to the particles),
it is not important that the volume integral of the gather form of ρs(r) exactly equals
the total mass.

In the following we drop the subscript s for indicating the smoothed field, and
adopt as SPH estimate of the density of particle i the expression

ρi =
N∑
j=1

mjW (ri − rj, hi). (12.5)

It is clear now why kernels with a finite support are preferred. They allow the sum-
mation to be restricted to the Nngb neighbors that lie within the spherical region
of radius 2h around the target point ri, corresponding to a computational cost of
order O(NngbN) for the full density estimate. Normally this number Nngb of neigh-
bors within the support of the kernel is approximately (or exactly) kept constant
by choosing the hi appropriately. Nngb hence represents an important parameter of
the SPH method and needs to be made large enough to provide sufficient sampling
of the kernel volumes. Kernels like the Gaussian on the other hand would require a
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summation over all particles N for every target particle, resulting in a O(N2) scaling
of the computational cost.

If SPH was really a Monte-Carlo method, the accuracy expected from the interpo-
lation errors of the density estimate would be rather problematic. But the errors are
much smaller because the particles do not sample the fluid in a Poissonian fashion.
Instead, their distances tend to equilibrate due to the pressure forces, which makes
the interpolation errors much smaller. Yet, they remain a significant source of error
in SPH and are ultimately the primary origin of the noise inherent in SPH results.

Even though we have based most of the above discussion on the density, the gen-
eral kernel interpolation technique can also be applied to other fields, and to the
construction of differential operators. For example, we may write down a smoothed
velocity field and take its derivative to estimate the local velocity divergence, yield-
ing:

(∇ · v)i =
∑
j

mj

ρj
vj · ∇iW (ri − rj, h). (12.6)

However, an alternative estimate can be obtained by considering the identity ρ∇·v =
∇(ρv)−v ·∇ρ, and computing kernel estimates for the two terms on the right hand
side independently. Their difference then yields

(∇ · v)i =
1

ρi

∑
j

mj(vj − vi) · ∇iW (ri − rj, h). (12.7)

This pair-wise formulation turns out to be more accurate in practice. In particular,
it has the advantage of always providing a vanishing velocity divergence if all particle
velocities are equal.

12.2 Variational Derivation of SPH

The Euler equations for inviscid gas dynamics in Lagrangian (comoving) form are
given by

dρ

dt
+ ρ∇ · v = 0, (12.8)

dv

dt
+
∇P
ρ

= 0, (12.9)

du

dt
+
P

ρ
∇ · v = 0, (12.10)

where d/dt = ∂/∂t + v · ∇ is the convective derivative. This system of partial
differential equations expresses conservation of mass, momentum and energy. Eckart
(1960) has shown that the Euler equations for an inviscid ideal gas follow from the
Lagrangian

L =

∫
ρ

(
v2

2
− u
)

dV. (12.11)
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This opens up an interesting route for obtaining discretized equations of motion
for gas dynamics. Instead of working with the continuum equations directly and
trying to heuristically work out a set of accurate difference formulas, one can dis-
cretize the Lagrangian and then derive SPH equations of motion by applying the
variational principals of classical mechanics. Using a Lagrangian also immediately
guarantees certain conservation laws and retains the geometric structure imposed
by Hamiltonian dynamics on phase space.

We start by discretizing the Lagrangian in terms of fluid particles of mass mi,
yielding

LSPH =
∑
i

(
1

2
miv

2
i −miui

)
, (12.12)

where it has been assumed that the thermal energy per unit mass of a particle can
be expressed through an entropic function Ai of the particle, which simply labels its
specific thermodynamic entropy. The pressure of the particles is

Pi = Aiρ
γ
i = (γ − 1)ρiui, (12.13)

where γ is the adiabatic index. Note that for isentropic flow (i.e. in the absence of
shocks, and without mixing or thermal conduction) we expect the Ai to be constant.
We hence define ui, the thermal energy per unit mass, in terms of the density
estimate as

ui(ρi) = Ai
ργ−1i

γ − 1
. (12.14)

This raises the question of how the smoothing lengths hi needed for estimating ρi
should be determined. As we discussed above, we would like to ensure adaptive ker-
nel sizes, meaning that the number of points in the kernel should be approximately
constant. In much of the older SPH literature, the number of neighbours was al-
lowed to vary within some (small) range around a target number. Sometimes the
smoothing length itself was evolved with a differential equation in time, exploiting
the continuity relation and the expectation that ρh3 should be approximately con-
stant. In case the number of neighbours outside the kernel happened to fall outside
the allowed range, h was suitably readjusted, at the price of some errors in energy
conservation.

A better method is to require that the mass in the kernel volume should be
constant, viz.

ρih
3
i = const (12.15)

for three dimensions. Since ρi = ρi(r1, r2, . . . rN , hi) is only a function of the
particle coordinates and of hi, this equation implicitly defines the function hi =
hi(r1, r2, . . . rN) in terms of the particle coordinates.

We can then proceed to derive the equations of motion from

d

dt

∂L

∂ṙi
− ∂L

∂ri
= 0. (12.16)
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This first gives

mi
dvi
dt

= −
N∑
j=1

mj
Pj
ρ2j

∂ρj
∂ri

, (12.17)

where the derivative ∂ρj/∂ri stands for the total variation of the density with respect
to the coordinate ri, including any variation of hj this may entail. We can hence
write

∂ρj
∂ri

= ∇iρj +
∂ρj
∂hj

∂hj
∂ri

, (12.18)

where the smoothing length is kept constant in the first derivative on the right
hand side (in our notation, the Nabla operator ∇i = ∂/∂ri means differentiation
with respect to ri holding the smoothing lengths constant). On the other hand,
differentiation of ρjh

3
j = const with respect to ri yields

∂ρj
∂hj

∂hj
∂ri

[
1 +

3 ρj
hj

(
∂ρj
∂hj

)−1]
= −∇iρj. (12.19)

Combining equations (12.18) and (12.19) we then find

∂ρj
∂ri

=

(
1 +

hj
3ρj

∂ρj
∂hj

)−1
∇iρj. (12.20)

Using

∇iρj = mi∇iWij(hj) + δij

N∑
k=1

mk∇iWki(hi) , (12.21)

we finally obtain the equations of motion

dvi
dt

= −
N∑
j=1

mj

[
fi
Pi
ρ2i
∇iWij(hi) + fj

Pj
ρ2j
∇iWij(hj)

]
, (12.22)

where the fi are defined by

fi =

[
1 +

hi
3ρi

∂ρi
∂hi

]−1
, (12.23)

and the abbreviation Wij(h) = W (|ri − rj|, h) has been used. Note that the cor-
rection factors fi can be easily calculated alongside the density estimate, all that
is required is an additional summation to get ∂ρi/∂ri for each particle. This quan-
tity is in fact also useful to get the correct smoothing radii by iteratively solving
ρih

3
i = const with a Newton-Raphson iteration.

The equations of motion (12.22) for inviscid hydrodynamics are remarkably sim-
ple. In essence, we have transformed a complicated system of partial differential
equations into a much simpler set of ordinary differential equations. Furthermore,
we only have to solve the momentum equation explicitly. The mass conservation
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equation as well as the total energy equation (and hence the thermal energy equa-
tion) are already taken care of, because the particle masses and their specific en-
tropies stay constant for reversible gas dynamics. However, later we will introduce
an artificial viscosity that is needed to allow a treatment of shocks. This will intro-
duce additional terms in the equation of motion and requires the time integration of
one thermodynamic quantity per particle, which can either be chosen as entropy or
thermal energy. Indeed, the above formulation can also be equivalently expressed
in terms of thermal energy instead of entropy. This follows by taking the time
derivative of Eqn. (12.14), which first yields

dui
dt

=
Pi
ρ2i

∑
j

vj ·
∂ρi
∂rj

. (12.24)

Using equations (12.20) and (12.21) then gives the evolution of the thermal energy
as

dui
dt

= fi
Pi
ρ2i

∑
j

mj(vi − vj) · ∇Wij(hi), (12.25)

which needs to be integrated along the equation of motion if one wants to use
the thermal energy as independent thermodynamic variable. There is no difference
however to using the entropy; the two are completely equivalent in the variational
formulation.

Note that the above formulation readily fulfills the conservation laws of energy,
momentum and angular momentum. This can be shown based on the discretized
form of the equations, but it is also manifest due to the symmetries of the Lagrangian
that was used as a starting point. The absence of an explicit time dependence gives
the energy conservation, the translational invariance implies momentum conserva-
tion, and the rotational invariance gives angular momentum conservation.

12.3 Artificial Viscosity

Even when starting from perfectly smooth initial conditions, the gas dynamics de-
scribed by the Euler equations may readily produce true discontinuities in the form
of shock waves and contact discontinuities. At such fronts the differential form of
the Euler equations breaks down, and their integral form (equivalent to the conser-
vation laws) needs to be used. At a shock front, this yields the Rankine-Hugoniot
jump conditions that relate the upstream and downstream states of the fluid. These
relations show that the specific entropy of the gas always increases at a shock front,
implying that in the shock layer itself the gas dynamics can no longer be described
as inviscid. In turn, this also implies that the discretized SPH equations we derived
above can not correctly describe a shock, simply because they keep the entropy
strictly constant.

One thus must allow for a modification of the dynamics at shocks and somehow
introduce the necessary dissipation. This is usually accomplished in SPH by an ar-
tificial viscosity. Its purpose is to dissipate kinetic energy into heat and to produce

7



12 Smoothed Particle Hydrodynamics

entropy in the process. The usual approach is to parameterize the artificial viscosity
in terms of a friction force that damps the relative motion of particles. Through
the viscosity, the shock is broadened into a resolvable layer, something that makes
a description of the dynamics everywhere in terms of the differential form possible.
It may seem a daunting task though to somehow tune the strength of the artificial
viscosity such that just the right amount of entropy is generated in a shock. Fortu-
nately, this is however relatively unproblematic. Provided the viscosity is introduced
into the dynamics in a conservative fashion, the conservation laws themselves ensure
that the right amount of dissipation occurs at a shock front.

What is more problematic is to devise the viscosity such that it is only active
when there is really a shock present. If it also operates outside of shocks, even if
only at a weak level, the dynamics may begin to deviate from that of an ideal gas.

The viscous force is most often added to the equation of motion as

dvi
dt

∣∣∣∣
visc

= −
N∑
j=1

mjΠij∇iW ij , (12.26)

where

W ij =
1

2
[Wij(hi) +Wij(hj)] (12.27)

denotes a symmetrized kernel, which some researchers prefer to define as W ij =
Wij([hi + hj]/2). Provided the viscosity factor Πij is symmetric in i and j, the
viscous force between any pair of interacting particles will be antisymmetric and
along the line joining the particles. Hence linear momentum and angular momentum
are still preserved. In order to conserve total energy, we need to compensate the
work done against the viscous force in the thermal reservoir, described either in
terms of entropy,

dAi
dt

∣∣∣∣
visc

=
1

2

γ − 1

ργ−1i

N∑
j=1

mjΠijvij · ∇iW ij , (12.28)

or in terms of thermal energy per unit mass,

dui
dt

∣∣∣∣
visc

=
1

2

N∑
j=1

mjΠijvij · ∇iW ij , (12.29)

where vij = vi − vj. There is substantial freedom in the detailed parametrization
of the viscosity Πij. The most commonly used formulation of the viscosity is

Πij =

{ [
−αcijµij + βµ2

ij

]
/ρij if vij · rij < 0

0 otherwise,
(12.30)

with

µij =
hij vij · rij
|rij|2 + εh2ij

. (12.31)
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Here hij and ρij denote arithmetic means of the corresponding quantities for the
two particles i and j, with cij giving the mean sound speed, whereas rij ≡ ri − rj.
The strength of the viscosity is regulated by the parameters α and β, with typical
values in the range α ' 0.5−1.0 and the frequent choice of β = 2α. The parameter
ε ' 0.01 is introduced to protect against singularities if two particles happen to get
very close.

In this form, the artificial viscosity is basically a combination of a bulk and a
von Neumann-Richtmyer viscosity. Historically, the quadratic term in µij has been
added to the original Monaghan-Gingold form to prevent particle penetration in high
Mach number shocks. Note that the viscosity only acts for particles that rapidly
approach each other, hence the entropy production is always positive definite. Also,
the viscosity vanishes for solid-body rotation, but not for pure shear flows. To cure
this problem in shear flows, Balsara (1995) suggested adding a correction factor to
the viscosity, reducing its strength when the shear is strong. This can be achieved
by multiplying Πij with a prefactor (fAV

i + fAV
j )/2, where the factors

fAV
i =

|∇ · v|i
|∇ · v|i + |∇ × v|i

(12.32)

are meant to measure the rate of local compression in relation to the strength of the
local shear (estimated with formulas such as Eqn. 12.7).

In some studies, alternative forms of viscosity have been tested. For example,
Monaghan (1997) proposed a modified form of the viscosity which can be written
as

Πij = −α
2

vsigij wij

ρij
, (12.33)

where vsigij = [ci + cj − 3wij] is an estimate of the signal velocity between two par-
ticles i and j, and wij = vij · rij/|rij| is the relative velocity projected onto the
separation vector.

In attempting to reduce the numerical viscosity of SPH in regions away from
shocks, several studies have recently advanced the idea of keeping the functional form
of the artificial viscosity, but making the viscosity strength parameter α variable in
time. Adopting β = 2α, one may evolve the parameter α individually for each
particle with an equation such as

dαi
dt

= −αi − αmax

τi
+ Si, (12.34)

where Si is some source function meant to ramp up the viscosity rapidly if a shock
is detected, while the first term lets the viscosity exponentially decay again to a
prescribed minimum value αmin on a timescale τi. So far, simple source functions
like Si = max[−(∇·v)i, 0] and timescales τi ' hi/ci have been explored and the vis-
cosity αi has often also been prevented from becoming higher than some prescribed
maximum value αmax. It is clear that the success of such a variable α scheme de-
pends critically on an appropriate source function. The form above can still not
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distinguish purely adiabatic compression from that in a shock, so is not completely
free of creating unwanted viscosity.

12.4 Advantages and disadvantages of SPH

Smoothed particle hydrodynamics is a remarkably versatile and simple approach for
numerical fluid dynamics. The ease with which it can provide a large dynamic range
in spatial resolution and density, as well as an automatically adaptive resolution, are
unmatched in Eulerian methods. At the same time, SPH has excellent conservation
properties, not only for energy and linear momentum, but also for angular momen-
tum. The latter is not automatically guaranteed in Eulerian codes, even though it
is usually fulfilled at an acceptable level for well-resolved flows. When coupled to
self-gravity, SPH conserves the total energy exactly, which is again not manifestly
true in most mesh-based approaches to hydrodynamics. Finally, SPH is Galilean-
invariant and free of any errors from advection alone, which is another advantage
compared to Eulerian mesh-based approaches.

Thanks to its completely mesh-free nature, SPH can easily deal with complicated
geometric settings and large regions of space that are completely devoid of parti-
cles. Implementations of SPH in a numerical code tend to be comparatively simple
and transparent. At the same time, the scheme is characterized by remarkable
robustness. For example, negative densities or negative temperatures, sometimes
a problem in mesh-based codes, can not occur in SPH by construction. Although
shock waves are broadened in SPH, the properties of the post-shock flow are correct.

The main disadvantage of SPH is its limited accuracy in multi-dimensional flows.
One source of noise originates in the approximation of local kernel interpolants
through discrete sums over a small set of nearest neighbours. While in 1D the con-
sequences of this noise tend to be reasonably benign, particle motion in multiple
dimensions has a much higher degree of freedom. Here the mutually repulsive forces
of pressurized neighbouring particle pairs do not easily cancel in all dimensions si-
multaneously, especially not given the errors of the discretized kernel interpolants.
As a result, some ‘jitter’ in the particle motions readily develops, giving rise to ve-
locity noise up to a few percent of the local sound speed. This noise seriously messes
up the accuracy that can be reached with the technique, especially for subsonic flow,
and also leads to a slow convergence rate.

Particularly problematic in SPH are fluid instabilities across contact discontinu-
ities, such as Kelvin-Helmholtz instabilities. These are usually found to be sup-
pressed in their growth. Another generic problem is that the artificial viscosity is
operating at some level also outside of shocks, giving the numerical model a rel-
atively high numerical viscosity, which limits the Reynolds numbers that can be
easily reached with SPH.
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