
Chapter 2

Geometric optics and the basic
working of telescopes

Armed with our simple picture of “light as particles moving along straight lines” we can
now investigate what happens if this light enters a mirror telescope. And with just a slight
allusion to the wave nature of light we can also include the effect of lenses: The breaking
of light on surfaces of changing refractive index. We will, however, postpone the more
complex wave-related telescope phenomena until Chapter 3.
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Léna, Lebrun & Mignard, “Observational Astrophysics”, 2nd Edition, 1998, Springer-Berlin, ISBN 3540634827.
Broad overview of the topic, though more for advanced reading.

Schroeder, “Astronomical Optics”, 1999, ISBN 0126298106

2.1 A simple one-mirror telescope

The objective of a telescope is to project the source plane onto an image plane, where the
light of each point on the source plane is bundeled onto a related point on the image plane.
Between the source plane (which is in our case located at “infinity”) and the image plane
there is the optical system. The aperture of the optical system is the (usually circular)
opening in the system through which the radiation enters the system. The larger the
aperture, the more radiation can be collected, and thus the “deeper” one can image the
sky. The term “aperture” can have many different meanings, depending on who uses the
word, and in which context. We will come to this lateron.

In this section we wish to make a very simple telescope with just a single mirror. Let
us put the mirror horizontally, in the x− y plane, so that the normal of the mirror points
upward. The shape of the mirror is determined by demanding that a bundle of parallal
rays (i.e. emission from a source infinitely far away) going parallel to the mirror axis, are
precisely bundled into a focal point at some height f above the mirror. This f is called the
focal length of the mirror. From basic geometry we know that the shape of such a mirror
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has to be a parabola. So let us describe the shape of the mirror as

z = a(x2 + y2) (2.1)

where x and y are the horizontal coordinates centered on the mirror center. The constant
a determines the mirror bending and thus the location of the focal point. Again, from
basic geometry we know that this focus point f is

f =
1

4a
(2.2)

The point (0, 0, f) is called the primary focus of the telescope (in this case, since we have
just one mirror, it is not only the primary focus but the only focus).

So, by requiring the rays of a single point source on the sky to be bundled into a
point, we have fully determined the shape of the mirror. The question then becomes:
what about point sources that are slightly off-axis? Where will they be projected, and will
the projection be as perfectly point-like as with the on-axis light? To zeroth order these
off-axis point sources will all be projected onto their own foci on the focal plane: The plane
determined by z = f and arbitrary x and y. If we put a photographic plate (oldfashioned)
or a CCD (modern) in this plane, we get an image of the sky. We can easily calculate where
these foci of off-center point sources are. Let us first make a small coordinate system of the
sky as seen by the telescope. Let us write the angles on the sky of our light sources with
(nx, ny), where nx and ny are the x- and y-components of the unit vector !n pointing toward
the source. They are therefore celestial angles measured in radian. Since we assume that
we will have a narrow field-of-view, i.e. |nx| " 1 and |ny| " 1, we can say that nz # 1.
The point (nx, ny) = (0, 0) corresponds to the point on the sky that lies on the axis of the
mirror (the one that is per definition perfectly focused onto (0, 0, f)). We can now find
the location (xf , yf , f) of the foci of any point (nx, ny), assuming them to lie in the focal
plane, by following the ray that hits the mirror at (0, 0, 0). We thus get

xf = −nxf yf = −nyf (2.3)

Given that our detector typically has a technically limited spatial pixel size ∆x × ∆y, it
becomes clear that the larger we choose f the smaller objects on the sky we can spatially
resolve. The relation between angular scale on the sky in arcsec and spatial scale on the
focal plane in millimeter is:

(

δx

1mm

)

= 4.85 × 10−3

(

δθ

1arcsec

)(

f

1meter

)

(2.4)

Given that CCDs have pixels the size of a few micrometers it is possible to put a camera
at the prime focus of a modern telescope and still be able to resolve structures the size
of about an arcsecond or less. In it, however, clear that a too long telescope would be
unpractical. An often used quantity in telescope design is the focal ratio f/D where D is
the diameter of the primary mirror. Ideally one would like to keep f/D not much larger
than unity.

Let us return to the question: how well focused is the telescope away from the center
of the focal plane? The easiest way to find out it to write a simple computer program that
computes the reflection of a bundle of rays off the mirror at a non-zero incidence angle
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Figure 2.1: Results of a simple computation of ray reflection off a parabolic mirror with
a = 0.1 and hence f = 2.5 for on-axis incident radiation (left) and off-axis incident radiation
(right). The off-axis angle of incidence is 10 degrees.

and see if all rays cross each other in the same point or not. The results of a such a simple
programming exercise (to be left to the reader) is shown in Fig. 2.1. One can see that
the focusing for the off-axis source is not perfect. Of course in this case the situation is
aggravated because we took such a large incidence angle. In any case: there is no point
where the rays all come together, but there is a region where they are all reasonably close.
This is called coma, which is one of the various possible forms of optical aberration.

The coma is stronger for points on the sky further away from the central pointing of
the telescope (i.e. for which

√

n2
x + n2

y is larger). But given an off-axis point source, the
coma will be stronger the larger the telescope is. The quantity of interest is the focal ratio
f/D: the larger the focal ratio, the smaller the coma for a source at a given angle away
from the axis.

2.2 Lenses

Lense-based telescopes (refractors) are no longer used in modern telescopes. This is because
it is nearly impossible to build lenses of several meters across. But also, lenses have
chromatic aberration effects: different wavelength act differently inside the telescope.

But for instruments installed in the foci of large telescopes lenses still play a large role.
That is why we will discuss them here. Moreover, some of the stuff we discuss here we
shall also use for the discussion of the Earth’s atmosphere.

2.2.1 A lens as a dielectric medium

A lens is a dielectric medium that slows down light (or at least the phase speed of light)
and thus makes the wavelength shorter than in vacuum. This leads to light breaking
(refraction) at the lense surface, i.e. the changing of propagation of the direction of the
light.

The ratio of the phase speed of light in the dielectric medium to the light speed in
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vacuum is called the refractive index:

nν ≡
c

vp,ν
(2.5)

where vp,ν is the phase speed of the light at frequency ν in the dielectric medium. For air
at 1 bar at 0oC at λ = 589nm we have n = 1.00029, while for glass (Pyrex) at the same
wavelength we have n = 1.470. For vacuum it is by definition n = 1.

At a surface between two media with refrective indices n1 and n2, light will change its
direction θ (measured such that θ = 0 is normal to the plane) according to Snell’s law:

sin θ1
sin θ2

=
n2

n1
(2.6)

which can be derived from simple wave front propagation arguments. Light entering a lens
will thus move closer to the normal of the entrance surface (n2 > n1 implies θ2 < θ1). The
reverse is true when it exits the lens.

Light will also be partly reflected on the surfaces, also as a result of the change in
n. And if n has an imaginary component, then the medium will also absorb some of the
radiation as it passes through it. We will not go further into the reflection or extinction
here; we will focus on refraction.

One can now regard the working of a lens in various ways:

1. One can follow rays of light, how they bend on the surfaces of the lenses. This
ray-tracing can be done for complex optical systems (many lenses and mirrors) using
special ray-tracing software. Ray-tracing works well for cases where the wavelength
of the radiation is very small compared to any of the lens diameters.

2. One can also regard a lens from a wave perspective, where you follow the wave fronts
(and the reduction of the wavelength in lenses) as they pass through your system.
For complex systems this is a much harder problem to solve, but it is valid also for
cases where the wavelength is not so small compared to the lense diameters.

3. By combining the above two perspectives (the ray picture and the wave picture) one
can derive an Euler-Lagrange picture: the ray always takes the route of smallest
“effective distance” s which we define as ds = n dl, where l is the real distance
along the ray. In mathematical terms the ray takes the path of δ

∫

n dl = 0. This is
Fermat’s principle: light reaches a point in the shortest possible time.

4. Another wave-based picture of the working of a lens is that it is a phase shifter.
Consider a plane wave moving in z direction, moving toward positive z. Now place
a convex lens at z = 0 in the x− y plane. Let us assume the lense has half-thickness
h. At z < −h the phases of the wave are constant in the x− y plane. Once the wave
passed the lens (z > h), the waves are no longer planar. If you look at the phases in
the x − y plane for z > h you find that they differ from the phase at (x, y) = (0, 0)
in a way that is approximately proportional to x2 +y2 (a near spherically converging
wave).
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Figure 2.2: Refraction of light at a spherical interface between a medium of refractive index
n (left) and a medium of larger refractive index n′ (right).
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Figure 2.3: Same system as in Fig. 2.2, but now the case where the two conjugate points
are on opposite sides of the spherical interface.

2.2.2 Refraction at a spherical interface

Let us look at a simple case first: that of a spherical interface between two media of
different diffractive indices (Fig.2.2). The points at distances s and s′ on the axis are
called conjugate points. If s = ∞, then the point at s′ is the focal point, or s′ the focal
length.

In the paraxial approximation we assume that all angles are small, so that one can
approximate sin(i) # i and sin(i′) # i′. Snell’s law thus becomes ni = n′i′. We define the
vertex of the spherical optical surface as the point where this surface crosses the optical
axis.

We can now have a look at the magnification of this “lens”. This is depicted in Fig.2.3.
In this case the conjugate points are on opposite sides of the interface. On the left we
put some object. We start with a ray originating at the base of this object (i.e. at the
optical axis), and find out how it refracts through the spherical interface. We thus find
the point where it crosses the optical axis again. In the paraxial approximation the plane
perpendicular to the optical axis and through this conjugate point defines the projection,
i.e. where the points of our object get projected. Now take a ray starting from the top of
the object, and make it go perpendicular through the spherical surface. This ray will not
get refracted, because it is already perpendicular to the surface. By following the ray to
the projection plane, we find where the top of the object is projected. We thus see that,
in this particular case, the object gets smaller than the original.
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The transverse magnification m is

m =
h′

h
=

s′ − R

s − R
=

ns′

n′s
(2.7)

The angular magnification M is

M =
tan u′

tanu
=

s

s′
=

n

n′m
=

nh

n′h′
(2.8)

The Lagrange invariant H is defined as

H = nh tanu = n′h′ tanu′ (2.9)

In the paraxial approximation: H = nhu = n′h′u′. The optical power is defined as

P =
n′

s′
−

n

s
=

n′ − n

R
=

n′

f ′
= −

n

f
(2.10)

Important note: You can use the same laws also for mirrors! Just put n′ = −1. Exercise:
Find the corresponding s and s′ etc for a mirror.

2.2.3 Two surface optics: A one-lens or two-mirror system

In case of a lens we do not have just a single interface between two media, but two interfaces:
an incoming and an outgoing. We thus have a two-surface optical system. The same is
true for a two-mirror telescope. The power of such a system is

P = P1 + P2 −
d

n′
P1P2 (2.11)

where d is the distance between the two surfaces and n′ is the refractive index of the
material between the surfaces. If we put this lens in vacuum (n = 1), then P = 1/f , where
f is the focal length of the lens. Using n = 1 we can then write this as

P =
1

f
= (n′ − 1)

[

1

R1
−

1

R2
+

(n′ − 1)d

R1R2n′

]

(2.12)

For a thin lens (d # 0) we thus have

P =
1

f
= P1 + P2 = (n′ − 1)

[

1

R1
−

1

R2

]

(2.13)

Important note: The radii of curvature R1 and R2 can be both negative and positive.
The sign convention is usually such that for the surface depicted in Fig. 2.3 the R > 0,
while if the surface is bent the other way, then R < 0. This means that it the above
formulae, if we have for instance a biconvex lens (see Fig. 2.4 for examples of lens types)
with |R1| = |R2| = R, where R1 is for the left surface and R2 for the right surface, we have
R1 = R and R2 = −R. For d # 0, then we get using Eq. (2.13)

f =
R

2(n′ − 1)
(2.14)
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Figure 2.4: Some example shapes of lenses. From left to right: biconvex lens, biconcave
lens, positive meniscus, negative meniscus.

2.3 Some more things...

2.3.1 Focal ratio

The focal ratio is the ratio of the focal length f and the diameter of the lens or mirror D:

F =
f

D
(2.15)

Often this is written in the way f/1.5, meaning that F = 1.5. To be more precise, D is
not just the diameter of the mirror or lens: It is the diameter of the aperture, i.e. the area
that collects the light from outside. For a photocamera, the aperture can be set at will. If
the aperture is taken to be small (small D), then the exposure time for obtaining a photo
has to be taken long enough to collect sufficient light. The advantage for photography is
that with a small aperture the depth of field of your photo is larger, i.e. both nearby and
far-away objects appear acceptably sharp. The drawback is that if you want to photograph
a fast-moving object, then these objects will smear out due to their motion. If you want
to have the same exposure (i.e. the same total amount of photons hitting your film or CCD
in a given image), but you want to reduce the smearing due to fast movement, you must
instead choose a large aperture (large D), with the drawback of a reduced depth of field.
It is for this reason that optical systems with small focal ratio are called fast and those
with large focal ratio slow. In astronomy, where depth of field is not an issue, a large D is
almost always preferred.

2.3.2 Fermat’s principle

In optics, Fermat’s principle (named after Pierre de Fermat, 1601-1665, a French lawyer
and mathematician) says that the path a ray of light takes from point A to point B in
space corresponds to paths of stationary time, in most cases the shortest time a photon
takes. In vacuum this is evidently a straight line. But as we discussed above, light travels
slower in a dielectric medium. This is why a ray of light can bend, while still keeping
the time it takes for a photon to reach point B the shortest. Of course “short” is defined
only in a local sense, because if there is a straight ray between points A and B that does
not pass through the dielectric medium, then obviously there are two paths form A to B,
one going through the dielectic medium and one not, where the one passing through the
dielectric medium is clearly longer. That is why it is more correct to say that the time is
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stationary: slight variations of the path will not change its lengths in terms of the time it
takes to go from A to B.

This is very similar to the Euler-Lagrange formalism. And a similar technique can be
used to derive the shape of the ray between points A and B.

12


