
Chapter 1

Basics of radiation transfer theory

In most cases in astronomy we can regard radiation as a particle phenomenon: In this
picture light consists of photons moving with the light speed along straight lines through
space. They can be created and destroyed by interaction with matter. Hot gases or dust
clouds can cool by emitting copious amounts of photons. It is typically this kind of radia-
tion that we observe with our telescopes. But the radiation that is emitted in one region
can be absorbed by other matter, which can thus be radiatively heated. In this way radia-
tion can act a carrier of heat and/or momentum exchange between matter parcels that are
otherwise too far apart to interact with each other. In other words: radiation is not only a
diagnostic tool for us as astronomers, it is also (and perhaps even predominantly) a critical
ingredient in the thermal balance of the objects we observe. A serious interpretation of
observations therefore often forces us to learn about the emission, absorption and transport
of radiation inside our objects of interest. The theory of “radiative transfer” (also called
“radiation transport”) is the theory of how radiation and matter interact based on the
particle description of light. For most astrophysical purposes this particle description is
sufficient to understand the production and transfer of radiation in/through astrophysical
objects, at least at the macroscopic level. In this chapter we will discuss the general theory
of radiative transfer in a nutshell.

Literature:
The book by Rybicki & Lightman “Radiation processes in Astrophysics”, which emphasizes the various

physical processes that produce, absorb and scatter radiation, but also has a bit of fundamental
theory of radiative transfer in it.

Lecture notes by Rob Rutten “Radiative transfer in stellar atmospheres”
(http://www.astro.uu.nl/∼rutten/Lecture notes.html): an excellent overview of radiative trans-
fer theory, with of course a particular emphasis on stars.

1.1 Intensity and flux

So let us consider radiation as a movement of photons along straight lines. In empty space
photons do not encounter any obstacles and photons do not interact. So if we wish to
measure the amount of radiation at some point !r in space, we also have to specify in which
direction we are “looking”. Let us denote this with a unit vector !Ω1. Finally, we have to

1In a lot of literature the symbol !n is used for the direction and dΩ for a differential solid angle. We
use the Ω symbol for both.
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specify at which wavelength λ we wish to measure the radiation field, or equivalently at
which frequency ν = c/λ. The quantity we thus measure is called intensity:

I(!x, !Ω, ν) (1.1)

which has units erg cm−2 s−1 Hz−1 ster−1. Let us examine these units. The erg cm−2 s−1

is a measure of flux. The cm−2 arises simply because if you have a larger telescope you
pick up more photons and thus receive more energy (erg). The Hz−1 arises because our
intensity is a monochromatic intensity. The ster−1 arises because we are not interested in
the total flux, but just the “flux per steradian”.

The quantity “intensity” I(!x, !Ω, ν) is a 6-dimensional function: 3 space dimensions, 2
direction dimensions and one frequency dimension (adding time would make it 7-dimensional,
but we will not concern ourselves with this). This property alone already foreshadows why
radiative transfer is so complex: just the storage of the intensity field alone in computer
memory already poses a challenge because of the high dimensionality. But the difficulties
of radiative transfer are much deeper than that, as we will see shortly.

But let us first analyze this “intensity” quantity a bit more, because when one first
encounters it it can be a confusing entity. Most interestingly, in vacuum the intensity I
is constant along a ray. To take an example: if we measure the intensity of the radiation
of the sun at a distance of 1 astronomical unit (AU), and we redo the measurement at 5
AU, we get the same answer. Of course, if we would measure the solar flux (in units of
erg cm−2 s−1 Hz−1) at 5 AU, we would get a 25 times smaller value than at 1 AU, as one
would expect. The flux is in fact a vectorial quantity and is related to the intensity by

!F (!x, ν) =

∮

I(!x, !Ω, ν)!ΩdΩ (1.2)

If we approximate the sun as a disc of radius R" with constant brightness over its surface,
then we can write

F = I∆Ω = I
πR2

"

d2
(1.3)

where d is the distance between the observer and the sun. The intensity I is in fact the
surface brightness of the sun, which does not change with distance to the observer. The
flux goes as 1/d2 because the solid angle of the sun changes with d as 1/d2. This shows that
the intensity I is a quantity that, along a straight line through vacuum, remains constant:

dI

ds
= 0 (1.4)

where s is a measure of distance along the ray.

1.2 Formal radiative transfer equation

The constancy of intensity in vacuum is a property that can be very conveniently used
to describe the interaction with matter, for if space is not a vacuum but filled with some
material with extinction coefficient α (in units of 1/cm) the equation of radiative transfer
becomes:

dI

ds
= −αI (1.5)
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If we change variables to optical depth τ , where dτ = αds, we obtain

dI

dτ
= −I (1.6)

with solution
I = I(0)e−τ (1.7)

But matter does not only extinct radiation: it can also emit radiation. So let us add
an emissivity coefficient j (in units of erg cm−3 s−1 Hz−1 ster−1) to obtain

dI

ds
= j − αI (1.8)

Changing variables again with dτ = αds we get

dI

dτ
=

j

α
− I (1.9)

The ratio j/α is, in radiative transfer theory, called a source function, denoted with S
(capital S, to distinguish it from the path length s). We thus get, along a ray through a
medium,

dI

dτ
= S − I (1.10)

Now suppose that S(s) = S(τ) =constant, then the solution of this equation is

I = I(0)e−τ + S(1 − e−τ ) (1.11)

This shows that in a medium with an optical depth τ sufficiently large the original input
intensity (before the ray entered the medium) I(0) is gradually replaced with the intensity
I = S inside the medium.

Equation (1.10) is called the formal radiative transfer equation and is clearly easy to
solve along each single ray through a medium. So why is radiative transfer considered to
be so complex then? The reason is that, in most circumstances, the source function S is
unknown in advance, and depends on the outcome of the transfer equation itself. We will
not go into this complexity here. For our purposes throughout this lecture we assume that
the source function S is known everywhere inside our astrophysical objects of interest. In
this way the entire problem of radiative transfer is reduced to a relatively simple problem:
that of integrating the formal transfer equation, Eq. (1.10).

1.3 Planck function: blackbody radiation

The source function S is the value that the intensity acquires in a homogeneous medium
when τ # 1. From thermodynamics we know that this radiation field must be a thermal
radiation field. Indeed, in a thermalized medium Sν = Bν(T ) where Bν(T ) is the Planck
function at temperature T . Note that we put the frequency index as a subscript, as is
standard notation in radiative transfer theory. The Planck function is given by

Bν(T ) =
2hν3

c2

[

exp

(

hν

kT

)

− 1

]−1

(1.12)

In fact, the relation jν = ανBν(T ) (which is another way of saying Sν = Bν(T )) is called
Kirchhoff’s law, after Gustav Kirchhoff (1824-1887) who was a professor at the University
of Heidelberg.
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1.4 Emission and absorption spectral lines

One very basic thing can already be understood from the above basic radiative transfer
theory: how spectral lines form. Suppose Iν(0) = Bν(T0), and this radiation goes through
a layer with Sν = Bν(T1) with T1 $= T0. Suppose also that αν is given by

αν = A exp

[

−
(

ν − νl

∆ν

)2
]

(1.13)

for some value of A, where νl is the frequency of the spectral line and ∆ν the width of the
line. Here we assume a simple Gaussian line profile. Suppose that at line center (ν = νl)
the optical depth τνl

= 10 while far outside the line the optical depth is of course nearly
zero. According to the formal line transfer equation (Eq. 1.10) you can now see that at
line center the outcoming radiation is Iν=νl

% Bν(T = T1) while far outside the line it is
Iν=νl

% Bν(T = T0). If T1 > T0 this thus produces an emission line while if T1 < T0 it
produces an absorption line.
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