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Please note: As always, all necessary information can be found either

in the lecture notes or in the description of the exercises.

Also note: The exercises are often supposed to paint “realistic”

situations, so not always all information given necessarily needs to be used!

In these exercises we use CGS units. In these units the Planck constant h = 6.6262×10−27

cm2g/s, the speed of light is c = 2.9979246 × 1010 cm/s, Boltzmann’s constant is kB =
1.3807 × 10−16 cm2g s−2K−1, AU=1.4959800 × 1013 cm and parsec=3.0857200 × 1018 cm.

1. A reflection grating
Consider a relection grating with groove-spacing d. If we let light with wavelength λ
fall vertically onto the grating, we derived in the lecture that the angular locations
θm of the m-th order is at:

sin θm =
mλ

d
(1)

This is called the grating equation. In most spectrographs, however, the light falls
onto the grating at some angle i, see Fig. 1.

Let us take the sign-convention of this angle to be the same as for θm: positive angle
means tilted to the right, so in the figure the angle i < 0. This non-zero incidence
angle causes the optical path differences to change, so that also the location of the
orders changes. In other words: Eq. (1) changes.

(a) Show that the grating equation then becomes

sin θm =
mλ

d
− sin i (2)

(b) Show in the figure where the 0-th order will now be.

As we know from the lecture, the spectral resolving power R of a grating is given by

R =
λ

∆λ
= mN (3)

where m is again the order and N is the number of grooves in the grating. Echelle
gratings are meant for high resolution spectroscopy, so the objective is to maximize
R, meaning we wish to maximize m and N .

(c) Show that, for a given wavelength λ, there is an upper limit to how high order
m you can go for a given groove spacing d.

(d) How would you choose i and at which angle θ would you put your CCD camera to
get maximum spectral resolution (i.e. maximum m)? Hint: Ignore practicalities
such as the size of the camera or the width of the beam; think in terms of ideal
circumstances.
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Figure 1: Schematic view of the setup of a grating with groove spacing d with incident
radiation at an angle of i, and a CCD chip at angle θ, with a lens of focal length L between
the CCD chip and the grating to focus the light onto the CCD.

(e) Suppose we want to measure a spectrum around λ =0.5 µm at very high reso-
lution. We choose to go for the 100-th order (m = 100). What is the minimal
groove spacing d our grating must have? Hint: Also here: ignore details of the
experimental setup; we want to gain understanding, not waste time with details.

In the lecture we derived that the angular spacing between two spectral resolution
elements is given by

∆ sin θ =
λ

Nd
(4)

(f) Show that for θ < π/2 and for ∆θ ≪ 1 we can write this approximately as

∆θ ≃
λ

Nd cos θ
(5)

If we put our CCD at some distance from the grating and we put a focusing lens
with focal length L between the grating and the CCD, this converts into a ∆x in
centimeters on the CCD. Since CCDs have pixels of about 20 µm or so in size, there
is a minimum number of grooves N we need in order to put each spectral resolution
element onto a single pixel (putting it onto more pixels might be better, but let’s do
it onto a single pixel for now).

(g) Let us say that we choose our grating spacing d = 25.98µm, which is such that
for incident radiation at i = 70 degrees we have our m = 100 order at θ = 80
degrees. We put our CCD detector at θ = 80 with a lens of L = 20 cm. What
is the number N of grooves we need to get one spectral resolution element on
one pixel?

(h) How big does this make our grating?

(i) What is then our spectral resolution R?

(j) If we choose N smaller, what is the advantage and what is the disadvantage?
Hint: think in terms of pixels per resolution element and in terms of the spectral
resolution.
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2. Converting an Echelle spectrograph into a high-resolution long-slit spec-
trograph
Attached to this exercise is a small article by Hubrig et al. on VLT-UVES long slit
spectroscopy. UVES is an echelle spectrograph, and Hubrig et al. produced very
narrow band filters to convert this echelle spectrograph into a long-slit spectrograph.
Explain why these filters were needed.

3. Millimeter-wave line observations of a protoplanetary disk
One can also do spectroscopy with microwave telescopes (“millimeter wave radio
telescopes”). Suppose we wish to observe the emission line from the J=2→1 rota-
tional transition of the CO molecule at λ =1.3004037 millimeter originating from a
protoplanetary disk around a T Tauri star. The star has an effective temperature
T∗ = 4000 Kelvin and radius R∗ = 2R⊙ = 1.4 × 1011 cm. This star+disk system
is at a distance of 140 parsec (the distance to the Taurus molecular cloud complex,
one of the main large star forming regions in our viscinity). Suppose the disk has a
radius of 70 AU and is entirely optically thick at line-center everywhere in the disk,
and the disk has a sharp outer edge. Suppose also that the disk is face-on, so that
doppler shifts due to the rotation of the disk are zero. Also suppose, for simplicity,
that the disk is everywhere exactly at a temperature of T = 50 Kelvin, and that the
line is in local thermodynamic equilibrium (LTE).

(a) Show that the observed flux Fν in units of erg sec−1 cm−2 Hz−1 from the star at
λ =1.3 millimeter equals 2.13 × 10−29 erg sec−1 cm−2 Hz−1, assuming a simple
blackbody (=Planck) spectrum for the star. Hint: the flux from a blackbody
emitting surface at temperature T is Fν = πBν(T ).

(b) Show that the observed flux the disk at line center is 1.4×10−23 erg sec−1 cm−2

Hz−1. Although the disk has a central hole (where the star is located) this hole
is so small compared to the overall disk size, that one can safely ignore this.
Hint 1: Here it is easiest to use the intensity at the disk surface (rather than
the flux) and use the solid angle of the disk on the sky. Hint 2: The solid angle
on the sky of an object with projected surface area S is ∆Ω = S/d2 where d
is the distance of the object to the observer (=us). Hint 3: An optically thick
thermal line means that the line is saturated (at which value?), so there is no
need for details of the line emission/absorption mechanism!

These results show that the stellar flux at λ =1.3 millimeter is absolutely negligible
compared to that of the disk! This is one of the main reasons why observations
of protoplanetary disks are often done at long wavelengths. From now on we will
neglect the star emission altogether.

We now plan to observe this object with the IRAM 30-meter telescope1. As our
receiver instrument we use the HERA 1mm array receiver2.

(c) Calculate the angular resolution ∆θ in arcseconds for this telescope at λ =1.3
mm. You can check if you have the right answer by comparing the value to that
wat is given on the HERA website.

1http://www.iram.es/IRAMES/index.htm
2http://www.iram.es/IRAMES/mainWiki/HeraforAstronomers

3



star

protoplanetary
disk

cloud

background
molecular

beam

IRAM
30 meter
telescope

Figure 2: Pictographic representation of exercise 3. Not to scale.

(d) Calculate the diameter (!) of the disk on the sky in arcseconds, and show that
the IRAM 30 m telescope does not have enough angular resolution to spatially
resolve the disk.

This lack of angular resolving power of the IRAM 30 m telescope could be a problem,
in particular if the disk is surrounded by background emission. This is the effect of
beam dilution that we will discuss here. See Fig. 2.

Suppose that several parsec behind the disk there is a large molecular cloud with a
temperature of 20 K. The molecular cloud is optically thick at 1.3 mm (as well as
at all the wavelength near 1.3 mm). The cloud is much larger than the resolution of
the IRAM telescope (so the molecular cloud “fills the beam” of the telescope).

(e) What is the intensity Iν (in units of erg sec−1 cm−2 Hz−1 ster−1) of the back-
ground molecular cloud at λ =1.3 mm?

(f) Convert this into an observed flux Fν (in units of erg sec−1 cm−2 Hz−1), by
approximating the “beam” (i.e. the part on the sky the telescope instrument
will collect light from and convert into a measured signal) of the telescope by
a disc on the sky with angular diameter equal to the ∆θ you calculated for the
IRAM telescope at 1.3 mm above3. Hint: Remember that the flux and intensity
are related via a solid angle.

(g) Compare the observed flux from the disk to the flux from the background, and
show that the background flux dominates the observed signal.

(h) We can get better source/background contrast if we go to a telescope with a
better spatial resolution. Argue why.

Since there are no movable radio telescopes that are large enough to resolve such a
disk, we have to make use of radio interferometry to artificially narrow the beam (i.e.
increase the spatial resolution) to improve contrast of the disk emission compared to
the background. This is the topic of the next lecture.

3In reality this “beam” will be an Airy pattern on the sky, but for the current purpose a “disk-like”
beam with uniform sensitivity is sufficient.

4


