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Chapter 1

Overview and Quick-Start

1.1 Introduction

TheRADMC package is a code package for doing calculations of continuum radiative transfer in 3-D axisymmetric
(i.e. effectively 2-D) circumstellar dust configurations around an illuminating central source (e.g. a star).

This package is not public domain software. Every use of thiscode package, or any part of it, is only
to be done with explicit permission of the author, C.P. Dullemond.

This package actually containstwo main codes, and a number of smaller ones. The main radiative transfer
code is a Monte Carlo code, which is the actual code calledRADMC. The algorithm that is used for the Monte Carlo
radiative transfer is an enhanced version of the algorithm of Bjorkman & Wood (2001, ApJ, 554, 615). This code
will compute the dust temperature and the scattering sourcefunction everywhere. It will also produce tentative (but
noisy) spectra at various inclinations, but they are often too noisy to be used. To produce smooth spectra (SEDs)
and/or smooth images one does a post-processing with a ray tracing code calledRAYTRACE, also part of this
package. There are also a couple of codes in this package which have support purposes but which are of less direct
importance.

In addition to the codes this package also contains a number of example models, which are in fact so general
that they can be used as black-box ready-to-use models for various purposes (although we advise against the purely
black-box use of these models; we prefer to call these models: template models).

This manual explains first how to get quick results using these template models, just so that you can get used
to the model and its output. Then the model explains all the input files and output files of the code, including tips
how to use them. The manual will also explain more details of the various template models.

1.2 For which kind of modeling can this code be used?

This code package is meant for continuum radiative transferof dust configurations that are axisymmetric and mirror-
symmetric in the equatorial plane. Typically they are illuminated by a central stellar source, but this is not necessary.
They can also be illuminated by external radiation (interstellar radiation field). And finally, the code also allows for
internal heating in two ways: a) for galaxy simulations by a smooth population of stars and b) for disk simulations by
internal dissipation of heat. In conjunction with another code (PAHCODE), theRADMC also allows for inclusion
of quantum-heated grains such as PAHs.

Typically the code is used for modeling protoplanetary disks, circumstellar envelopes, post-AGB stars, plan-
etary nebulae etc.

1.3 Requirements

This package runs under linux/unix/MacOSX, but has not beentested under Windows. The following pre-installed
software is required:

• A F77 compiler
Preferably the GNU g77 compiler (which the current installation assumes is present on the system). Web site:
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http://www.gnu.org/software/fortran/fortran.html (NOTE: Mac users can install g77 via the fink installa-
tion tool, seehttp://finkproject.org/). But g95 also works. Web site:http://www.g95.org/. Other compilers
may work, but have not been tested yet.

• The IDL package (Interactive Data Language)
IDL is a software package similar to MatLab, and it is not free. The website for IDL is:http://www.ittvis.com/.
If IDL is not present on your system, and your system administrators cannot install this package due to lack
of funding, you can use an open source clone calledGDL (Gnu Data Language) which can be readily down-
loaded from the web. This GDL package misses some libraries and features, but the RADMC code can be
used with GDL.

Note that the Monte Carlo code RADMC itself is in Fortran. Only the creation of the input files (and hence the
problem definition) and the analysis of the output files is done in IDL. The user is of course invited to use other
ways to create the input files for RADMC if he/she is not able touse IDL nor GDL. Therefore IDL/GDL are not
strictly required for the use of this code.

1.4 The package

1.4.1 The run * directory(ies)

The package contains one or more directories starting withrun . These are templates for models that can be
calculated with this package. We will describe them in detail below. But a few remarks beforehand:

• It is advisable to keep the current template intact. To experiment withRADMC, just type e.g.cp -r run 1
run 1 mytest, and then modify the files in that directory.

• The philosophy of this package is that eachrun * directory containsonemodel run. So if you want to make
different models, the way to do this is to make different directories. For instance, if one wants to make three
models of T Tauri disks, one could make the directoriesrun ttauri 1, run ttauri 2 andrun ttauri 3.

• Each run directory contains a series of IDL program files, named problem *.pro (where * stands for the
various different files). These form a setup package that writes out the RADMC input files. Of course the
user can also create these RADMC input files him/her-self using other software.These IDL routines are only
there to give the user already a reasonably start, but they donot strictly belong to the core RADMC package!!!
The user is allowed (and even expected) to modify these IDL routines to suit his/her needs. But in case the
user wants to simply use the current setup without modifications, then the user will simply (and only) edit the
file problem params.pro, which contains a list of model parameters.

1.4.2 The source directory

The directorysource/ contains the sources of the actual code package. Thesource/ directory contains the
following subdirectories:

• radmc/
The main codeRADMC. This is the Monte Carlo code that computes the dust temperature everywhere and
also computes the scattering source functions (for isotropic scattering).

• raytrace/
The main codeRAYTRACE. Once theRADMC code has finished, spectra and images can be created using
this ray tracer calledRAYTRACE. This used to be part of theRADICAL code, which is, however, now not
used anymore.

• chopdens/
Some disky dust density configurations can be so extremely optically thick that the code is a bit slow. By set-
ting a maximum optical depth (by writing a file chopdens.inp with a certain format) and calling the chopdens
routine, the density configuration can be moderated such that a bit of mass is removed from the regions of
highest optical depths. This should not affect the optical/infrared appearance of the disk too much, but one
must be careful with this method, and always check the final results against a run in which this chopping is
not used.
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• idlroutines/
Some of the analysis of the results of the RADMC and RAYTRACE codes can be done best with some
subroutines in IDL, which are located here for the convenience of the user.

• makeopac/
(At present not used!)
The makeopac routine is a simple code for Mie calculations based on some lists of optical constants which
are also located in this directory.

• pahcode/
RADMC itself cannot deal directly with PAHs (i.e. with quantum heated grains). But it can be made to
cooperate with the PAHCODE, which can deal with PAHs. This code reads in information from RADMC
about the energy absorbed by the PAH molecules, and computestherewith the excitation of these molecules,
which can then again be read into RADMC to make sure that the other (thermal) dust grains also ‘see’ this
emission. Finally RAYTRACE will then read in both the data for the thermal grains as well as for the PAH
molecules and produces a spectrum.NOTE: This is not yet tested with RAYTRACE. Only for RADICAL
this is tested. Will be tested later.

The compilation of all these codes is organized in each of therun * directories, and we will come to this lateron.

1.4.3 The bin directory (will be created)

Once the compilation is done there will also be abin/ directory. This will then contain all the binary codes of the
programs in thesource/ directory.

1.5 Compilation

1.5.1 How to compile the codes

The codes must first be compiled before use. But since these codes are still programmed in Fortran-77, which
has fixed array sizes, the compilation may/will depend on theproblem at hand. Therefore the compilation is fully
organized within eachrun * directory. So suppose you want to run the model in therun 1 directory, here’s how to
compile the codes accordingly:

cd run_1
idl
IDL> .r problem_compilecodes

where theIDL> stands for the IDL prompt (and therefore thisIDL> should not be typed; only the text behind it).
The execution of the problemcompilecodes should compile all codes, create abin/ directory if this does not yet
exist, and put all executables in that directory. It should end with a message

====== ALL COMPILATIONS SUCCESFUL ======

if all compilations worked well. If problems occured duringcompilation, then this message will not appear. Check
your compiler (currently set to g77) and if necessary changethis in themakefile orMakefile in the source directories
of the codes insource/ directory. Once the compilation is done, you can either stayin IDL, or exit:

IDL> exit

Note that these compilations are done such that the array sizes of the Fortran-77 codes are all precisely
consistent with the problem that is defined by theproblem params.pro file. In particular the following parame-
ters will affect the array sizes, and hence the compilation of the code (at least for the particular setup inrun 1):

nr Nr of radial grid points
nt Nr of theta grid points
fresmd An index of the frequency resolution mode used (see later)
ab ab0 Nr of elements of this array determines nr of dust species
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1.5.2 The automatic creation of a bin directory in home

It can be very useful to be able to useradmc andraytrace directly from the prompt without having to write the
path of the code. For that reason the compilation routines will make sure that there is abin/ directory in your
home directory in which two little scripts are placed calledradmc andraytrace which in fact only link to the most
recently compiled version of these codes. If you put the/bin in your tcsh or bash shell (for Linux or MacOSX) then
you will be able to simply typeradmc or raytrace in the shell without a path.

Caution: If you have multiple versions of the code or multiple compilations for different models, and you
want to make sure your model uses the local copy of these codes, then the fulll path is necessary.

1.6 A quick ‘howto’ for the template model(s)

The complete code is quite complex, so it is probably best to start simply from the template models and try to
understand their workings. A first result can be obtained in the following way (including the compilation which is
already described above):

cd run_1
idl
IDL> .r problem_compilecodes.pro
IDL> .r problem_setup.pro
IDL> exit
nice ../bin/radmc
nice ../bin/raytrace spectrum incl 45
idl
IDL> .r ../sources/idlroutines/analyze.pro
IDL> s=read_spectrum()
IDL> plot_spectrum,s

This should compile all codes, set up the model, run the MonteCarlo code RADMC, run the ray tracing code
RAYTRACE, read the spectrum and plot the spectrum on the screen.

Note: It can be convenient to set the IDLPATH in the csh or tcsh (or equivalently in bash) to the../source/analyze.pro
path, so that one can type.r analyze instead of.r ../sources/idlroutines/analyze.pro. That
is easier.

1.7 Warning

The author of this code (C.P. Dullemond) does not take any responsibility for the use of this code. Codes of this
kind are quite complex and despite many rounds of testing there can always appear unexpected problems. The
most common problems are a) wrong use of the code, b) bugs introduced by the author after modifications of the
code (such as incompatibilities of new options with other older options, or simply that new options have not yet been
tested well enough) and c) use of the code in ranges of parameter space where it has not yet been tested well enough.
Problem a) can be only avoided by thorough reading of this manual, regular testing of the code and self-checking
(‘do I really understand what this option really does? How can I test that I indeed do?’). The danger of problem b)
can be suppressed by always testing any new version of the code against older versions on the same test problems.
Problem c) cannot really be 100% avoided, but a careful checking of the check-lists of Chapter 5 are a good start.
Of course there is also the risk that there are still undiscovered bugs in the code. All of these problems are best
avoided bythoughtful, patient and careful modeling, with lots of checks and tests. Typically a modeler should spend
a serious, perhaps even dominant part of his/her time on checking the results (‘can this result be correct?’, ‘how can
I check that this result is correct?’, ‘when I changethis, then one should getthat...’ etc).

In spite of these sombre notes, we wish the user lots of fun andgood results with this code. Should there be
problems or bug reports, please contact Cornelis Dullemond(dullemon@mpia.de).
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Chapter 2

The codes RADMC and RAYTRACE

The core of the code package is the code tandemRADMC andRAYTRACE. The first is the actual Monte Carlo
code that does the real work. The second is a post-processingtool to create spectra and images. The input files
to these codes are mostly the same for both codes, with the exception of the fileradmc.inp which is only for
RADMC andraytrace.inp which is only forraytrace. The template models (theproblem *.pro IDL routines in
the run * directories) create all the input files for the user, and the model parameters in those files (in particular in
theproblem params.pro file) are parameters of themodel but not always of the codes.

In principle you can simply use the template models and modify them to your needs, and not be too much
concerned with the input files they create and which are the true input toRADMC andRAYTRACE. But our advice
is never to use the template models as black boxes. It is therefore important to understand how the codes work,
which options they have and how their input files are structured.

2.1 The input files for RADMC and RAYTRACE

Here is a list of input files. Most files are input files for all codes. But each code also has one file specifically for
that code to set options in that code.

2.1.1 General input files for all codes

• radius.inp
A list of radial grid points, in centimeter. Space is mapped in spherical (polar) coordinates:(R, Θ), and this
file contains the list of radial points. The first line gives the nr of grid points, then the list follows in ascending
order. The best is to arrange the radial grid points logarithmically spaced, so that all scales of the problem
are mapped. But near the inner edge the grid points typicallyneed to be refined so as to make sure that the
innermost cell is opticall thin.

• theta.inp
A list of Θ grid points of the spherical coordinate system. First line is number of theta points and a dummy
value which should be 1. Then the list of theta points comes. Note thatΘ = 0 means the polar axis whileΘ =
π/2 is the equatorial plane. RADMC assumes mirror symmetry in the equatorial plane, so the coordinates
should range between 0 andπ/2, in ascending order (from pole to equator). Note that theΘ coordinates
should not start exactly at 0, but a bit away from the pole. Also never make the last grid point exactly
at π/2 but a tiny bit smaller than that. In configurations wich denseregions near the midplane (such as a
protoplanetary disk or so), it is prudent to choose theΘ coordinates more finely spaced near this midplane
than near the pole, so as to resolve the disk well. Moreover, it is useful to make sure that the fine spacing in
Θ covers the disk up to where the optical depthfor radially outward moving stellar photonsis less than zero.

• frequency.inp
A list of frequency points (ν ≡ c/λ) in which the radiative transfer should be done, in Hertz. First line is the
number of frequency points, then the list is given. This should be a list in ascending order in Hertz, and should
cover both the wavelength domains in which the central illuminating source (the central star) radiates and the
wavelength domains in which the dust radiates. In practice this means it should span from about0.1µm to
about1000µm or longer wavelengths, meaning thatν ranges from3×1011 Hz to3×1015 Hz. A logarithmic
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spacing is necessary to cover such a large range in frequencies. If required, one can choose refined frequency
spacing in regions of particularly interesting (dust) features. Note that all radiative tables will be using this
frequency grid (stellar spectrum, dust opacities, output spectrum).

• starspectrum.inp
A list of two columns. First line is number of frequency points (which should matchexactlythe number of
points in frequency.inp. First column is (again) the list of frequencies in Hz. Thesevalues should match
exactlythe values offrequency.inp. Second column is fluxFν of the central illuminating source (central
star) in units of erg/cm2/s/Hz, as seen by an observer at 1 parsec distance. This file isthe input spectrumof
the problem: the spectrum of the central source.

• starinfo.inp
A short file containing the parameters of the central star. First line: format number (=1), second line: radius
of the star in cm, third line: mass of the star in gram (not usedin RADMC), fourth line: effective temperature
of the star in K (not used in RADMC, unless thestarspectrum.inp file is not present).

• dustopac.inp
The main control file for the dust opacities. RADMC can allow for multiple dust species that coexist at the
same (or different) location. For each of these dust speciesan opacity must be given. Thedustopac.inp file
assigns which dust component gets which opacity. First lineis a format number (which should be 2 in this
version). Second line is the number of dust species (which must match the number of dust species in the file
dustdens.inpbelow). Then a comment line (line 3) and then line 4: for the first dust species a control number
telling how to read in this dust opacity (take it to be -1). Line 5 tells whether this is a normal grain (0) or a
quantum-heated grain (¿0, but see Section 2.7). Then line 6 gives a number which points to the dust opacity
file assigned to dust component 1. If this number is ‘1’, then this points to the filedustopac 1.inp for this
component. Finally there is again a comment line (line 7). Lines 4,5,6,7 are repeated for the next dust species
(lines 8,9,10,11) in case the second line says ‘2’ or higher.If the second line says 4, then lines 4,5,6,7 should
be 4× repeated, but of course pointing to another dust opacity fileeach case. In this way each dust component
is assigned to an opacity.

• dustopac 1.inp, dustopac 2.inp etc
The dust opacity files. First line, first number: the number offrequency points which must matchexactly
the number infrequency.inp. Let us denote this numbernf. Second number: a dummy that must be 1.
Then a list ofnf absorption opacities, in units of cm2/gram (note: cross section per gram-of-dust). Then
again a list ofnf numbers: the scattering opacity, also in units of cm2/gram. Note that scattering is, in this
implementation, assumed to be isotropic scattering. This is not a perfect assumption, and it can be relaxed,
but this is a bit complex and is not supported in this distribution yet.

• dustdens.inp
The dust density distribution file. First line, first number:the number of dust species (must beexactlyequal
to the number of dust species industopac.inp. First line, second and third number: the number of radial and
theta points respectively (which must beexactlyequal to the number of points inradius.inp andtheta.inp
respectively. First line, fourth number: dummy, take it 1. Then follows a list of density values, in units of
gram/cm3 of dust. Inner loop: theta coordinate, from pole to equator,middle loop: radial coordinate, outer
loop: index of dust species. If the number of dust species is,say, 2, then the outer loop goes from 1 to 2. The
opacity belonging to these two dust components are given industopac.inp (see above). One sees that it is
easy to have two different dust species simultaneously at the same location. That is perfectly fine, and can
be useful to simulate various dust sizes coexisting at a sameplace, or different dust species coexisting at the
same place. A few notes:

– In older versions ofRADMC the dust did not only have different species, but each species could have
a powerlaw size distribution. In the code one therefore often finds a loop variable for species (ispec)
and for size (isize). While this may still work, it is never used and it is not particularly useful. So if
using size distributions, the user is advised just to take each size as a different dust species.

– Each dust species is thermally decoupled from the other species. Each dust component therefore has its
own dust temperature.

– If the user wishes to model different dust species coexisting, one should ask oneself the question: do
these different species in reality thermally decouple or are they (through a bit of coagulation perhaps)
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thermally coupled? If the latter is the case, then one might prefer to mix the opacities beforehand, and
treat them as if they are a single dust species. But this has the disadvantage that one has a globally
constant mixing ratio of the components. If one wants to havethe possibility to specify the density
distribution of each dust component individually, BUT still wants thermal coupling (i.e. a single temper-
ature for all dust species located at the same point in space), then one can set this with theitempdecoup
parameter in theradmc.inp file (see below).

• external meanint.inp
If the model cloud is cool enough that the interstellar radiation field becomes an important heating mechanism,
then this file is used to tell the codes that there is this interstellar radiation field, given in the form of a mean
intensity. Note of caution: using this mode requires a good thought of the outer radius of the grid. Take it
too big, and most of the CPU time is crunched on photons that enter and leave the grid without having had
interactions with the model cloud.

• stellarsource.dat [only useful for galaxy simulations]
If one wishes to model axisymmetric configurations of dusty galaxies, then use this file to put in smooth
populations of stars as input of radiation into the system. Must compile codes with INCLUDEEMISLOC to
activate.

• quantsource.dat [only useful for PAH or other quantum grains]
Input of source term from the PAHs or other quantum-heated grains. See Section 2.7 for details.

• qplus.inp [only useful for active accretion disks]
For modeling active accretional dissipation of heat in the disk one can use this file to specify this heat insertion
at each location.This mode is not yet well tested, and it is very slow.

2.1.2 Program-specific control input files

Here is a list of control files special for each specific code.

• radmc.inp [for RADMC code]
Main control parameter file for RADMC. In Version 3.1 and higher of this package this file is a name list
type (see Section 2.1.3 for an explanation of how to format such files). But it remains compatible with the old
style (it simply checks if the first character is a 0-9, meaning old style, or a-z, meaning namelist style). The
namelist variables are:

– nphot: (default = 100000)
The number of photon packages for the simulation. See Bjorkman & Wood (2001) for explanation. Of
course, the more the better, but it makes the code slower.

– iseed: (default = -17933201)
A seed value for the random number generator.

– imethod: (default = 2)
An index for which method should be used for the Monte Carlo simulation.

– ifast: (default = 0)
If 1, then the recalculation of the dust temperature is not done always, but only when necessary. A bit
less accurate, but faster.WARNING: There may be still a bug in the code when using ifast=0 but with
the new super-efficient RADMC method. Consult author in caseof doubt... (08.07.07)

– enthres: (default = 1.d-2)
If ifast.eq.1, then this gives the threshold for the energy increase in a cell before a new dust temperature
is calculated. Could be taken to be 0.01 or so.

– cntdump: (default = 10000000) [old default was 10000]
After this many photons a safety dump is made. This was usefulin the past, when the code was still so
slow that it could take days before an answer. Safety dumps were useful, but it is now not important
anymore. The high default value makes that it will not be usedunless for extremely large photon
numbers.

– irestart: (default = 0)
Again, in the past it was useful to be able to continue from a safety dump. By putting this to 1 it would
do that.
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– itempdecoup: (default = 1)
If 1, then all dust species have their own dust temperature (this is default). If 0, then their temperatures
are all locally coupled (but may still vary in space of course).

– iquantum: (default = 0)
If quantum-heated grains are present, then you can put this to a value that is non-zero (depending on the
way you wish this to be treated). If this value is 0, then, evenif the dustopac.inp files says that one or
more of the dust opacities belongs to a quantum-heated grain, the quantum heating will nevertheless be
inactive. For more details about the quantum heating, see Section 2.7.

– istarsurf: (default = 1) [old default was 0]
If 1, then the star is not treated as a point source, but treated as a true 3-D sphere. If 0, then the star emits
light as a point source.

– nphotdiff: (default = 0)
RADMC has a module for treating the low photon statistics near the midplane of a very optically thick
disk. This is done using a diffusion algorithm. The numbernphotdiff gives a limit such that if a cell
is visited by fewer than this number of photon packages, it will participate in the diffusion trick and its
temperature will be calculated using this diffusion recipe. See Section 2.5. If this value is 0, then the
diffusion mode is not active and the full photon noise is present.

– errtol: (default = 1d-10)
The tolerance for the error in the diffusion algorithm. See Section 2.5.

– nvstr: (default = 0)
Apart from just doing continuum radiative transfer, this new version ofRADMC also allows an iteration
on the vertical hydrostatic pressure balance equation. If this value is set to 0 (default), then no such
iteration is done, and the radiative transfer is done purelyon the given input density field fromdust-
dens.inp. If ¿1, then iterations are done, such that the vertically integrated density fromdustdens.inp
remains the same at each radius, but after the first Monte Carlo run the vertical density structure (along
lines of varyingΘ but constantR) is computed using the computed temperature profile. See Section
2.6.

– vserrtol: (default = 0.d0)
Error tolerance for the vertical structure iteration. If 0.d0 (default) then the code will simply iterate nvstr
times, period.IMPORTANT: Since photon noise usually spoils the perfect convergence,if one takes
vserrtol> 0 then one should not take this too small.

– ivstrt: (default = 1)
Index of dust species, the temperature of which is taken to berepresentative of the gas temperature for
the vertical structure iteration.

– ntemp: (default = DBNTEMP MAX; see configure.h)
Since the new algorithm ofRADMC tabulates all the thermodynamic quantities in tables, thisgives the
size of this table. It can not exceed the DBNTEMP MAX hard compiled limit (see configure.h in the
sources/radmc/src directory).

– temp0: (default = 0.01)
The lower limit of the temperature in the temperature table mentioned above.

– temp1: (default = 1d5)
The upper limit of the temperature in the temperature table mentioned above.

• raytrace.inp [for RAYTRACE code]
A control file for the ray tracing program RAYTRACE. In Version 3.1 and higher of this package this file is
a name list type (see Section 2.1.3 for an explanation of how to format such files). But it remains compatible
with the old style (it simply checks if the first character is a0-9, meaning old style, or a-z, meaning namelist
style). The namelist variables are:

– nrphiinf: (default = 32)
For circular images and for spectra: the number of pixels perpixel circle.

– nrrayextra: (default = -20)
For circular images and for spectra: the absolute values of this number denotes the number of radial
concentric pixel circles with impact parameter smaller than the inner radius of the model grid (excluding
the possible refinement done withnrref).
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– imethod: (default = 0)
If imethod=0 then only do thenrrayextra rays linearly spaced inward of inner grid radius. Ifimethod=1
then also add refinement of rays close to inner grid radius. This is useful (even crucial) for very optically
thick disklike configurations with inner edge at the inner grid radius seen nearly (but not exactly) face-
on. If imethod=1 then also check out thenrref (a good value isnrref=10).

– nrref: (default = 10)
Has meaning only ifimethod=1. This tells how many refinement steps are done inward of theinner
rim.

– dbdr: (default = 1)
The number of rays (i.e. the number of pixel circles) with impact parameter similar to one of the grid
points. Normally we have 1 ray (pixel circle) per model radial grid point. If dbdr=2 then we have two
per model radial grid point, meaning we have a better spatialresolution.

– inclination: (default = 45)
The default inclination for a spectrum, image or circular image if the inclination is not specified on the
command line.

See Section?? for an explanation of the pixel arrangements for circular images and for spectra (i.e. the true
meaning ofnrphiinf, nrraysextra, imethod, nrref anddbdr.

• vstruct.inp [for RADMC code]
If vertical structure iteration is used (seeradmc.inp below and Section 2.6), then this file tells which of the
dust species participates. First line: format number. Second line: number of dust species in total (must be
exactlyequal to number of dust species industopac.inp). Then follows a 0 or 1 for each dust species.

• aperture.inp [OPTIONAL for RAYTRACE code]
NOTE: This is anoptionalfile. If it does not exist, then no aperture is chosen. This filecontains a list of
aperture sizes for each frequency (same frequencies as infrequency.inp). First line: the number of frequency
points (must beidenticalto that offrequency.inp); then follows the aperture for each frequency measured as
radius in arcsec. Note that the aperture simply means that for the SED all emission coming from a distance
larger than the aperture value from the center will be ignored. Apart from using theaperture.inp file you
can also set a constant aperture (for all wavelengths the same) by includingaperture 10 arcsec or
aperture 100 AU in the shell call ofRAYTRACE, see Section 2.2.Important note:If you do not spec-
ify the distance to the source when computing a spectrum (forinstance if you typeraytrace spectrum
incl 45) then the distance to the source is automatically scaled to 1parsec for the computation of the aper-
ture stuff. In this case 1 AU == 1 arcsec. If instead you specify the distance usingraytrace spectrum
incl 45 dpc 100, then that distance (100 parsec) is used for the computationof the aperture stuff.the
output spectrum spectrum.dat is always normalized to a distance of 1 parsec, no matter what distance you
type in the command line.So the spectrum in spectrum.dat must always be scaled from distance = 1 parsec to
the right distance.

• chopdens.inp [for CHOPDENS code]
A control file for the ray tracing program RAYTRACE. In Version 3.1 and higher of this package this file is
a name list type (see Section 2.1.3 for an explanation of how to format such files). But it remains compatible
with the old style (it simply checks if the first character is a0-9, meaning old style, or a-z, meaning namelist
style). The namelist variables are:

– taumax: (default = 1d6)
The maximum allowed vertical optical depth toward the midplane of the (presumably) disk. The smaller
value this is taken the stronger the density distribution isaffected (bad) but the faster theRADMC Monte
Carlo code is (good). A good balance between accuracy and speed is paramount. The default value at
1d6 means that it typically never does any smoothing. A valueof 1d4 would mean that it only smoothes
when the disk becomes rather heavily optically thick. Values much below 1d4 make the code very fast
but the results inaccurate.

– lambda: (default = 0.55)
The wavelength inµm at which the vertical optical depth is measured.

– smooth: (default = 1.0)
The index by which the chopping is done smoothly. The lower this value the more gradual the chopping
goes. The higher, the more abrupt it goes.
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2.1.3 Namelist input files (radmc.inp, raytrace.inp, chopdens.inp)

Some of the input files have a free-format namelist style of input, namely:

1. radmc.inp

2. raytrace.inp

3. chopdens.inp

These are the files that contain the general program control parameters of the programsRADMC, RAYTRACE and
CHOPDENS respectively. See Subsection 2.1.2 for a description of their input variables. In earlier versions of
these codes these files were simply lists of numbers, and the user simply had toknowwhich number means what.
Now these files are namelists. An example of a namelist is (in this particular case the example israytrace.inp):

; This is a comment line

nrphiinf = 32 ; Some other comment, whatever you like
nrraysextra = -20 ; Bla bla

; Here are some new parameters

imethod = 1
nrref = 10 ; Could also be 20, but why not 10

(which is in fact an example namelist for the fileraytrace.inp, but that is irrelevant here as we are speaking about
namelist files in general). As one can see, it is a list of<variable name> = <value> lines, more or less in free
format. The “;” character denotes the start of comments and blank lines and spaces are ignored. The above file
could also be written as

nrphiinf=32
nrraysextra=-20
imethod=1
nrref=10

with exactly the same meaning, as long as each line contains at maximum one identity. If a variable isnot listed,
then the code-internal default values are used. It is therefore not obligatory to list each parameter with a value.
For instance, sincenrref has per default the value of 10 in the codeRAYTRACE the above input file could also
contain just the first three lines and it would act precisely the same. If you choose the same values as the code-
internal default, then you can choose to leave out that variable, but you can also leave it in if you give it precisely
that value, as in the example above. An empty file would therefore just force the code to use all parameters as their
default, and so would it if the file is non-existent altogether.

2.2 Command-line (csh/bash) options for RAYTRACE

. The programRAYTRACE is a program that accepts command-line options. In this version the program is written
in F77 which does not support command-line options, so the actual raytrace program is in fact a PERL script that
calls raytraceprog, which is the actual F77 program. The command line options are put as commands in a file
calledcommand which is then read byraytraceprog. But these are technical details. In effect one can consider
raytrace as a program with command-line options. The first word afterraytrace tells RAYTRACE what is should
actually calculate:

• raytrace spectrum
Makes an SED. See Section 2.9 for details. Further command-line options:

– The inclination can be set by addingincl 30 to the command line (i.e. in total:raytrace spectrum
incl 30). If the inclination is not set, then the default inclination is used which is set inraytrace.inp,
and if it is not set there, then the default inclination of thecode is used.
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– One can also set an aperture (constant with wavelength) by adding apert 10 arcsec or apert
100 AU (to name a few possibilities). But beware that in most practical purposes one must set the
aperture as a function of wavelength by adding a fileaperture.inp. NOTE: the aperture is measured as
radius. If you set the aperture, then one must also specify the distance to the source in parsec:dpc 100
(for 100 parsec). Note that from now on inRAYTRACE the dpc option will only affect the conversion
of arcsec to cm in the comptutation of the aperture, but the spectrum normalization in the output file
spectrum.dat will alwaysbe normalized to a distance of 1 parsec (also if the source itself is larger than
1 parsec; it is just a scaling factor).

– By addingnostar you obtain a spectrum without the star spectrum, i.e. only the emission from the
circumstellar matter will then be computed.

• glob
Makes a series of spectra at increasing inclination with theaim of testing luminosity conservation. See Section
2.9.2 for details.

– By addingnincl 45 we specify that 45 regularly spaced inclinations between pole-on and edge-on
are to be taken for this mode.

–

• raytrace image
Makes a rectangular image. See Section 2.9 for details. Further command-line options:

–

2.3 The output files of RADMC

TheRADMC code produces the following output files:

• dusttemp final.dat
This is the file containing the temperature of the dust as a function of location in the disk. First line, first
number: the number of dust species; second number: nr of radial grid points; third number: nr ofΘ points
from pole to equator; fourth number: dummy. Then follows a data block for each dust species. Each data
block starts with a first line with one number: this will for all practical purposes described here be 1. Then
follows a list of numbers giving the temperature of this dustspecies at the grid points. The outer loop is
ir=1,nr (radial grid point); the inner loop is it=1,nt (Θ-grid point).

• spectrum all.dat
This file contains rough estimates of the spectra as seen at a large distance at inclinations equal to theΘi grid
points. The way these spectra are created is to simply collect the escaping photons (which eventually each
photon will do) atR = ∞ at the various inclinations. TheΘ-bins in which these photons are collected are
bounded by theΘi grid points. So where theΘi grid is refined, the spectrum will have larger photon statistics
noise, because the collection area is smaller. Simply put: the larger the collection area at infinity, the less
photon noise, but the more uncertain which true inclinationthis spectrum belongs to. Thespectrum all.dat
contains all these spectra between allΘi. First line, first number: nr of frequencies; second number:nr of Θi

grid points. Then follows a number of data blocks, the numberof which equals the nr ofΘi grid points. Each
data block contains two colums: first column is the frequencyin Hz; second column is the spectrum as seen
at a distance of 1 parsec in erg/s/cm2/Hz.

• scatsource.dat
The scattering source term. In this version ofRADMC only isotropic scattering is included. That means that
for each position (ir,it) and each frequency (inu) the MonteCarlo code must store how much light is being
scattered per second in all directions. (This shows why onlyisotropic scattering is allowed at the moment:
if we also include the angle (imu,iphi), then thescatsource.dat file would kill your hard disk). First line,
first number: nr of frequency points; second number: nr of radial grid points; third number: nr ofΘ grid
points; fourth number: dummy. Then follows a table of scattering source function, with outer loop being
frequency, then aΘ loop and then (as inner loop) a radius loop. The dimension of the source function is
erg/cm3/s/Hz/ster.
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• photstat.info
This gives for each (ir,it) position how many photon packages have visited that cell. Useful for detecting
possible locations of bad photon noise. First line: format number (=1). Second line: nr and nt (radial andΘ
grid size). Then the table withit in outer loop andir in inner loop.

• dustdens.inp
If (and only if!) the vertical structure mode is switched on (nvstr>0 in theradmc.inp file), then the new dust
density structure is written in this file. See input files for the format of this file.

Note that for most part the output files ofRADMC are meant as input toRAYTRACE (unless the dust temperature
or dust density following from this code are used as input to other software you have created).

2.4 The output files of RAYTRACE

TheRAYTRACE code produces the following output files:

• spectrum.dat [only afterraytrace spectrum command]
This is the spectrum (SED) of the object at either the defaultinclination or the inclination mentioned in the
command line. For instance, after typingraytrace spectrum incl 60, the spectrum is at inclination
of 60 degrees (measured from the pole). The file format is the same as that ofstarspectrum.inp. First line
is number of frequency points. Then follows a data block. First column is the list of frequencies in Hz; they
are identical to those of thefrequency.inp file. Second column is fluxFν of the complete object in units of
erg/cm2/s/Hz, as seen by an observer at 1 parsec distance. Note that one can also implement an aperture, see
Section 2.1.2 and 2.2.

• spectrum *.dat [only afterraytrace glob write command]
As spectrum.dat but now for a series of inclinations. See Section 2.9.2 for details.

• image.dat [only afterraytrace image command]
This file contains the image that has just been produced. First line, 3 integers: nr of pixels in horizontal
direction, nr of pixels in vertical direction and number of frequencies for which the images are stored in this
file (normally this is 1). Second line, 2 numbers: Size of eachpixel in horizontal direction and size of each
pixel in vertical direction (size in cm, i.e. correspondingto the local scales of the object to be imaged). Then
follow the image(s). Outer loop (usually trivial because only 1 image): nr of image. Middle loop: iy index
(vertical). Inner loop: ix index (horizontal). The image isgiven in units of erg/cm2/s/Hz/ster, i.e. the typical
CGS units of anintensity. Note 1: for an image there is no distance indicator necessary because the intensity
is distance-independent. Note 2: there are resolution issues related to such rectangular images (see Section
2.9.3).

• imtau.dat [only afterraytrace image command]
As image.dat but this time with the optical depth throughout the source asa function of position. For
diagnostic purposes only.

• circimage sequence.dat [only afterraytrace image circu]
This file contains a series of circular images. Circular images are described in detail in Section 2.9.4. First
line: nr of frequencies (i.e. nr of images) in this file. Second line = blank. Then follows a list of frequencies
at which the images are taken. Then again a blank line. Then a line with 3 integers: nr of radial grid points
of the image (= nr of pixel circles), nr ofΦ grid points of the image (= nr of pixels along each circle), and
again (sorry!) the number of frequencies. Then another blank line and a list of the radial grid points (pixel
distances from central point in cm). Again blank. Then a listof the interfaces of the pixels in radius (i.e.
same as before, but this time not pixel centers but pixel edges): this list is 1 longer than the list of pixel radii
because the number of pixel edges is 1 more than the number of pixels. Then again a blank and a list ofΦ
points (angle of pixels along the circle), a blank and a list of Φ interfaces (again 1 more). Then finally after
yet again a blank follows the image. Outer loop: radius, inner loop: position along circle. The image is
given in units of erg/cm2/s/Hz/ster, i.e. the typical CGS units of anintensity. Note 1: for an image there is no
distance indicator necessary because the intensity is distance-independent. Note 2: although circular images
are a bit more difficult to interpret than simple rectangularimages, they are extremely useful because they
resolve automatically all scales necessary (contrary to rectangular images, which require great caution to do
correctly).
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These files can be analyzed using the IDL routines insources/idlroutines/ (See Chapter 4).

2.5 A fix for low photon statistics: the diffusion module

Any Monte Carlo code of the type of Bjorkman & Wood has the problem that photon packages tend to rarely
visit cells that are very deep in a very optically thick region, for instance the midpane of a protoplanetary disk.
This means that some cells may have poorly determined temperature (with large statistical noise) or even zero
temperature. Since these regions are usually so deep insidethe disk, they are not observable anyway. For purposes
of making spectra and images this bad photon noise is therefore not particularly problematic.

However, if the temperature solution is to be used for an iteration of vertical structure, then the temperature
must be a smooth function also in the deep interior of the disk. The only true solution to this problem is to take
an exceptionally large number of photon packages (e.g. takenphot=10000000 in radmc.inp, or equivalently in
problem params.pro. But this is very numerically costly, because high number ofphotons is anyway costly, but
at high optical depths each photon package also takes up moreCPU time.

A trick is to smooth these cells out using the equation of diffusion, which should be reasonably valid in very
optically thick regions anyway. By specifyingnphotdiff in radmc.inp to e.g. 30 one can say that each cell that
is visited by fewer than 30 photon packages will participatein the diffusion equation. This will then be solved using
a matrix equation solver.

NOTE: Using this diffusion module to prevent strong photon noise is crucial when using the vertical struc-
ture iteration module (see Section 2.6).

2.6 Vertical structure iteration

Normally RADMC is just a continuum radiative transfer code (ifnvstr=0 in theradmc.inp file). But it has turned
out to be exceedingly useful also to iterate on the vertical density structure, assuming that the gas has the same
temperature as one of the dust species (which one is specifiedby ivstrt in theradmc.inp file). The vertical structure
iteration is then computed after each Monte Carlo calculation, and at the very end a final Monte Carlo calculation is
done for the final temperature and scattering source function.

The simulation starts from the dust density filedustdens.inp, which gives the 2-D/3-D density structure. It
does one run of the Monte Carlo radiative transfer to obtain the temperature structure in 2-D/3-D. Now the surface
density of each dust species is calculated. For the selecteddust species (see below) the vertical density distribution
is now replaced by a distribution consistent with the dust temperature distribution of dust speciesivstrt (which
is assumed to be the gas temperature). At each radius the surface density of the new dust density distribution is
constructed to be the same as from the original density distribution. Once the new density distribution is found,
the Monte Carlo radiative transfer is redone, and again the density can be modified. This procedure can be iterated
multiple times (in factnvstr times). This iteration stops if the largest difference is less thanvserrtol. Note: Due to
photon noise one can presumably not get a very well convergedsolution..

Which of the dust species will be modified in this way is given in the filevstruct.inp. See Section 2.1.2 for
explanation.

Note: To make sure that the vertical structure iteration hasa temperature profile that is smooth enough, the
diffusion method of Section 2.5 is important.

VERY IMPORTANT: For the moment never use this mode in conjunction with theCHOPDENS code,
because the surface density is computed from the input density which would then have been modified. In fact,
in the newest version of the codeRADMC will simply refuse duty if the vertical structure mode is on while a
chopdens.inp file is present.

2.7 Quantum-heated grains (PAHs)

This section is still under construction...

2.8 The use of RADMC

Once all the input files are there, and all the codes are compiled, the RADMC is very simple to use from the shell
prompt:
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nice ../bin/radmc

This will run the code, and the code will output its results. These results are not directly of practical use. But with a
postprocessing usingRAYTRACE one can produce spectra and images.

2.9 The use of RAYTRACE

Once RADMC is done, and new dust temperatures and scatteringsource functions have been produced (dust-
temp final.dat andscatsource.dat), then the ray tracing routine is required to produce the spectra and/or images.
During compilation, RAYTRACE is installed such that it should be directly accessible, even without a path, by just
typing ’raytrace XXXXXX’ in the command line where ’XXXXXX’stands for various options and commands (see
below).

2.9.1 Making an SED

To make an SED (spectrum) at some inclination, type

raytrace spectrum incl 45

on the unix/linux shell. If this does not work, then

../bin/raytrace spectrum incl 45

should do the trick. This command makes RAYTRACE produce theSED as seen at an inclination of 45 degrees
(where 0 is face-on). The resulting spectrum is written to the filespectrum.dat, which has exactly the same format
asstarspectrum.inp (i.e. two columns with col 1: frequency in Herz and col 2: flux in erg/cm2/s/Hz as seen at a
distance of 1 parsec). With theanalyze.pro routines you can read and plot the spectrum:

idl
IDL> .r ../sources/idlroutines/analyze.pro
IDL> s=read_spectrum()
IDL> plot_spectrum,s

You can also give various keywords toplot spectrum, such as the usual keywords, but also things like/lsun or
dpc=140.. See the analyze.pro routine for explanations.

2.9.2 Checking flux conservation; making many SEDs at once

RAYTRACE can make a systematic series of SEDs at a large number of inclinations in one command, even though
this make take some time to compute. The usefulness of thisglob mode is that it allows you to get a spectra view
of the system at all inclinations, AND it willcheck if the outcoming luminosity equals the input luminosity. The
latter thing is most important: it checks whether the results are self-consistent.

On the command line type

raytrace spectrum glob nincl 45 write

to obtain 45 spectra at inclinations 1, 3, 5 ... 89 degrees inclination. They will be in the filesspectrum 1.dat,
spectrum 2.dat ... spectrum 45.dat. Note that the index number of these files denote theindexof the spectrum,
not the inclination in degrees. So the spectrum at 5 degrees is in file spectrum 3.dat. Thewrite command at
the end of the above command line is to say that indeed each spectrum that is calculated must be written to a file.
If write is not given, thenRAYTRACE will compute all spectra, compute the luminosity conservation error, but
will not write out any spectra. Ifnincl 45 is not given, thenRAYTRACE will take theθ-grid of the model as its
inclinations.

The luminosity conservation error is calculated by integrating the SEDs at each inclination over frequency,
and then integrating these fluxes overd cos i to get the total output luminosity:

Lout = 2πd2

∫ +1

−1

d cos i

∫ ∞

0

dνFν(i) (2.1)
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whered is the distance of the observer from the source, which is standardized tod = 1pc for theFν coming out of
RAYTRACE. Then this output luminosity is divided by the input luminosoty (L∗) assuming that the star is the only
source of energy. This should ideally be 1. The error is calculated as the deviation from 1, but that number would
anyway be very small if for instance the circumstellar matter is very optically thin, so that is not a good estimate of
the true error. Instead this error is divided by the coveringfactorΩ of the circumstellar matter wrt to the star:

Error=

(

Lout

L∗

− 1

)

1

Ω
(2.2)

Typically this error should be of the order of 0.05 at maximum, but preferably less. If this error is bigger, then
something is wrong. Either there is a bug in the code (please report to the author, giving the exact input data and
configure.h of the compilation as information) or the gridding of the input problem is not done well.

Making a flux conservation check is time-consuming. My advice: Do this test in the beginning a few times
when you are getting used to the code, just to make sure thingsare OK. Do the test only once-in-a-while during
your production runs. And do the test for the final models thatgo into the paper.

2.9.3 Making images with RAYTRACE

RAYTRACE can make images in one of the wavelengths/frequencies of thefrequency.inp frequency grid. An im-
age is made by computing the ray-tracing along a set of NX×NY rays going through the object at some inclination.
One can make images directly from the command line1:

raytrace image lambda 15. micron incl 45. size 160 AU npix 200

which makes a rectangular 200×200 image at an inclination of 45 degrees, with a size of 160 AUfrom left to
right and top to bottom (i.e. 80 AU from center to right), at a wavelength of 15 micron (note that it will choose the
frequency infrequency.inp closest to104c/λ, i.e. it is not precisely at 15 micron). If we just write

raytrace image

then it will make an image at default wavelength, default inclination etc.
Another way to make images is to use thereadimage.pro/makeimage() routine. Have a look at this routine

(in thesources/idlroutines/ directory) for further information.
Finally, one can also directly set thecommand file (the file that normally is produced by the PERL script

raytrace to hand over information toraytraceprog). To see how this is done, just have a look in thereadim-
age.pro/makeimage() file how that program does it.

• IMPORTANT: The pixels centered around the central star will often not besmall enough to resolve the
complex structure of the source at small radii. The flux of these pixels will then not be trustworthy because
for each pixel only a single ray going though the center of thepixel is traced, which may miss important
emitting material at smallR that could/should contribute to the flux of that pixel. Example: a model disk
ranging from0.1 AU ≤ R ≤ 1000 AU, where an image of 100×100 is produced withxmax = 1000 AU.
The pixel size is then 20 AU. This means that the central 2×2 pixels have rays with impact parameters of
b = 10

√
2 AU away from the center, missing all the strong emission in the region within 15 AU. If that region

produces most of the flux, then this is not picked up by the imager, and the central 2×2 pixels are far less
bright as they should be. This is a typicalmissing flux problemof rectangular images. A quick-and-dirty
fix, just to make sure that at least the stellar flux is correct,is to add the optionaddstar to the command
line. But this only solves the stellar flux proble, not the fluxfrom the unresolved inner disk regions. A more
allround solution is by making consecutive ‘Babushka’ style images at ever increasing size and by replacing
the central pixels of the bigger images by the integrated versions of the corresponding regions of the smaller
(higher-resolution) images. Right now this is not yet automatized. Another solution is to usecircular images
(see Subsection 2.9.4).

This section is still under construction.
1There was an error in the manual. It said raytrace image lambda 15. micron incl 45. imagesize 160 AU npix 200 200, but that was incorrect.

This error is now fixed.
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2.9.4 Circular images

Another way of obtaining spatial information about radiation from the object, which does not suffer from the res-
olution problems of the rectangular images, is the use of circular images. The idea here is that we let go of our
standard belief that images must always be sets of pixels in X- and Y- direction in a rectangular arrangement. The
human eye sees images with ‘pixels’ in completely random arrangement and still we see perfectly orderly images.
So the trick is to arrange the pixels of the image in such a way that they naturally resolve all scales of the problem
automatically. InRAYTRACE they are arranged in concentric circles centered around thecentral star. The size
of the circles (i.e. the impact parameters with respect to the star of the rays belonging to the pixels) are chosen to
correspond to the radial grid of the model. Typically for each Ri of the model grid we will have a circle of pixels
with the same radius (note that a distance-independent angular size on the image is in fact obtained if you measure
it in cm, i.e. in object coordinates). The arrangement of pixels along the circle is regular, typically with 32 points
along the circle (but this can be changed inraytrace.inp by setting the variablenrphiinf to the appropriate value, as
long as it is a multiple of 4). The way to make circular images from the command line (csh/bash):

raytrace image circu incl 45 freqindex 5 40

which says that the circular images must be made at an inclination of 45 degrees and in this case 36 images are made,
frominu=5 to includinginu=40 (seefrequency.inp to which frequencies this corresponds). NOTE: Thelambda
10 micron option that works for the spectrum does not work here. Instead you must use thefreqindex
20 30 (or other indices) option to specify literally for which frequency indices you wish to make the circular
image. Note that if you do not specifyfreqindex 10 15 (or like that) then the circular images are made forall
frequencies:

raytrace image circu incl 45

You can also usereadcircimage.pro/makecircimage() (seesources/idlroutines/) which is an IDL routine
that does it all for you.

Finally, you can also set thecommand file directly. Seereadcircimage.pro/makecircimage() how this is
done.

Once the circular image(s) is/are made, then withreadcircimage.pro/readcircimage() you can read in the
circular image(s) into IDL into a structure.

NOTE: The routines inRAYTRACE that calculate the SED in fact make circular images at each wavelength
and then integrate over these images. In this way it is guaranteed that the spatial scales (and thereby the fluxes) at
all radii are included and the total flux is robust.

This section is still under construction.
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Chapter 3

The template models

In principle the code package consists of the programs located in thesources/ directory. These are the fortran
programs that perform the computations. But the full package also contains example model setups that are in fact
rather advanced. In this chapter these packages are described. It is strongly encouraged that the user modifies these
packages; they are there fore convenience, but they have their limitations.

3.1 Model directories

The way the current package is structured is such that each model has its own directory. The reason for this is
that there are many input and output files for each model and itwould be come quickly too messy if one directory
contains more than one result. Therefore it is strongly encouraged to haveone model - one directory. There are
already example directories present:

• run example ppdisk: An example of a model of a protoplanetary disk. See Section 3.4.

• run example agn: An example of a simple AGN torus model. See Section 3.5.

It is advised to first make a copy of these example directoriesto e.g.run ppdisk 1 (for the first example), so that you
have your own model directory to play with, without accidently modifying the example model. After a succesful
model, if you plan to continue to play around with parameters, it is advisable to keep the succesful model in its
own directory, and simply docp -r run ppdisk 1 run ppdisk 2 to create a new model and continue to play with
run ppdisk 2. In this way each model has its own directory, and can be easily re-run after a long time without
having to ponder how the setup was done.

3.2 The problem *.pro IDL modeling packages

Each model directory contains:

• A set ofproblem *.pro files. These are the IDL model setup routines. See below for details.

• A set of*.Kappa files. These are the master opacity files. See Section 3.3

NOTE: Specific information for the example models can be found in separate sections below.
If you wish to use these example packages as-is, then you willlikely just modify theproblem params.pro

file, which contains all the model parameters (see below). The main routine isproblem setup.pro. So to set
up the problem, you first edit theproblem params.pro and then you typically compile all codes by executing
problem compilecodes.pro:

idl
IDL> .r problem_compilecodes.pro
IDL> exit

and then you set up the problem by executingproblem setup.pro:
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idl
IDL> .r problem_setup.pro
IDL> exit

This will create all the input files for theRADMC andRAYTRACE programs.
NOTE: The compilation of the codes only has to be done the firsttime you use the code OR if you changed

the number ofR-, Θ- or frequency-grid points of the model. If you only change parameters of the model setup but
not the grid size, you only need to executeproblem setup.pro to get the new model.

Once you have done this, then you can call the fortran programs. For instance:

nice ../bin/radmc
nice ../bin/raytrace spectrum incl 45

See Chapter 2 for details of the codes. Then after the resulting spectrum has been written tospectrum.dat (or
if you made an image withRAYTRACE, the image.dat has been written) you typically will want to analyze the
results. You can do that either by reading in these output files in any way you want to do yourself. Or you can use
the diagnostic tools described in Chapter 4. That is it!

3.2.1 A brief description of the generic problem*.pro files

If you plan to modify the setup routinesproblem *.pro to your own wishes, which you are very much encouraged
to do, then you will need to know the functions of these files. Here is a very brief description of the files common
to all example problems (specific example problems may contain additionalproblem *.pro files):

• problem params.pro
This is the file that contains all the model parameters. It is the file that you (the user) will most often edit and
change.

• problem setup.pro
This is the main routine for the model setup. This is the routine that you will execute from the IDL prompt to
set up all the model input files forRADMC andRAYTRACE. This main routine calls all other routines and
otherproblem *.pro files.

• problem compilecodes.pro
This is the main routine for the automatic compilation of allnecessary fortran codes, includingRADMC and
RAYTRACE.

• problem grid.pro
Contains routines for setting up the spatial grid (R andΘ).

• problem subroutines.pro
This file contains a number of generic (not model-specific) IDL subroutines used by the model setup.

• problem makeopac.pro
This file contains the routineuseopac() that creates thedustopac *.inp files from the*.Kappa opacity
master files. See Section 3.3 for details.

• problem mixopacities.pro
This contains routines for mixing opacities. The mixing is done in a simplistic way by simply adding the
opacities together multiplied by their respective abundances. See the parametersmixnames, mixspecs and
mixabun in problem params.pro and see Section 3.3.3.

• problem natconst.pro
Contains the values of several natural constants in CGS units.

• problem kurucz.pro
Contains routines for implementing a Kurucz model as stellar input spectrum (i.e. putting a Kurucz spectrum
into starspectrum.inp. This routine only works if there exists a Kurucz model directory in a special format.
Since this is a big package, this Kurucz model directory is typically not delivered along with this package.
Please request it separately from me if you need it. To switchthe use of the Kurucz model on, putkurucz=1
in problem params.pro.
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• problem pah.pro
Routines for implementing quantum-heated grains (PAHs) into the model. See Section 2.7 for details.

• problem comp files.pro
This contains helper-routines for theproblem compilecodes.pro, i.e. it is the part which writes the appro-
priateconfigure.h files for the compilations.

• problem files.pro, problem build.pro, problem disk.pro, problem models.pro, problem radmc files.pro
These are problem-specific files (and typically unique for each model). They are described in more detail in
the model-specific sections of this chapter.

3.2.2 A brief description of generic problemparams.pro input parameters

Although each example model has its own model-specific parameters in theproblem params.pro file, there are a
number of general parameters that are the same in all examplemodels.

• nphot: Nr of photon packages used byRADMC. See Chapter 2.

• npdiff: This tellsRADMC that if a cell is visited by fewer than this number of photon packages, then this cell
will be included in the diffusion algorithm after the MC run (see Section 2.5).

• errtol: This is the error tolerance for the diffusion algorithm.

• ifast: If 1 thenRADMC will only recompute the dust tempearture in the MC simulation when this is likely to
have changed by some reasonable amount (Set to 1 for now).

• tauchop: For the chopping code (see Section 3.2.4).

• lmbchop: For the chopping code (see Section 3.2.4).

• idxchop: For the chopping code (see Section 3.2.4).

• xlevel: This sets the depth in the directory tree where this run directory is located with respect to the
sources/ directory. Standard this is 1. But if for instance you wish tomake a series of models in a
deeper directory called e.g.series 1/, then the modelsseries 1/run 1/ will be deeper in the directory tree
than therun example ppdisk/ directory. In that case you setxlevel=2. This is important for theprob-
lem compilecodes.pro to be able to find thesources/ directory and also forproblem setup.pro to find the
chopdens code if requested.

• rstar: Radius of the central luminosity source

• mstar: Mass of the central luminosity source

• tstar: Effective temperature of the central luminosity source Ifkurucz=0 then this will be the blackbody
temperature, but ifkurucz=1 this will be the Kurucz effective temperature.

• fresmd: The frequency gridding mode. See Section 3.3.2.

• infile: Array of names of master opacity files to be used as dust opacities (see Sectionsec-master-opacity-
files). The number of opacities specified in this way must be equal to the number of dust components used
in the dust setup (for the ppdisk example this would be the number of elements ofab ab0 plus one; for the
AGN model this must be 1).

• pll: If the maximum wavelength in the master opacity files is smaller than the maximum wavelength used in
the model (see Section 3.3.2), then use this power law for theextrapolation toward longer wavelengths. Must
have same number of elements asinfile. Typically this is taken to be either -1 or -2.

• scat: If 1, then include scattering into the modeling. If 0, then put the scattering opacities to 0.

• nr: Number of radial grid points of the model (when this is changed, you need to recompile the codes).
The grid points are normally distributed logarithmically betweenrin androut so that all spatial scales of the
problem are well resolved. Note, however, that the inner gridpoints are refined (seerrefine below).
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• nt: Number ofΘ grid points of the model (when this is changed, you need to recompile the codes). Normally
theΘ grid is linearly spaced. Note that theΘ grid only spans from pole to equator: there is mirror symmetry
in the equatorial plane.

• ntex: To make sure that a disklike structure is well resolve inΘ, theΘ grid is divided into two zones: a polar
zone and an equatorial zone. Thentex variable sets the number of gridpoints in the polar zone. Typically
one chooses fine resolution in the equatorial zone if a disk ispresent and less resolution in the polar zone.
The number of grid points in the equatorial zone is thennt-ntex. The division line between the polar and
equatorial region is set byhrgrid (see below).NOTE: In earlier version of this setup the total number of
Θ grid points wasnt+ntex. Now this isnt. Except when a special mode is used, namelyzrefine, where a
special very fineΘ grid is made near the midplane. But that latter mode is only expert-use because the codes
will not automatically compile with the right number ofΘ points in that case...

• rin: Inner edge of the radial grid in cm. If this parameter is set 0and insteadtin is specified, thentin will
determine the inner radius instead.

• tin: If > 0 andrin=0, then this parameter sets the inner radius of the grid in a special way. It estimatesthe
radius where the dust grains will have a temperature oftin and will take that to be the inner radius of the
grid. IMPORTANT: This is just a very rough estimate based on the blackbody formulae of the Dullemond,
Dominik & Natta (2001) paper. In reality the dust grains, if small grains, will be somewhat warmer thantin.
Therefore usetin not as an exact inner temperature but rather a nice way to makesure that the inner radius
always scales propertly in- or out-ward when you change the luminosity of the star. Donot trust that the inner
disk temperature will indeed be equal to thistin.

• thintin: If set to 1, then use real dust opacities for computingrin from tin. This may make the estimate ofrin
from tin a bit more accurate.

• rout: Outer radius of the grid, in cm. Make sure that this is large enough that the entire model density
distribution fits in.

• hrgrid: The boundary between the polar and equatorialΘ-grid region, measured asΘboundary = π/2−hrgrid.

• hrgmax: The maximum ofπ/2 − Θ. The closest toπ, the closest theΘ grid comes to the polar axis. Note
that the polar axis is a coordinate singularity and the closer hrgmax is chose to be nearπ, the easier it can
become that numerical errors appear (in particular very lowphoton statistics in the firstΘ grid cell).

• rrefine: This is a structure containing three parameters that control the radial grid refinement near the inner
edge. First the radial grid is simply set up in a logarithmic way. Thenspanr parameter now tells how many
grid spacings from the inner edge need to be refined.nstepr tells how many sub grid points have to be inserted
in each of these spacings. Thenlevr tells how often this procedure is recursively repeated. This radial grid
refinement is usually necessary to assure that the inner gridcell remains optically thin. NOTE: Unfortunately
this refinement cannot be done indefinitely. TheRADMC andRAYTRACE codes have limits to the fineness
of the grid. This can be experimentally investigated.

• drsm: In case of protoplanetary disks the optical depth of the disk can be so enormous (& 106 or more)
that grid refinement usingrrefine would need to be extreme. This requires a great many grid points and also
may require so fine spacing that the code may complain. To prevent this the inner rim is smoothed out a bit
automatically by the setup routines to guarantee that with the present grid refinement the inner cell remains
optically thin. This smoothing is done over a range in radiusfrom rin to rin*(1+drsm) (with rin being the
inner radius of the grid).

For further parameters, which are model-specific, we refer to the model-by-model descriptions below (Sections 3.4,
3.5).

3.2.3 The diagnostic diagrams of the template models

At the end of each call of theproblem setup.pro there will be a popup diagram. This diagram is for diagnostic
purposes and it can be switched off if it is annoying by setting show=0 in theproblem params.pro file.

The purpose of the upper panel of the diagram is to show the region in R, Θ space where the optical depth
toward the central star at peak-stellar-wavelength is larger than 1 (red region). The rough shape of the parameterized
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disk is therefore shown. The radial coordinate is the spherical (not cylindrical!) radiusR. The vertical coordinate is
π/2−Θ which is a rough (though not exact) estimate of the dimensionless vertical coordinateZ/R. The bottom of
this diagram is therefore the equatorial plane. Using this panel you can see how the grid resolves (or not resolves)
the important structures you want to model. If the equatorial Θ-grid (havingnt-ntex grid points) does not nicely
cover all of the disk, then one might need to increase thehrgrid variable. If, on the other hand, the equatorialΘ-grid
covers much more than the disk, then you can increase theΘ resolution around the disk not only by increasingnt
and keepingntex constant, but also by loweringhrgrid such that the equatorialΘ grid nicely covers the disk and
not too much more.

Note that if vertical structure iteration is switched on, then the final disk structure could be very different.
This also means that if thehrgrid parameter is chosen such that the equatorial grid nicely covers the initial disk, it
may not nicely cover the final disk anymore. This requires some experimentation.

The purpose of the low panel is to show the cumulative radial optical depth at peak-stellar-wavelength along
the equatorial plane (Θ = π/2), in the inner few gridpoints at the inner edge. It shows whether the transition from
optically thin to optically thick does not go too abruptly inthe inner edge. The reason why this is a worry is that
if the inner edge goes fromτ ≪ 1 to τ ≫ 1 in one grid point, certain solid state features in the spectrum may be
suppressed. In the case of therun example ppdisk, however, the setup routines attempt to avoid this automatically.

3.2.4 The chopdens program

If model density structures are extremely optically thick,then the codeRADMC can become a bit slow. This is
because some of the photon packages can then get stuck deep inthe disk where they will ping-pong billions of times
before they escape. This slows down the code considerably.

If one is only interested in the output spectra and images of such objects, and one does not use the vertical
structure mode ofRADMC (this is important!), then one may not mind too much if the very optically thick disk
regions are not modeled absolutely correctly. The reason isthat these regions are anyway unobservable. In that case
one may wish to remove some matter from these very interior regions such that the total optical depth is not too
extremely large anymore. This is a modification of the setup,but a modification that is not likely to affect the SEDs
and images because they do not affect at all the surface regions of the object; only the interior regions which are
unobservable anyway.

In this case the fortran programchopdens can help. It will be automatically called by theproblem setup.pro
routine if the parameterstauchop, lmbchop andidxchop are set in theproblem params.pro file. This program
will simply remove as much matter from the interior regions such that the vertical optical depth at wavelengthlm-
bchop at each radial position is smaller or equal totauchop. Theidxchop determines how abruptly this chopping
is done.

To see howchopdens does its work one can simply read in the filedustdens.inp after the execution of
problem setup.pro using theread dustdens() routine from theanalyze.pro program (see Chapter 4 for informa-
tion about the various diagnostic tools provided in this package). By comparing the density distribution with and
without chopping one can see what precisely the chopping does.

The advantage of chopping is that theRADMC code will execute faster. The disadvantage is that it is not
guaranteed that the resulting SED and images are correct. Ingeneral the higher one setstauchop the safer it is.
The safest is not to use chopping at all. By settingtauchop=0 one can switch off the chopping altogether. By not
definingtauchop (by commenting it out) one can also disable chopping, but beware that if you have used it before
and have not exited IDL in the mean time, thetauchop variable will then still be set even after having commented
it out in theproblem params.pro file. Exiting IDL and re-entering it would then be useful.

3.3 The master opacity files

The fortran programsRADMC andRAYTRACE read their opacity information from thedustopac *.inp files.
The problem with these files is that the opacities have to be sampled precisely on the same frequency (wavelength)
points as all the other frequency-dependentdata such as thestellar spectrum etc. If you wish to change the frequency
resoltion/sampling of the opacities, then you would in principle have to create entirely newdustopac *.inp files.
However, in the problem*.pro setup routines this is all done automatically.You merely have to specify inprob-
lem params.pro which frequency resolution mode you wish to use, by setting the infile parameter appropriately,
and thedustopac.inp files are automatically generated with the right frequency sampling.

In this section it is explained how this works, and where the original opacity data come from. So what hap-
pens is that theproblem setup.pro routine calls a subroutine calleduseopac() in the fileproblem makeopac.pro.
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This routine reads high-resolution opacity input files*.Kappa, the precise names of which are specified by the user
in problem params.pro. These are themaster opacity filescontaining tables of the opacities at very high frequency
resolution - much higher than you will typically use in the modeling. From these tables, using interpolation, the
routineuseopac() will create thedustopac *.inp which will then contain the opacities mapped onto the globally
used frequency grid of the model.

The*.Kappa files have their own frequency grid, independent of thefrequency.inp file. Each*.Kappa can
have a different frequency grid. The interpolation routineof useopac() will make sure that the opacities are then
all mapped onto the same frequency grid (the one offrequency.inp) before they are written to thedustopac *.inp
files.

3.3.1 The file format of the master opacity files

The structure of these master opacity files is as follows. Thefirst line contains the format number (see below for
its meaning). The second line contains the number of frequency sampling points for this file (may be different
for each*.Kappa file). Then follows the opacity data. First column: wavelength in micron. Second column:
absorption opacity in units of cm2/gram-of-dust. If the format number is 2 or larger then thereis a third column:
scattering opacity in units of cm2/gram-of-dust. If the format number is 3 or larger then thereis a fourth column:
the Henyey-Greenstein g-factor for anisotropic scattering (only for the version ofRADMC that has anisotropic
scattering implemented; not this version).

3.3.2 Choosing the frequency resolution for the model

So how does one choose which frequency sampling to take for the model? There are a number of pre-defined
frequency grids available, each with a integer label. They are defined in theproblem makeopac.pro file. There
is a case statement in which the keywordfresmd determines in which way the frequency points are distributed.
The way this is done here is that the frequency points are generally distributed logarithmically, but in three zones.
A short-wavelength zone, a mid-wavelength zone and a long-wavelength zone. The boundaries of each zone are
specified by setting four wavelength values, and the number of frequency points in each of these zones is specified
using three integer numbers. There are a number of pre-defined settings for these values, and thefresmd keyword
(which is set in theproblem params.pro file) chooses wich one to use. You are free to add more frequency
distribution modes toproblem makeopac.pro and assign each its own unique label number.

3.3.3 Mixing the opacities

By specifying themixnames, mixspecs andmixabun in theproblem params.pro file you request that certain
master opacity files are mixed together. This is done automatically by theproblem setup.pro routine by calling
themixopacities() routine.

The master opacity files given bymixspecs are being mixed and a new (mixed) master opacity file given
by mixnames is generated. Note that multiple mixtures can be generated by making themixspecs array a 2-D
array (e.g.mixspecs=[[’a.Kappa’,’b.Kappa’],[’c.Kappa’,’d.Kappa’]], which mixes a and b together and c and d
together), and makingmixnames a 1-D array.

The mixing is simply done by adding the opacities times theirabundances together to form a single ‘dust
grain’ with an opacity that is the mix of the constituents. IntheRADMC code this new dust grain (if then subse-
quently selected in theinfile parameter) is then treated as if it is one single species. TheRADMC code will then not
know about the fact that it is actually am mixture.

Note that any number of opacities can be mixed into one. BUT the first of the specified master opacity files
will set the frequency grid! This is very important to realize: it is best to take the opacity with the finest frequency
grid as the first. It is not impossible that this may cause a problem if none of the master opacity files have a frequency
grid that spans the entire range of interest with sufficient grid points. In that case the mixing may have to be done
by you in your own way, or themixopacities routine will have to be adapted.

Once the mixing is done and a new (mixed) master file is created, you can use it as a master opacity file as
any other master opacity file. The mixing is therefore to be seen as a pre-processing action.
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3.4 The Protoplanetary Disk model package

This problem setup.pro is in fact just a very short wrapper around a series of possible models given inprob-
lem models.pro. You can therefore also modifyproblem setup.pro to choose another model. You can, if you are
sure of yourself, also modify theproblem models.pro file, or even add your own model setups there.

This manual will not outline all the details of the various models that are currently implemented. The de-
scription of the parameters in theproblem params.pro should be self-explanatory. Experimentation will certainly
help. But a brief description of some of the model parametersin problem params.pro is given here. For the
generic model parameters inproblem params.pro we refer to Section 3.2.2.

• kurucz: If set to 1, then use a Kurucz spectrum for the star. See Section 3.2.1.

• gastodust: The gas-to-dust ratio used to calculate the mass of dust when given the mass in gas.

• rhofloor:: The lowest allowed dust density

• run: If 1, then automatically runRADMC andRAYTRACE from within the IDL package. Otherwise only
do the setup.

• rdisk: The outer disk radius (must be smaller thanrout). Note that the density distribution does not go do 0
abruptly beyondrdisk. It will go down with a very steep powerlaw:plsig2.

• sig0: If you specifysig0 and notmdisk, then you specify the surface density at r=rdisk.

• mdisk: If you specifymdisk and notsig0, then you specify the disk mass (gas+dust), and thesig0 is, so to
speak, computed frommdisk.

• plsig1: the powerlaw of the surface density inward ofrdisk.

• plsig2: the powerlaw of the surface density outward ofrdisk. Take this -12 or -24 or so, so that the density
drops so fast thatrdisk is indeed effectively the outer disk radius. The reason why Ido not simply put
the density to zero outward ofrdisk is to make sure that in images the disk does not have a really weird
appearance.

• bgdens: you can add to this all a background density if you want to embed the disk into some interstellar
medium.

• ab r0: If you use more than 1 dust species, then the abundance for each additional species has to be specified.
This is done by theab * variables. This is meant to mimic a simple radial mixing scenario of the kind of Gail
et al. Theab r0 parameter sets the point where the powerlaw mixing starts. For more than 2 dust species this
becomes an array of nspec-1 elements.

• ab ab0: The abundance inward ofab r0. For more than 2 dust species this becomes an array of nspec-1
elements.

• ab pl: The powerlaw for the mixing of this species. For more than 2 dust species this becomes an array of
nspec-1 elements.

• ab min: The floor value for the abundance of this species. For more than 2 dust species this becomes an array
of nspec-1 elements.

• hrdisk: The parameterized pressure scale height of the disk atrdisk. Note that one must take care to choose
this not too far from any realistic hydrostatic equilibriumif one does not use the vertical structure iteration
mode.

• hrmin: If the pressure scale height of the disk becomes so small that the disk is squeezed in the single
equatorialΘ grid cell, then evidently the grid resolution inΘ is not good enough. But another way of
preventing this from happening is to prevent the disk from becoming thinner than some value. This is the
hrmin parameter.
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• plh: The parameterized powerlaw of theHp/R of the disk. Here also, this is just a parameterized shape of
the disk, and it may not reflect the real thing, unless the vertical structure iteration mode ofRADMC is used
(which erases theplh andhrdisk information after the first iteration). NOTE: Often people take2/7 because
of the Chiang & Goldreich paper. But that estimate is based ongrey opacities and constant surface density.
So somewhat smaller flaring is usually more realistic.

• rpfrin: A parameterized way of mimicking a puffed-up inner rim which is often seen in the truly vertical
structure models. In this case it is parameterized. This parameter tells how wide the inner rim must be,
ranging fromrin to rin*rpfrin.

• hrpuff: A parameterized way of mimicking a puffed-up inner rim. This gives theHp/R ratio to be set at the
inner rim. NOTE: This is a dangerous mode because one is too easily tempted to put the puffing-up too large.
In reality the puffing-up is very subtle.

• nvstr: The number of iterations for the vertical structure calculation. If 0, then only the parameterized density
distribution is used for the radiative transfer. If≥ 1 then 1 or more iterations are done for the vertical structure.

• vserrt: The error tolerance for the vertical structute iteration to end. NOTE: Due to the photon noise the
error typically remains rather high even after many iterations. Therefore this parameter is often of less use. If
convergence is not formally reached, then the maximum number of iterations isnvstr.

• ivstrt: This specifies which of the dust components (species) will be used to represent the gas temperature for
the vertical structure iteration.

• dostr: This is an array with a 0 or 1 for each dust component. If 0, then this component is not participating in
the vertical structure iteration. If 1, then this dust component IS participating. In this way one can allow disk
components to participate, while keeping envelope components untouched.

3.5 The AGN Torus model package

The AGN model is much simpler than the protoplanetary disk model. Here we model a simple geometry of dust
around a central source of luminosity. The central source ofluminosity is an actively accreting supermassive black
hole that radiates a broad spectrum. We use the spectrum parameterized by Granato & Danese (1994).

NOTE: In this model setup the automatic smoothing of the inner rim is not (yet) included. This is because it
is not usually so necessary because the optical depths here are not so large as in the disk case.

• rdisk: The outer radius of the torus in cm.

• hrdisk: The parameterized H/R height of the torus atrdisk.

• plh: The parameterized powerlaw of theH/R of the torus.

• sig0: If you specifysig0 and notmdisk, then you specify the surface density at r=rdisk.

• mdisk: If you specifymdisk and notsig0, then you specify the torus mass (gas+dust), and thesig0 is, so to
speak, computed frommdisk.

• plsig1: the powerlaw of the surface density inward ofrdisk.

• plsig2: the powerlaw of the surface density outward ofrdisk. Take this -12 or -24 or so, so that the density
drops so fast thatrdisk is indeed effectively the outer torus radius. The reason whyI do not simply put
the density to zero outward ofrdisk is to make sure that in images the torus does not have a really weird
appearance.

THIS PART OF MANUAL NOT YET READY 28.07.07
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Chapter 4

Diagnostic and executional tools in IDL

To make life easier with a complex program such as this one I provide a number of subroutines in thesources/idlroutines
directory. Most are for diagnostic and plotting purposes only. Some are to help making models and/or images.

Here is a list of useful subroutines and the files in which theyreside (written as<filename>/<subroutine>).
To really understand how they work, please simply have a lookinto the respective codes, for it would go too far to
explain all their functionality in this manual.

• analyze.pro/read dustdens()
Usage:a=read dustdens()
This routine reads the dust density distribution from the file dustdens.inp and returns this, together with
other useful information, in a struct. This useful information includes the surface density of the dust (i.e. the
ρ integrated vertically alongΘ), the total mass of the dust, the radial andΘ grid etc.

• analyze.pro/read dusttemp()
Usage:a=read dusttemp()
Similar to the above, but now for the dust temperature in the file dusttemp final.dat.

• analyze.pro/read spectrum()
Usage:s=read spectrum()
This reads the filespectrum.dat and returns a useful struct which can be inserted into theanalyze.pro/plot spectrum()
routine.

• analyze.pro/plot spectrum()
Usage:plot spectrum,s
This plots the SED in various ways. This routine takes the resulting structure fromread spectrum() as input.
See all the various keywords to this routine to obtain precisely the spectrum plot you wish to get. You can set
the axis ranges (usingxrange andyrange IDL keywords), you can switch off the log scale in either axis(by
settingxlin and/orylin), you can plot in Jansky instead ofνFν (standard). You can plot the truly measured flux
at some prescribed distance by setting the keyworddpc to the distance in parsec. If you do not set this then
dpc is per default 1.0. You can also get the spectrum inνLν in units ofL⊙ by setting/lsun. Note that this
luminosity is just the apparent luminosity as seen from thisinclination under the (probably wrong) assumption
that the source is a sphere. There are several other keywords(in addition to all the possible standard keywords
for plotting in IDL), but a deeper understanding is best obtained by experimentation and/or inspection of the
source code ofanalyze.pro/plot spectrum().

• viewimage.pro
Usage:viewimage
A complete IDL GUI viewing program for viewing images at various angles, zoom factors and wavelengths.
Just type.r ../sources/viewimage.pro andviewimage,/au (possibly with,/small added if
viewed on a small screen) and you should get a GUI. This GUI canonly work if RADMC has already done
its work. It callsRAYTRACE to produce the images.

• readimage.pro
Usage:a=readimage()
This is a tool for reading rectangular images that have been made withRAYTRACE but also making them
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(see routinemakeimage()). Of course images can be made from the command line, but sometimes this
makeimage routine can be more convenient.

• readcircimage.pro
Usage:a=readcircimage()
Similar toreadimage.pro but now for the circular images.

• readopac.pro
Usage:o=readopac()
This is a file containing a routinereadopac() which can read an opacity file (default:dustopac 1.inp, but by
specifying e.g.o=readopac(nr=2) you can also read e.g.dustopac 2.inp) and a routineplotopac() which
can plot this opacity in a useful way.

• visibility circ.pro
Usage: Read source code
This is a set of routines to compute visibilities for interferometers. The important feature of this routine
compared to most others in the literature is that, by using circular images (see Section 2.9.4), makes sure that
all scales of the problem are properly resolved. When using rectangular images (and using more standard
methods for computing the visibility) one can easily run into resolution problems. With the circular images
this happens less easily. But even with circular images one can get into troubles: one can get aliasing effects
for very highk values (i.e. for very high spatial frequencies, or in other words, very large baseline of the two
telescopes). To prevent this aliasing thevisibility circ.pro has a new mode (imethod=2) which makes sure
that the wave front is analytically exactly integrated overeach pixel. Therefore the advise is to always use the
new method.
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Chapter 5

Tips and tricks

This chapter outlines a few tips for the user. In time more tips and tricks will be added in this chapter.

5.1 Typical beginners mistakes

1. Where has my modification gone?
Modifying the input files forRADMC andRAYTRACE (as created by theproblem *.pro template tool kit)
by hand is possible and may even yield the desired result. Butbeware that as soon as you make a new call to
problem setup.pro those files will be overwritten! This can sometimes cause confusion. It is therefore the
best idea to make any modifications (unless temporary ones) directly in theproblem *.pro files. Since these
models are anyway only meant as template models, you are invited to modify them to your wishes.

2. ‘I use the disk model by Dullemond & Dominik (2004)’
The template disk models in this package are of course similar to the models of Dullemond & Dominik
(2004) except that we now iterate the vertical structure using RADMC with the diffusion mode for treating
the midplane, and not using the oldRADICAL for that. This may cause some minor differences. Also
beware that the Dullemond & Dominik (2004) models were basedon vertical structure iteration. The template
models have this also as a possibility, but if you switch thisvertical structure iteration off and thus use just the
parameterized density structure (which can be useful at times), then this is not the same as the Dullemond &
Dominik (2004) models.

3. The model shows that... (1)
Using a complex model such as 2-D/3-D radiative transfer models means that one must be careful in jumping
too eagerly to conclusions. The models have many parametersand it is therefore very well possible that the
same results can be obtained by different geometries. In fact, if the only information available is the spectrum
(SED) then it is well known that many vastly different geometries give the same SED. Typically one can test
if an idea works, but it is much more difficult to prove than some other idea doesnot work. Such a proof (if
at all possible) requires the scanning of parameter space, requiring hundreds of models, and can then only
prove that within the setup that you have made the fit does not work. Typically it is also prudent to be able to
explain in physical terms why it is so.

4. The model shows that... (2)
Often people like to use models in a black-box fashion, because we all are short on time and need to publish
our results quickly. Radiative transfer modeling is, unfortunately, not very well suited for quick-and-dirty
methods. We therefore urge you to always follow the check-list tips of Section 5.2, at least during the times
that you still need to get familiar with the code, but it also never hurts to re-read that list even when experi-
enced.

5. Why is my dustdens.inp suddenly different?
If the vertical structure mode ofRADMC is switched on, thenRADMC will overwrite thedustdens.inp file
that it has read in with the new result for the density structure. If you want to restart the model fresh then you
must rerun theproblem setup.pro of the template models (or your own model setup routine).
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6. Accidental old input files that are still around
Certain input files are optional, such asexternal meaning.inp or aperture.inp. If these files are present in
the model directory, then theywill influence the result. If the user wishes to make models without these things
but forgets that they are still there, then this could produce wrong results. Usually the code(s) warn when they
read in such optional input files, but it nevertheless can be acause of problems. If in doubt, start with a fresh
model directory, copy only the (template) IDL problem files (problem .pro) into the new directory, and set
up and run the model.

7. Why does viewimage produce a widget, but does not work?
You might want type.r problem compilecodes.pro if this happens. It could be that theRAYTRACE code
has been recompiled by you for another problem, and is not up to date anymore for the model you want to
view here.

5.2 A check-list for setting up a good model

1. Never trust any feature or result of the code blindly
Often errors happen because some feature or output of the code(s) is simply used without checking. Potential
sources of error in that case are a) there is an obvious bug in that feature and you don’t notice it even though
a simple check could have brought it to light, b) the code is fine but you misinterpret the physical units of
some quantity or the true meaning of that quantity, or the meaning of this code feature altogether.It is always
good practice (for any code that is not your own that you will ever use) to not trust any feature or
any output at face value. Always think of some simple tiny test problems to check if you understand
its meaning. The truth is thatany code featurecan be tested to the degree that you are 100% sure that
you at least understand what it should do. Whether a subtle bug is there, that cannot be checked, but basic
functionality can! Example: if you are not sure about the units or meaning of thespectrum.dat file, then
the easiest thing to do is to make a model without circumstellar material and a) integrate the spectrum over
frequency and compare this to the stellar luminosity it should be and b) overplot the spectrum over what you
know the spectrum should be. If you are unsure what the meaning of ’inclination’ is (from pole to equator,
or equator to pole?) then simply make some spectra of simple disklike configurations and compare them to
what you qualitatively think they should look like at different inclinations. If you are unsure of the meaning
of the aperture input parameter, then take a simple disk model with a precise outer edge, and check if the flux
goes down precisely when you put the aperture smaller than that radius.

2. Check for expected behavior
Though radiative transfer can produce anti-intuitive results, there are always tests that one can do to check if
certain basic behavior works in the way you expect. For instance, try to change the abundance of a certain
species and one should see that the dust features of that dustcomponent in the spectrum should decrease in
strength. Of course, this kind of testing is done usually best when you have already much experience with the
code, so you know what is natural and what is not.

3. New code versions: test against older versions
As the code is being updated and features are added, bugs can inadvertedly enter the code. A careful user will
– if possible – rerun some current models with an older version of the code, just for checking. Of course one
does this only occasionally: for instance, at the beginningwhen using a brandnew version of the code and
perhaps (if one is very careful) with one of the final models before publishing, just to make sure.

4. Check the density distribution by eye
Analyze the density distributions that the template models(or your own modifications of them) produce. With
the IDL subroutines in theanalyze.pro file in thesources/idlroutines/ directory you can read the density
distribution into IDL very easily. Make vertical and radialcuts, or even plot the log(ρ) as a surface plot or
so, just to be sure that you knowwhat preciselyyou are modeling. For models of disks it is also useful to
analyze the vertical density plots (i.e.ρ plotted againsπ/2 − Θ) with the vertical pressure balance in mind.
If no vertical structure is computed (nvstr=0 in radmc.inp) then it is just prudent to check a-posteriori if
your disk is not much thicker than what pressure balance allows. If vertical structure is computed (nvstr>0
in radmc.inp) then it is useful to make a rough check that all went well. Near the midplane the density is
typically a Gaussian:

ρ(R, z) =
Σ(R)

√
2πHp(R)

exp(−z2/2H2
p) (5.1)
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wherez is defined asz ≡ π/2 − Θ andHp =
√

kTR3/µmpGM∗ with µ = 2.3 for molecular hydrogen-
helium mixture andM∗ is the stellar mass,mp = 1.6726×10−24 gram the proton mass,k = 1.3807×10−16

erg/K the Boltzmann constant,G = 6.672× 10−8 the gravitational constant andT the midplane temperature
in K.

5. Luminosity conservation test
Before fully trusting a result, it is useful to make a flux conservation (=luminosity conservation) check. It
takes a bit of CPU time, but is useful before publishing any results:

nice raytrace glob nincl 45

It is very strongly urged that this is done, in particular in the beginning phase of modeling and shortly before
publishing. This test does not say everything, but it is certainly a test that must be passed or something is
seriously wrong.

6. Beware of the proper gridding
The grid must be fine enough in the surface layers of a disk or any optically thick object. Here are a few
potential issues:

• For a disk with inner edge at the grid inner radius this means that the radial grid must be strongly refined
near this inner radius. In the template models this is already taken care of. The lower panel of the
diagnostic diagram that pops up at the end of aproblem setup.pro run shows the cumulative optical
depth at the inner few radial grid cells at the largestΘ-grid-point (i.e. at the equatorial plane). This
curve should crossτ = 1 gradually, i.e. that the cell that crossesτ = 1 isn’t a cell that has optical
depth larger than unity. In other words: the innermost cell of the disk must be optically thin. Often the
optical depth of a disk is so rediculously large at the inner edge that it would require an immense grid
refinement which is both CPU time consuming and may get to the limits of the mathmatic precision of
RAYTRACE. Therefore in the template models there is also something like smoothing of the inner rim.
The philosophy here is that since thisτ = 1 layer is anyway so spatially thin (sometimes of the order
of ∆R/Rin ≃ 10−6), it does not affect the result at all if the density near the inner rim is a bit reduced
to make thisτ = 1 zone a bit geometrically thicker so that it can be resolved bythe grid. This does not
affect the result because in continuum radiative transfer the results only depend onτ (i.e. colum depth)
and not on the densityrho.

• If you implement additional gaps in the disk (e.g. a gap due toa planet) or if the inner edge of your disk
is not located at the inner radius of the grid, then you must take care that the proper grid refinement inR
is made near that alternative inner rim radius. Or one must make that rim so smooth that it even works
with the given grid resolution.

• TheΘ grid must be fine enough in the region where the disk resides, but may be taken courser near the
polar regions (unless of course your model is special near the pole, for instance a conical cavity in an
envelope or so). In the template models theΘ grid has two regions: a polar region and an equatorial
region. You can set the number of grid points in both regions and you can set theΘ value which
separates these two regions. You typically take more grid points in the equatorial region if you have
a disk configuration. A reasonable location of the separation between these two regions is such that
the disk is just about entirely within the equatorial region. In this way you have the best use of your
grid. The decisive criterion that defines the upper part of the disk surface layer is the location where
τ∗,radial(R, Θ) ≃ 0.1, whereτ∗,radial(R, Θ) is the optical depth between the origin of the coordinate
system and the point(R, Θ), at a wavelength typical of the stellar radiation (i.e. somewhere in the V band
for the sun, but dependent on stellar type for other stars). In the template models theτ∗,radial(R, Θ) = 1
surface is shown in the pop-up diagram (see Section 3.2.3). The entire region of the disk below this
surface should be in the refinedΘ grid. Note that once the vertical structure iteration is used (nvstr>0
in the radmc.inp file), the thickness of the disk will vary, so it might be prudent to check a-posteriori
if the Θ gridding is still fine. In that case it might be useful to take the equatorialΘ such that it could
encompass any to-be expected disk thickness. A bit of experimentation is usually the way to do this.
Note that if one models a thin disk (e.g. a disk in which the dust has sedimented to the midplane),
then one must make sure that theΘ resolution is high near the midplane. This usually means that one
chooses the transition between the equatorial- and the polar grid regions to lie at rather largeΘ (i.e. near
the midplane).
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7. Resolution of central regions of rectangular images
When making rectangular images it is extremely important torealize that the unresolved disk regions as
well as the star itself could be undersampled. Unfortunately, contrary to CCDs in real life, the pixels do not
represent the flux in that pixel divided by the pixel size. Instead it is the intensity corresponding to exactly the
center of the pixel. The flux from the central 2×2 pixels in an image therefore does not correspond typically
to the flux from the entire central region of the disk covered by these 2×2 pixels. For the star flux there is
a simple fix: by adding the wordaddstar to theraytrace command on the command line the star flux is
added to the central 2×2 pixels in a bit an artificial way. But better is to take imagesat varying scales and
make one big image from it like a babushka/matrioshka doll.
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Chapter 6

What is new, what has changed

Typically the code development ofRADMC andRAYTRACE are done in such a way that they are always fully
backward compatible with previous versions. They should produce the same results on old problems as they do on
new problems. However, very occasionally a slight improvement may be built in, to make the code more stable or
more reliable. In that case the code is still backward compatible, but may produce slightly different (and hopefully
better!) results for old test problems. Changes of this kindwill be listed in the Section??. Changes that only affect
new features of the code or changes that will only take effectwhen explicitly switched on through a keyword in
theradmc.inp or raytrace.inp will be listed in Section 6.1. I hope that I will be complete, but this cannot be fully
guaranteed.

6.1 Special changes

6.2 Big changes

• The meaning ofnt
In earlier versions of this setup (< Version 3.0) the total number ofΘ grid points wasnt+ntex. Now this is
nt. So the total number ofΘ grid points in the equatorial zone is nownt-ntex instead ofnt.

• Theradmc.inp andraytrace.inp andchopdens.inp.
These input files now have a different format (although the programs are still backward compatible with the
old one). Now they are namelists, so they are much more readable.

THIS PART OF THE MANUAL IS NOT YET READY
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