
Chapter 3
Global Gravitational Instabilities in Discs

with Infall

Abstract. Gravitational instability plays an important role in driving gas accretion in massive protostel-
lar discs. Particularly strong is the global gravitational instability, which arises when the disc mass is
of order 0.1 of the mass of the central star and has a characteristic spatial scale much greater than the
disc’s vertical scale-height. In this paper we use three-dimensional numerical hydrodynamics to study
the development of gravitational instabilities in a disc which is embedded in a dense, gaseous envelope.
We find that global gravitational instabilities are the dominant mode of angular momentum transport
in the disc with infall, in contrast to otherwise identical isolated discs. The accretion torques created by
low-order, global modes of the gravitational instability in a disc subject to infall are larger by a factor
of several than an isolated disc of the same mass. We show that this global gravitational instability is
driven by the strong vertical shear at the interface between the disc and the envelope, and suggest that
this process may be an important means of driving accretion on to young stars.

D. Harsono, R. D. Alexander and Y. Levin
MNRAS, 413, 423 (2011)

3.1 Introduction

ACCRETION discs play a fundamental role in many aspects of astrophysics. Objects as di-
verse as planets, stars and super-massive black holes are all thought to acquire significant

fractions of their mass through disc accretion, and consequently understanding accretion disc
physics is important in understanding the formation of all of these objects. Critical to our un-
derstanding of accretion discs is the process of angular momentum transport, but despite many
years of research on this subject we still do not fully understand the mechanism(s) by which
angular momentum is transported in gaseous discs. In many cases we believe that magneto-
hydrodynamic instabilities, such as the magnetorotational instability (MRI, Balbus & Hawley
1991; Balbus & Hawley 1998) is the dominant transport mechanism. However, some systems,
notably protostellar discs, are insufficiently ionized for the MRI to operate everywhere (e.g.,
Gammie 1996), and it is also not clear whether or not the MRI can drive accretion rates as high
as those which are observed (King, Pringle, & Livio 2007). Consequently, it is still desirable to
investigate other mechanisms for angular momentum transport in discs.

One such mechanism which has received considerable interest in recent years is angular
momentum transport by gravitational instabilities (GIs; see, e.g., Durisen et al. 2007; Lodato
2008, and references therein). Gaseous discs in Keplerian rotation become unstable to self-
gravity when the Toomre (1964)Q parameter is less than some critical value of order unity. The
Toomre parameter is defined as

Q =
csΩ

πGΣ
, (3.1)
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where cs is the sound speed of the gas, Ω is the angular frequency and Σ is the surface density.
Shearing discs generally become unstable to non-axisymmetric perturbations before axisym-
metric ones, so GIs in discs initially manifest themselves as spiral density waves. It was recog-
nised long ago that such spiral density waves can transport angular momentum (Lynden-Bell
& Kalnajs 1972) but detailed study of the non-linear development of GIs in gaseous discs has
only recently become possible. This process has been studied in great detail using numeri-
cal hydrodynamics, and we now have a well-established picture whereby angular momentum
transport by GIs is primarily governed by disc thermodynamics. GIs in isolated thin gas discs
tend to evolve to a self-regulating state, where the energy liberated by accretion is balanced
by local (radiative) cooling (e.g., Gammie 2001; Lodato & Rice 2004; Mejı́a, Durisen, Pickett, &
Cai 2005; Cossins, Lodato, & Clarke 2009), and although gravity is a long-range force, “global”
effects generally do not dominate unless the disc mass is an appreciable fraction (>∼25%) of
the mass of the central object (Laughlin, Korchagin, & Adams 1998; Lodato & Rice 2005). In
this picture the efficiency of angular momentum transport can be parametrized in terms of a
classical Shakura & Sunyaev (1973) α-prescription (Gammie 2001; Lodato & Rice 2004), where

αGI =
4

9

1

γ(γ − 1)tcoolΩ
. (3.2)

Here tcool is the local cooling time-scale and γ is the adiabatic index of the gas. Faster cooling
leads to deeper spiral density waves (i.e., with higher density contrasts), and thus to more
efficient transport of angular momentum. However, if the cooling becomes too rapid the disc is
unable to maintain its self-regulating state, and the GIs instead lead to fragmentation of the disc
(Gammie 2001; Rice et al. 2003). This in turn imposes a maximum efficiency at which angular
momentum can be transported by GIs without leading to disc fragmenting, and numerical
simulations place typically this “fragmentation boundary” at αGI

<∼0.1 (corresponding to β =
tcoolΩ>∼3–5, e.g., Gammie 2001; Rice, Armitage, Bate, & Bonnell 2003; Rice, Lodato, & Armitage
2005). When extended to consider discs with realistic opacities, these results imply a maximum
accretion rate that can be sustained by GIs in a self-regulating state (e.g., Levin 2003; Matzner
& Levin 2005; Levin 2007; Clarke 2009; Rafikov 2009, see also Fig. 3.1). Except at very small
radii this rate is low, ∼ 10−6 M� yr−1, and this raises questions as to how many astrophysical
objects are able to accrete their mass in a plausible time-scale. The star may continue accreting
bound clumps of gas even after the disc fragments (eg., Vorobyov & Basu 2010), but the details
of this process remain uncertain.

To date most numerical studies of GIs have looked at isolated self-gravitating discs, but
in reality it seems likely that most gravitationally unstable discs will still be subject to some
level of infall on to the disc. Indeed, in many cases it is likely that the instantaneous infall rate
on to the disc exceeds the accretion rate through the disc. For example, observed accretion
rates on to protostellar discs are typically an order of magnitude larger than the accretion rates
on to the protostars themselves (e.g., Kenyon & Hartmann 1990; Calvet, Hartmann, & Strom
2000). Similar discrepancies between infall and disc accretion rates have been found in models
of low-mass star formation (e.g., Vorobyov & Basu 2009), and in models of star formation in
black hole accretion discs (e.g., Milosavljević & Loeb 2004). In this paper we present an initial
investigation of this problem, by using three-dimensional numerical hydrodynamics to follow
the evolution of a self-gravitating accretion disc subject to quasi-spherical infall. In Section 3.2
we present our numerical method, and in Section 3.3 we discuss the results of our simulations.
We find that infall on to the disc can substantially enhance the efficiency of angular momentum
transport, through the excitation of low-order, global, spiral density waves. We discuss the
consequences of this result for real astrophysical systems, along with the limitations of our
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Figure 3.1 — Maximum sustainable accretion rate in a critically self-gravitating disc with α = 0.1, computed fol-
lowing the procedure described in Levin (2007) and using the opacities κ(ρ,T ) of Bell & Lin (1994) and Bell et al.
(1997). The sharp jump in the critical accretion rate at an orbital period of ' 300yr is caused by the transition be-
tween the optically thick inner disc and optically thin outer disc (Matzner & Levin 2005). This corresponds to a
radius of ' 40 AU for a 1 M� central star, or ' 100 AU for a 10 M� star. The maximum sustainable accretion rate
at larger radii is small, ∼ 10−6 M� yr−1; in the “local limit”, larger accretion rates lead to fragmentation. In some
cases external irradiation can be the dominant source of heating, imposing a temperature “floor” (denoted by Tmin)
and enhancing the maximum accretion rate. Similar figures can be found in Clarke (2009) and Rafikov (2009).

analysis, in Section 3.4, and summarize our conclusions in Section 3.5.

3.2 Numerical Method

Our simulations are conducted using the publicly-available smoothed-particle hydrodynamic
(SPH) code GADGET-2 (Springel 2005). We have modified the code to include a simple scale-
free cooling prescription, as used in previous simulations (Gammie 2001; Lodato & Rice 2004;
Cossins et al. 2009), which has the following form:

dui

dt
= − ui

tcool
, (3.3)

Here ui is the internal energy of particle i, and the cooling time-scale tcool is proportional to the
local dynamical time-scale thus

tcool =
β

Ω
. (3.4)

Operationally, the cooling time-scale is computed as

tcool = β

√
R3

i
GM?

, (3.5)
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where Ri is the cylindrical radius of the ith particle. The cooling time thus depends only on
radius, and does not vary with z or with the instantaneous orbital speed (which can be per-
turbed significantly in unstable discs). As mentioned in Section 3.1, previous simulations of
self-gravitating discs have found that values of β <∼3–5 result in fragmentation of the disc, while
larger values lead to transport of angular momentum (e.g., Gammie 2001; Rice et al. 2003, 2005).
We do not wish to see disc fragmentation due to rapid cooling alone, and therefore set β = 7.5
throughout. We adopt an adiabatic equation of state, with adiabatic index γ = 5/3.

We make use of a single sink particle as the central gravitating mass, which accretes all gas
particles within its sink radius (as described in Cuadra et al. 2006). This is primarily a numerical
convenience, used in order to prevent the time-step being limited by a small number of SPH
particles at very small radii, and has no physical effect on the simulations. We use the standard
Barnes-Hut formalism to calculate the gravitational force tree, and use Nngb = 64 ± 2 as the
number of SPH neighbours. We allow a variable gravitational softening length, which is equal
to the SPH smoothing length throughout (as demanded by Nelson 2006). The simulations are
scale-free: we use a system of units where the central gravitating mass has an initial mass
M? = 1, the inner edge of the disc is at R = 11, and the time unit is the orbital period at R = 1.
(Thus G = 4π2 in code units.)

3.2.1 Artificial viscosity

We adopt the standard Monaghan-Gingold-Balsara form for the artificial viscosity (Monaghan
& Gingold 1983; Balsara 1995), as described in Equations 11–12 of Springel (2005). This pre-
scription contains both linear and quadratic terms (characterised by the parameters αsph and
βsph respectively, with βsph = 2αsph), and the “Balsara switch” which acts to limit the artificial
viscosity in pure shear flows. We adopt αsph = 0.3 throughout.

As we are primarily interested in how angular momentum is transported in our simula-
tions, great care must be taken to ensure that this transport is not dominated by numerical
effects. It is well-known that SPH artificial viscosity can drive significant angular momentum
transport in disc simulations (e.g., Murray 1996; Lodato & Rice 2004), so we have conducted
tests to ensure that this is not the dominant source of transport in our models. From our stan-
dard disc initial conditions (see next Section) we ran simulations with the self-gravity of the
gas turned off; with this set-up, Reynolds stresses due to numerical effects (primarily the arti-
ficial viscosity) are the only source of angular momentum transport. By expressing this stress
in units of the local pressure (see, e.g., Lodato & Rice 2004) we can parametrize the efficiency
of the numerical transport as a familiar α-parameter thus:

αart =
2

3

δvrδvφ
c2s

, (3.6)

where δv = v− 〈v〉 (i.e., the perturbation from the mean fluid velocity). Except in the regions
near the inner boundary (R<∼10), where the flow is in any case dominated by boundary ef-
fects, we find that the efficiency of artificial transport is typically αart ' 0.001–0.005, and never
exceeds 0.01. Numerical transport of angular momentum is therefore at least an order of mag-
nitude less efficient than the transport we expect from GIs, and we are confident that angular
momentum transport by artificial viscosity does not have a strong influence on our results.

1Note that we use upper-case R to denote cylindrical radius, and lower-case r for spherical radius.
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3.2.2 Initial Conditions

3.2.2.1 Disc

Our discs are set up to use the same initial conditions as Rice et al. (2005). The central grav-
itating mass is surrounded by a gaseous disc with mass Md, which is represented by 250,000
SPH particles. The initial velocity profile is Keplerian, with a first-order (spherical) correction
to account for the effect of the disc mass. The disc extends from R = 1 to R = 100, with initial
surface density and temperature profiles

Σ(R) ∝ R−1 , (3.7)

and

T (R) ∝ R−1/2 . (3.8)

Thus Q ∝ R−3/4 (approximately), and we normalise the disc temperature so that Q = 2 at the
outer disc edge (R = 100). The disc is thus initially stable, and is allowed to cool into insta-
bility. The vertical density distribution is Gaussian, with scale-height H = cs/Ω. Because the
disc’s self-gravity is not negligible this configuration is not strictly in vertical hydrostatic equi-
librium, but the discs adjust to equilibrium on a dynamical time-scale. We performed two such
simulations with different disc masses: q = Md/M? = 0.1 and q = 0.2.

3.2.2.2 Spherical envelope

In order to study the effects of infall on the development of gravitational instabilities in the
disc, we took the simplest possible approach and surrounded the q = 0.1 disc with a uniform
density spherical envelope. The envelope has the same mass as the disc (0.1M?), and thus uses
a further 250,000 SPH particles, and extends from r = 1 to r = 500. The envelope is initially
isothermal, with a temperature equal to that at the disc outer edge. In order to prevent gas
particles spiralling tightly around the vertical axis resulting in unreasonably short time-steps,
the spherical envelope has a cylindrical hole around the z-axis which extends to R = 10. The
envelope was initially given solid body rotation, with the angular frequency fixed to be 0.08
of the Keplerian value at the outer disc radius. This value was chosen so that the bulk of the
envelope mass falls on to the disc away from the inner boundary, where the disc is numerically
well-behaved. With this set-up, most of the initial infall occurs at radii from R ' 20–100. The
measured infall rate is around an order of magnitude greater than the maximum quasi-steady
accretion rate through the disc, as shown in Fig. 3.2. This discrepancy between the infall rate
and the disc accretion rate can be understood as follows. The infall is roughly spherical, and
the cooling time-scale is long compared to the infall (dynamical) time-scale, so the infall rate is
approximately

Ṁinfall ∼
c3s
G
. (3.9)

By contrast, the maximum sustainable accretion rate through the disc (in the local limit) is

Ṁacc,max ∼ αmax
c3s
G
. (3.10)

The sound speeds in these two equations are not necessarily the same: the first is in the enve-
lope, while the second is in the disc midplane. However, in our simulations the radial variation
of cs in the disc is weak (∝ R−1/4) and the cooling is slow, so in practice the two sound speeds
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Figure 3.2 — Measured accretion rate on to the disc in the infall model, and the quasi-steady accretion rate through
the q = 0.1 disc. The quasi-steady rate is evaluated as Ṁ = 3παGIc

2
s Σ/Ω, with αGI = 0.1 (see text) and the sound

speed evaluated at the disc midplane, averaged over the radial regionR= 20–80. The infall rate is determined from
the time derivative of the disc mass.

are very similar. The fragmentation boundary in isolated discs is αmax ' 0.1 (Rice et al. 2005),
and thus it is physically reasonable for Ṁinfall to exceed Ṁacc,max by approximately a factor of
10. This situation, however, naturally leads to an unsustainable bottleneck, as the infalling
mass cannot be accreted in the “normal” manner. We therefore expect this simulation to have
dramatic results: presumably, the disc must either fragment (despite slow cooling), or undergo
some sort of violent relaxation process (with rapid transport of angular momentum).

3.3 Results

We performed three simulations: two isolated disc simulations with q = 0.1 and q = 0.2, and the
“infall” (disc + spherical envelope) simulation. The isolated disc simulations act as reference
models: the q = 0.1 disc is identical to that in the infall model (but with no infall), and the
q = 0.2 disc serves as a reference where all of the envelope mass instead initially resides in
the disc. The two isolated disc models essentially “bracket” the infall model (which has an
initial mass of 0.1 M? and a maximum final mass of 0.2 M?), and allow us to discriminate
between mass and infall effects. We followed each simulation to t = 5000 (code units). This
corresponds to 5 outer disc orbital periods (i.e., slightly less than one outer cooling time-scale),
after which time most of the material in the envelope has already fallen onto the disc2. In the
region where the disc is numerically well-behaved (approximately R = 20–80; away from the
disc boundaries) we are thus able to follow the dynamics for tens of dynamical time-scales,

2Note, however, that a significant fraction of the envelope mass falls to the midplane at R > 100, beyond the
outer edge of the initial disc.
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allowing the instabilities to develop in a physical manner.

3.3.1 Isolated Discs

Many previous studies have studied the transport properties of GI in low-mass (q<∼0.25) discs
(e.g., Lodato & Rice 2004; Boley et al. 2006; Cossins et al. 2009). Our low-mass (q = 0.1) isolated
disc is essentially identical to that used in previous simulations (Rice et al. 2005; Cossins et al.
2009), and its expected behaviour is well understood. The transport of angular momentum
is dominated by high-order (m ∼ 10) spiral density waves, and the dynamics are consistent
with the local approximation. The characteristic length-scale of such spiral density waves is in
the order of disc scale height H . This simulation therefore serves two purposes here: it acts
as a code test, as our calculation should reproduce previous results, and it also provides us
with a reference model with which to compare our “disc with infall” calculation3. Previous
studies have also shown that increasing the disc mass results in the GI generating more power
in the lower-m, global spiral modes (Lodato & Rice 2005). We therefore ran a second reference
simulation, with q = 0.2, so that we are able to distinguish the effects of infall from those that
are simply due to the increasing disc mass.

Our isolated disc simulations essentially repeat these previous studies, and we observe the
same general behaviour described in (for example) Lodato & Rice (2004) and Cossins et al.
(2009). The time evolution of the simulations is shown in Fig. 3.3, which shows the midplane
density evolution from t = 2000 to t = 4000. The isolated discs initially cool and become gravi-
tationally unstable, and then develop long-lived spiral density waves which transport angular
momentum in a quasi-steady manner. Both discs quickly settle into a self-regulating state,
with Q ' 1 at all radii (see Fig. 3.4). The maximum density contrast in the spiral arms reaches
approximately 1.5 orders of magnitude. The drop in surface density at small radii is due to
the artificial pressure gradient introduced by the inner boundary, and is not physical; for this
reason, we neglect the inner region of the discs (R ≤ 20) in our subsequent analysis. Some
additional power in low-order spiral modes is seen in the more massive (q = 0.2) disc, but for
the most part the transport is well-characterised by a local model, where energy released by
accretion is locally balanced by the imposed cooling.

The induced global spiral density waves can be examined by decomposing the disc’s struc-
ture into Fourier modes. In order to compute the Fourier amplitudes, we divided the disc into
concentric annuli and computed the amplitudes of the azimuthal modes for each annulus. We
then integrated these amplitudes radially to give global Fourier amplitudesAm, wherem is the
Fourier mode:

Am =
1

Ndisc

∣∣∣∣∣∣
80∑

R=20

Nann∑
j=1

exp−imφj

∣∣∣∣∣∣ . (3.11)

Here Nann is the number of SPH particles in each annulus, and Ndisc is the total number of
particles in all the annuli (i.e., the disc mass). m is the azimuthal mode number, and φj is
the azimuthal angle (phase) of the jth particle. We use annuli of width ∆R = 1.0, which gives

3For numerical reasons q = 0.1 is also approximately the lowest mass disc that can be well-resolved in these
simulations. The resolution requirements in such simulations essentially amount to always ensuring that the disc
scale-height is resolved into several SPH smoothing lengths (Nelson 2006). In a self-gravitating disc the scale-height
is proportional to the disc mass, so for three-dimensional simulations a factor of two decrease in the disc mass
typically costs more than an order of magnitude in computation time (an increase of ∼ 23 in particle number, plus
a shortening of the time-step). Consequently, long-duration simulations of discs with q� 0.1 remain prohibitively
expensive.
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Figure 3.3 — Time evolution of midplane density in the different simulations. From left-to-right, the three columns
show the time evolution of the q = 0.1, infall and q = 0.2 discs respectively. The isolated disc models evolve into
a self-regulating state, with quasi-stable transport of angular momentum. In the presence of infall, however, the
disc shows dramatic departures from self-regulation, with high-amplitude spiral density waves, low-order spiral
modes, and increased rates of angular momentum transport.

Nann ∼ 2000 particles in each annulus. Because of the strong influence the outer and (especially)
inner boundaries, we limit ourselves to the radial range 20≤R≤ 80; numerical effects are likely
to be significant outside this range.

Figure 3.5 shows the time evolution of the Fourier amplitudes in our simulations. In the
q = 0.1 disc modes with m ≥ 5 dominate the spiral structure, as expected for a relatively thin
disc where the transport is primarily local (Lodato & Rice 2004; Cossins et al. 2009). The q = 0.2
disc shows more power in the lower-m (m = 2–4) modes, similar to the behaviour seen in
previous simulations (e.g., Lodato & Rice 2005). We are thus satisfied that our isolated disc
models are consistent with previous results, and that our numerical method is satisfactory.

3.3.2 Disc with infall

The central column in Fig. 3.3 shows the evolution of the disc with infall. The behaviour is
very different from that of either of the isolated discs. The first notable difference is the for-
mation of high-amplitude spiral density waves at t ' 2000, and the onset and growth of the
GI occurs much faster than in the isolated discs. In the presence of infall the disc shows much
higher density contrasts (factors of ' 2–5) than the isolated discs, and well-ordered low-m spi-
ral structures. It is also worth noting that the disc does not fragment, despite being subject to
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Figure 3.4 — Azimuthally-averaged Toome Q parameter for the three different simulations, plotted at t = 3500.
Note the strong divergence from Q ' 1 in the infall simulation.
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Figure 3.5 — Left: Time evolution of the lowest-order Fourier modes, Am, in the three simulations: q = 0.1 (dotted),
q = 0.2 (dashed) and disc + infall (solid). Blue, red and black lines denotem= 1,2 & 3 respectively. The q = 0.1 disc
shows significantly less power in these low-order modes than the other models. Right: Time evolution of higher-
order Fourier modes, Am, in the three simulations: q = 0.1 (dotted), q = 0.2 (dashed) and disc + infall (solid). Here
blue, red and black denote m = 4,5 & 8 respectively. For these higher-order modes, the differences between the
different models are much less pronounced than in figure on the left.

high rates of infall; instead it is able to transport angular momentum fast enough to prevent
any “pile-up” of the infalling material.

In order to make a detailed comparison between the infall model and the isolated discs,
it is first necessary to define the disc in the infall model (excluding envelope gas). We define
the disc as all gas within 3 scale-heights of the midplane, with the scale-height computed as
H = cs/Ω at the midplane. Again we restrict our analysis to the region 20 ≤ R ≤ 80, to prevent
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Figure 3.6 — Azimuthally-averaged radial profiles of surface density Σ (top) and sound speed cs (bottom), plotted
for all three simulations at t= 3500. In both cases the disc with infall lies between the q = 0.1 and q = 0.2 disc (except
near the outer disc edge at R = 100), suggesting that disc mass and temperature are not the primary differences
between these simulations.
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Figure 3.7 — Time evolution of the mass-weighted cooling time for the three different models, averaged over the
radial range R = 60–80, plotted in arbitrary units (on a logarithmic scale). The infall model shows no significant
differences with respect to the q = 0.2 disc, and differs only by a factor of ' 2 from the q = 0.1 disc, allowing us to
rule out variations in the cooling time-scale as a factor in the enhanced GIs seen.

boundary effects from becoming dominant. The total mass in the disc at R ≤ 100 at the end
of the simulation is (t = 5000) is 0.14 M?, an increase of 0.04 M? from the initial disc mass.
The disc is also more radially extended than the isolated discs, with significant mass at R >
100 (and consequently higher temperatures at R>∼90). Fig.3.6 shows the azimuthally-averaged
surface density and temperature (sound speed) profiles for all three models. Within the region
20 ≤ R ≤ 80 the surface density of the infall model lies between those of the two isolated discs.
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Figure 3.8 — Azimuthally-averaged R − z projections of the orbital frequency Ω = vφ/R for the three different
simulations, plotted at t = 3500. For clarity we have limited the plots to the radial range R = 50–90, and for the
disc-only models plotted only the region within within ±3H of the midplane. In each case the values of Ω are
normalised to the maximum value (that at R = 50). The vertical shear caused by the sub-Keplerian infall is clearly
visible in the middle panel.
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Figure 3.9 — Vertical profile of the orbital frequency Ω(z), azimuthally-averaged and normalised to the Keplerian
orbital frequency Ω0. The dotted and dashed lines denote the isolated discs (q = 0.1 and 0.2, respectively) while the
solid line denotes the disc + infall. The upper layers of the disc in the infall model are strongly sub-Keplerian, due
to the interaction with the (sub-Keplerian) infall.

At smaller radii the temperature of the infall model is similar to that of the q = 0.2 disc, while
at larger radii it lies between those of the q = 0.1 and q = 0.2 discs. The fact that the surface
density in the infall model is lower than in the q = 0.2 disc rules out the ' 40% increase in
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disc mass as being responsible for the changes seen in the infall model. In addition, the mass-
weighted cooling time-scales in the three models are very similar (see Fig.3.7), so we can rule
out variations in the cooling time-scale as being responsible for difference between the disc-
only simulations and the case with infall. Instead, we find that the presence of an infalling
envelope qualitatively changes the behaviour of the disc, and excites deep low-order spiral
density waves.

As seen in Fig.3.4, the infall model never reaches the self-regulated, Q' 1 state seen in sim-
ulations of isolated discs. Instead, we see strong departures from Q ' 1, which are primarily
due to the substantial variations in the disc’s surface density seen in Fig.3.6. The Fourier analy-
sis shows that the low-m (m= 1–4) modes dominate the spiral structures, and despite the lower
surface density the power spectrum of the disc with infall shows no clear differences from the
q = 0.2 disc. This suggests that infall can drive global transport of angular momentum even in
relatively thin discs.

We can gain some insight into the behaviour of the disc subject to infall by looking at the
vertical rotation profile. Fig.3.8 shows a 2-D, azimuthally-averaged projection of the orbital
frequency in the discs (at t = 3500), and Fig. 3.9 shows the orbital frequency as a function of
vertical position in the discs Ω(z), at R = 75 (effectively a vertical cross section of Fig.3.8). In
all three cases the midplane rotation is very close to Keplerian. As expected the isolated discs
show nearly constant Ω(z); the slight fall-off at high z is primarily due to numerical effects,
as the isolated disc models are not well-resolved for |z|>∼2.5H (where there is little mass, and
therefore few SPH particles). However, the model with infall shows strongly sub-Keplerian
rotation away from the disc midplane: more than one scale-height away from the midplane,
the rotation is sub-Keplerian by 5–10%. This occurs because infalling gas from the envelope is
sub-Keplerian where it lands on the disc. This vertical velocity shear has the potential to excite
deeper spiral density waves than occur in the isolated discs, and drives the low-order spiral
waves (which have a sub-Keplerian pattern speed).

At this point it is instructive to consider the time-scales involved in both the GI and the
vertical shearing. The unstable modes of a gravitationally unstable disc grow on the dynam-
ical time-scale, so if the vertical velocity shear is to play a significant role in modifying the
behaviour of the GI it must occur on a similar (or shorter) time-scale. We see from Fig.3.9
that in the presence of infall the disc surface layer is sub-Keplerian by approximately 10%.
The velocity difference across this shear is therefore ' 0.1ΩR, and the shearing time-scale
tsh ∼ H/(0.1ΩR) ∼ (H/0.1R)tdyn. In our disc H/R ∼ 0.1, so the shearing time-scale is approx-
imately equal to the dynamical time-scale. This argument suggests that shearing does occur
on a sufficiently short time-scale to influence the growth of GIs significantly, and supports our
argument that the vertical velocity shear is responsible for the strong global modes seen in our
disc in the presence of infall. We note, however, that we cannot rule out the presence of other
destabilising mechanisms also being present.

As mentioned above, we did not see any evidence for fragmentation with β = 7.5 even
when the infall rate substantially exceeds the fragmentation threshold set by the local limit.
It appears, therefore, that when subject to infall the disc instead undergoes global transport
of angular momentum, with consequent enhancement of accretion. Unfortunately, although
our simulations run for many dynamical periods their total duration is still relatively short
compared to the (“viscous”) time-scale for angular momentum transport. This makes deter-
mining the rate of angular momentum transport somewhat difficult, as at any given time in
the simulations transients can be dominant. Moreover, any transport by low-m spiral modes
is intrinsically non-local (Balbus & Papaloizou 1999), so looking purely at the local stresses
(as in Lodato & Rice 2004) is not appropriate. Instead, we computed the differential gravita-
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Figure 3.10 — Azimuthally-averaged profile of the gravitational torque in the discs, plotted at t = 3500, with line-
styles as in Fig.3.9. The horizontal dotted line denotes dG/dR = 0; negative torques correspond to the removal of
angular momentum (accretion). Unlike in the isolated discs, long-range gravitational torques dominate the angular
momentum transport in the disc with infall.

tional torque dG/dR as a function of radius, as this should highlight any non-local angular
momentum transport. The torque profiles from the three models are shown in Fig. 3.10. In the
q = 0.1 disc the gravitational torques are small everywhere, with transport dominated by local
stresses. Substantially larger gravitational torques are seen in the q = 0.2 disc, but the peaks in
dG/dR correspond to individual spiral density waves and “cancel” over relatively small radial
scales, and when averaged over many orbits. Moreover, the torques are negligible at large radii
(R>∼70) in both isolated discs. By contrast we see strong torques throughout the disc subject to
infall, primarily negative at small radii (R<∼60) and positive at larger radii, which persist over
several orbital periods. These torques are therefore transporting angular momentum outward
through the disc on length-scales comparable to the disc radius. If the torques on the disc were
solely due to the interaction with the envelope we would expect to see dG/dR < 0 at all radii, as
the infall is sub-Keplerian. Instead we see both negative and positive torques at the midplane
in different regions of the disc, which strongly suggests that global gravitational torques are
the primary mechanism driving its evolution.

3.4 Discussion

3.4.1 Limitations

We have presented calculations on the effect of infall on to a gravitationally unstable accretion
disc, but our approach is highly idealised. This approach allows us to study the key physical
processes in detail, but imposes some limitations when we apply our results to real astrophys-
ical situations.

Our first major simplification is in the initial conditions of our infall model. In order to en-
sure that we understand the various numerical effects in our calculations, we chose to let a ro-
tating cloud fall on to an already-present disc, rather than letting the disc form self-consistently.
The advantages of our set-up are two-fold. First, we can control the accretion rate on to the disc,
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and ensure that the ratio between infall rate and theoretical accretion rate is approximately
constant over the duration of our simulation (as seen in Fig.3.2). Second, we can compare our
results directly to our isolated disc models, where the physics is well-understood, and thus
isolate the effects of infall from the myriad of other potential effects. However, the trade-off is
that the simulations are highly idealised, and not always realistic. In particular, we note that
quasi-spherical infall is only expected in the early stages of protostellar collapse, when the disc
and envelope masses are likely to be much larger than those considered here (e.g., Boley 2009;
Vorobyov & Basu 2009). Our results have relevance to almost any case of infall on to a gravi-
tationally unstable disc (as any infall is, by definition, sub-Keplerian), but we note that care be
taken when applying our results to real systems.

Our second major simplification lies in our treatment of the disc thermodynamics. Our
scale-free cooling law has previously been studied in great detail (Gammie 2001; Rice et al. 2003;
Lodato & Rice 2004; Cossins et al. 2009), but it is recognised to be a poor approximation to real
systems. The effect of our scale-free cooling law can be seen in Fig. 3.6: the disc temperature
increases slightly with radius. Real discs almost invariably have cooling time-scales that are
shorter (relative to the local dynamical time-scale) at large radii than at small radii, and are
thus not scale-free (e.g., Rafikov 2007; Clarke 2009). A more realistic treatment would require
an opacity-based cooling prescription (e.g., Boley et al. 2006; Stamatellos et al. 2007), but this
would introduce several new free parameters to the problem. Again, our simplifications are
not entirely physical in this regard, but do allow us to study the important processes in detail.
Essentially we have chosen to perform a well-controlled numerical experiment instead of a
physically realistic simulation, and our results should be interpreted with this in mind.

3.4.2 Comparison to Previous Work

The majority of previous work in this area has studied the transport properties of isolated grav-
itationally unstable discs (Laughlin & Bodenheimer 1994; Lodato & Rice 2004; Rice et al. 2005;
Boley et al. 2006; Cossins et al. 2009). Our reference simulations exhibit the same behaviour as
in these previous studies, as discussed in Section 3.3.1. However, the influence of infall on the
evolution of GIs has not yet been explored in great detail. Krumholz et al. (2007) studied angu-
lar momentum transport in a self-consistently-formed disc subject to a very high rate of infall.
They found very high accretion rates, equivalent to ∼30% of the total disc mass per dynam-
ical time-scale, with effective α-values that exceeded unity. Most of the power was found in
the m = 1 mode, and Krumholz et al. (2007) attributed this very rapid accretion to the SLING
instability (Adams et al. 1989; Shu et al. 1990). We note, however, that the discs formed in
these simulations were much more massive than those considered here, with q ∼ 0.5–1. It has
long been known that low-order spiral modes can drive rapid accretion in massive discs (e.g.,
Laughlin et al. 1998), and in this regards the results of Krumholz et al. (2007) are not directly
comparable to those of our simulations.

In addition, a number of recent studies have used one- and two-dimensional simulations to
study the formation and evolution of protostellar discs (e.g., Hueso & Guillot 2005; Vorobyov
& Basu 2007, 2009; Vorobyov 2009; Visser & Dullemond 2010; Zhu et al. 2009, 2010). These
simulations are less computationally intensive than 3-D simulations, and are therefore able
to follow the evolution of the system for much longer time-scales. They also make use of
more physically realistic prescriptions for both infall and thermodynamics, forming discs self-
consistently from collapsing clouds and incorporating realistic models for radiative heating
and cooling. These simulations generally predict that most of the GIs’ power is found in low-
order spiral modes, due to both infall and the relatively high masses of the discs which form.
In addition, many of these simulations have been seen to exhibit transient accretion outbursts,
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triggered in some cases by the accretion of bound clumps of gas (e.g., Vorobyov & Basu 2006,
2007) and in others by interaction between gravitational instability in the outer disc and layered
accretion in the inner disc (e.g., Zhu et al. 2010). Unfortunately it is not straightforward to
draw direct comparisons between these results and ours, due to the complex effects of both the
cooling and infall prescriptions used. We note, however, that the vertical shear effect observed
in our simulations is intrinsically a three-dimensional phenomenon, and consequently cannot
be observed in 2-D, vertically-integrated simulations. Our results point towards an additional
mechanism for driving transient transport of angular momentum, and lend further weight to
the well-established idea that low-order spiral modes drive accretion in protostellar discs.

By contrast, to date only a handful of similar studies have been conducted in three di-
mensions. Most relevant here is the work of Boley (2009) and Kratter et al. (2010), who used
three-dimensional hydrodynamics to study the formation and evolution of protostellar discs.
Boley (2009) used grid-based hydrodynamics with a similar set-up to that considered here:
prescribed infall on to an already-present disc. In some cases the discs fragmented, while in
others angular momentum transport was dominated by low-order spiral density waves. We
note, however, that the discs in the simulations of Boley (2009) are significantly more massive
than ours (q ∼ 0.3–0.5), increasing the importance of global modes. Given the additional dif-
ferences between the simulations (most notably in the adopted cooling models) it is difficult
to make direct comparisons, but in general our result – that infall on to the disc enhances the
importance of global modes – seems consistent with those of Boley (2009).

By contrast, in the models of Kratter et al. (2010) discs form and evolve in a self-consistent
manner, and they were able to explore a larger range in parameter space than we have achieved
here. They found, as we do, that low-order spiral modes dominate the transport of angular mo-
mentum, although this again may in part be driven by the fact that their discs are somewhat
more massive than ours. However, Kratter et al. (2010) found that infall rates of >∼3 times the
disc accretion rate typically led to fragmentation, while we find that no fragmentation despite
an infall rate nearly an order of magnitude higher than the “local limit” for disc accretion. Un-
fortunately it is not straightforward to compare these apparently contradictory results directly,
due to the different prescriptions used for disc thermodynamics. Kratter et al. (2010) adopted
an isothermal equation of state, and defined their models with two parameters (representing
the accretion rate and angular momentum of the infalling gas). By contrast, we adopt an adia-
batic equation of state with a parametrized cooling function, with the spherical envelope given
a uniform initial temperature. The prescribed cooling time-scale is much longer than the dy-
namical time-scale (by a factor β = 7.5), so the infalling gas is effectively adiabatic. This results
in slight heating of the infalling gas, and a corresponding increase in temperature in the disc.
The increase in the disc temperature is not dramatic (see Fig.3.6), but given that the rate of
spherical accretion scales as c3s even this small difference could account for the factor of∼ 3 dis-
crepancy between our results and those of Kratter et al. (2010). Additional simulations, using
different initial cloud temperatures and cooling laws, are required to investigate this issue in
more detail, but such simulations are beyond the scope of this paper. It is not clear whether the
isothermal or adiabatic approximation is more relevant to real discs; most probably both have
some validity in different regions of the disc. We thus regard our results as complementary to
those of Kratter et al. (2010), and encourage further work in this area.

3.4.3 Applications to Observed Systems

Our results have obvious applications to the physics of star formation, in particular the forma-
tion of low-mass (∼ 1 M�) stars. Observations suggest that essentially all low-mass stars form
with discs (e.g., Haisch et al. 2001), and disc accretion is thought to play a major role in the
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build-up of stellar mass. Moreover, in the earliest, embedded phases gravitational instability is
likely to be the dominant mechanism for angular momentum transport: such discs are insuffi-
ciently ionized to sustain transport via magnetohydrodyamic turbulence (Matsumoto & Tajima
1995; Gammie 1996), but both observations and theory suggest that they are indeed massive
enough to be gravitationally unstable (e.g., Greaves et al. 2008; Andrews et al. 2009; Hueso &
Guillot 2005; Vorobyov & Basu 2009). Our results argue that accretion in such discs is likely
to be highly transient, and in general terms are consistent with a picture where the bulk of the
stellar mass is accreted during a small number of intense outbursts (e.g., Armitage et al. 2001;
Lodato & Rice 2005; Vorobyov & Basu 2006, 2010; Zhu et al. 2010).

The consequences of our results for massive star formation are less clear. Although discs
are expected to form around massive, forming stars, observational evidence of their existence
is somewhat thin (e.g., Cesaroni et al. 2006, 2007). It is clear, however, that if such discs do
indeed exist they are likely to be gravitationally unstable, but in this scenario the maximum
stable disc accretion rate (<∼10−5 M� yr−1; Levin 2003; Cesaroni et al. 2006; Rafikov 2007) is
much too low for these massive stars to accumulate their mass in a plausible time-scale. It
has previously been suggested that the formation of massive stars is likely to be dominated
by transient episodes and highly variable accretion (Cesaroni et al. 2007). Our results suggest
that the global gravitational torques driven by infall on to the disc result in exactly this type of
behaviour, and may be an important accretion mechanism in massive star formation.

In addition, we suggest that our results may have important consequences for the forma-
tion of massive stars close to super-massive black holes. A large population of massive O-
and Wolf-Rayet-type stars is now known to exist within ∼ 0.1 pc of the super-massive black
hole (SMBH) at the centre of the Galaxy (Genzel et al. 2003; Ghez et al. 2005), and a popular
scenario for the formation of these stars is “in situ” formation via the fragmentation of an ac-
cretion disc around the SMBH (Levin & Beloborodov 2003; Nayakshin 2006). This picture has a
number of attractive features, but an open question has always been how the stars attain their
final masses. Both analytic theory and numerical simulations suggest that the initial fragment
masses are small, ∼ 1 M�, and that the bulk of the stellar mass is subsequently accreted from
the SMBH disc (e.g., Alexander et al. 2008; Bonnell & Rice 2008). However, the estimated infall
rates through the Hill sphere on to these protostellar discs are extremely high, ∼ 10−4 M�yr−1

(Milosavljević & Loeb 2004), and in the local limit these discs are expected to fragment, prevent-
ing rapid growth of the protostars and limiting the resulting stellar masses (see also Matzner
& Levin 2005; Kratter & Matzner 2006). Our results suggest that discs subject to high infall
rates may instead be able to transport angular momentum much more rapidly, through global
modes of the GI, and this mechanism provides a potential solution to the “accretion problem”
of massive star formation at the centre of the Galaxy.

3.5 Summary

We have presented numerical simulations of gravitationally unstable accretion discs subject to
infall from a surrounding envelope. Our numerical set-up is highly idealised, but this allows
us to study the angular momentum transport properties of the system in detail. Our disc has
a relatively slow cooling rate (tcoolΩ = 7.5), and we find that the disc does not fragment even
though the infall rate on to the disc is an order of magnitude greater than the “quasi-steady”
accretion rate in the self-regulating self-gravitating disc. Instead, despite relatively low disc
masses (Md/M? ' 0.14), we see evidence that angular momentum is transported rapidly by
torques from low-order, global, spiral density waves, which are excited by the interaction be-
tween the disc and the infalling envelope. This drives accretion at a rate significantly higher
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than is possible in a local model, and we suggest that this mechanism may play an important
role in a number of different astrophysical systems.
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