Combining Weak and Strong Lensing in Galaxy Cluster Mass Reconstruction

Julian Merten

Institut für Theoretische Astrophysik
Zentrum für Astronomie
Universität Heidelberg

May 26th, 2009

with:
Matthias Bartelmann (ZAH/ITA Heidelberg)
Massimo Meneghetti (INAF Bologna)
Gravitational lensing

- Slight image distortions of background galaxies.
- Galaxies also carry intrinsic ellipticity.
 ⇒ Weak lensing has to be treated statistically.

- Strong distortions of background galaxies to giant arcs or even rings.
- Takes place only near the core.
 ⇒ No reconstruction on full scale possible.
In our reconstruction method we try to combine the advantages of both lensing regimes into a joint method:

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ.
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Input data are:
 - Ellipticity catalogue
 - Arc positions
 - Flexion catalogue (given a reliable measurement, work in progress)
 - Multiple image positions (Bradač et al. 2005-08)
- χ^2-function is the minimised with respect to the potential on every grid position.
In our reconstruction method we try to combine the advantages of both lensing regimes into a joint method:

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ.
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

Input data are:

- Ellipticity catalogue
- Arc positions
- Flexion catalogue (given a reliable measurement, work in progress)
- Multiple image positions (Bradač et al. 2005-08)

χ^2-function is the minimised with respect to the potential on every grid position.
In our reconstruction method we try to combine the advantages of both lensing regimes into a joint method:

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ.
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi_w^2(\psi) + \chi_s^2(\psi)$$

- Input data are:
 1. Ellipticity catalogue
 2. Arc positions
 3. Flexion catalogue (given a reliable measurement, work in progress)
 4. Multiple image positions (Bradač et al. 2005-08)
- χ^2-function is the minimised with respect to the potential on every grid position.
In our reconstruction method we try to combine the advantages of both lensing regimes into a joint method:

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ.
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Input data are:
 1. Ellipticity catalogue
 2. Arc positions
 3. Flexion catalogue (given a reliable measurement, work in progress)
 4. Multiple image positions (Bradač et al. 2005-08)
- χ^2-function is the minimised with respect to the potential on every grid position.
In our reconstruction method we try to combine the advantages of both lensing regimes into a joint method:

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ.
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi_w^2(\psi) + \chi_s^2(\psi)$$

- Input data are:
 1. Ellipticity catalogue
 2. Arc positions
 3. Flexion catalogue (given a reliable measurement, work in progress)
 4. Multiple image positions (Bradač et al. 2005-08)

- χ^2-function is the minimised with respect to the potential on every grid position.
The Reconstruction Method
(JM et al. 2009)

In our reconstruction method we try to combine the advantages of both lensing regimes into a joint method:

- Fully non-parametric, adaptive grid method (no initial model necessary).
- Reconstruction quantity is the lensing potential ψ.
- Maximum-likelihood method. We are searching for that lensing potential which is most likely to have caused the observations:

$$\chi^2(\psi) = \chi^2_w(\psi) + \chi^2_s(\psi)$$

- Input data are:
 1. Ellipticity catalogue
 2. Arc positions
 3. Flexion catalogue (given a reliable measurement, work in progress)
 4. Multiple image positions (Bradač et al. 2005-08)
- χ^2-function is the minimised with respect to the potential on every grid position.
(Meneghetti et al. 2008)

- Use shapelet decomposition of real galaxies (~ 10000 from HUDF (b,v,i,z) and ~ 3000 from GOODS (z)).
- Use simulated clusters or analytic profiles to add lensing.
- Add sky background, instrumental noises and the PSF.
- Produce a mock observation for different instruments.
(Meneghetti et al. 2008)

- Use shapelet decomposition of real galaxies (∼ 10000 from HUDF (b,v,i,z) and ∼ 3000 from GOODS (z)).
- Use simulated clusters or analytic profiles to add lensing.
- Add sky background, instrumental noises and the PSF.
- Produce a mock observation for different instruments.
Use shapelet decomposition of real galaxies (\(\sim 10000 \) from HUDF (b,v,i,z) and \(\sim 3000 \) from GOODS (z)).

Add sky background, instrumental noises and the PSF.

Use simulated clusters or analytic profiles to add lensing.

Produce a mock observation for different instruments.
Use shapelet decomposition of real galaxies (~ 10000 from HUDF (b,v,i,z) and ~ 3000 from GOODS (z)).

Use simulated clusters or analytic profiles to add lensing.

Add sky background, instrumental noises and the PSF.

Produce a mock observation for different instruments.
Use shapelet decomposition of real galaxies (~ 10000 from HUDF (b,v,i,z) and ~ 3000 from GOODS (z)).

Use simulated clusters or analytic profiles to add lensing.

Add sky background, instrumental noises and the PSF.

Produce a mock observation for different instruments.
A Realistic Test: g72
(Meneghetti, Rasia, JM et al. 2009)