High cluster concentrations
- A comparison using SUBARU and MareNostrum -

Institut für Theoretische Astrophysik
Zentrum für Astronomie
Universität Heidelberg
INAF - Osservatorio Astronomico di Bologna

January 26th, 2010

with: M. Meneghetti, M. Bartelmann, T. Broadhurst, M. Oguri
Strong lensing clusters

- Extremely powerful cosmological probes
 - Inner DM profile
 - Additional information to weak lensing
 - Arc statistics
- Several aspects can alter the lensing properties
 - Substructure, asymmetries and projection effects
 - cD galaxy properties
 - Gastrophysics
 - Dynamical state
- One has to be careful while interpreting individual results
The MareNostrum Universe (Gottlöber et al. 2006)

- Large cosmological hydro-simulation using GADGET2
- Gas is included, but only with adiabatic physics
- Box size: $500 \, h^{-1} \text{Mpc}$
- DM: 1024^3 particles with a mass of $8.24 \times 10^9 M_\odot h^{-1}$
- Gas: 1024^3 particles with a mass of $1.45 \times 10^9 M_\odot h^{-1}$
- WMAP-1 cosmology:
 - $\Omega_{m,0} = 0.3$
 - $\Omega_{\lambda,0} = 0.7$
 - $\Omega_{b,0} = 0.045$
 - $\sigma_8 = 0.9$
 - $n = 1$

Strong lenses
Selecting clusters (Meneghetti, Fedeli, Pace, Gottlöber, Yepes in prep.)

The MareNostrum Universe contains:

- ~ 957000 halos with $M > 5 \times 10^{11} h^{-1} M_\odot$
- ~ 4000 halos with $M > 5 \times 10^{14} h^{-1} M_\odot$

Two classes of strong lenses:

- Producing critical lines
- Producing giant arcs with $L/W > 7.5$

For these objects the lensing cross section σ is measured

- 49366 critical lenses
- 6375 clusters producing giant arcs
- 11347 projections with $\sigma > 0$

Figure: inner: 50%, outer: 90%
Concentrations

Strong lenses
Orientation and triaxiality

3D shape

orientation

2D shape \(<R_{2500}\)

2D shape \(<R_{200}\)
Concentrations revisited

The analysis in Meneghetti et al. in prep. exceeds the scope of this talk. Also X-Ray luminosities and the dynamical state of the strong-lensing sample are discussed.

Strong lenses
Concentrations revisited

The analysis in Meneghetti et al. in prep. exceeds the scope of this talk. Also X-Ray luminosities and the dynamical state of the strong-lensing sample are discussed.
Concentrations revisited

The analysis in Meneghetti et al. in prep. exceeds the scope of this talk. Also X-Ray luminosities and the dynamical state of the strong-lensing sample are discussed.
Focusing on reality: Reconstruction tools (JM et al. 2009)

SaWLens in a nutshell

- Fully nonparametric joint reconstruction method
- Can make use of:
 - Ellipticity
 - Flexion
 - Multiple-image system
 - Critical-curve estimators
- Fully applicable to wide fields (tested with the COSMOS catalogues)
- MPI implemented
- Extensively tested

For pure strong lensing analysis we usually use *Lenstool* (Kneib et al. 1993, Jullo et al. 2007).
SaWLens performance (Meneghetti, Rasia, JM et al. 2009)
Next generation codes: AMR (Bradač et al. 2009, JM et al. 2009, JM et al. in prep.)
Next generation codes: GPU/CUDA (JM et al. in prep.)

- Problem: CPU time.
- In our case:

\[F_{lk} = a_i b_j C_{ij} D_{il} E_{jk} \]
\[G_l = a_i b_j C_{ij} E_{il} \]
\[l, k, i, j \sim O(\text{grid_dim}^2) \]

- A lot of simple arithmetic operations with no need for double precision.
 ⇒ GPU implementation
Next generation codes: GPU/CUDA (JM et al. in prep.)

- Problem: CPU time.
- In our case:

\[
F_{lk} = a_i b_j C_{ij} D_{il} E_{jk}
\]
\[
G_l = a_i b_j C_{ij} E_{il}
\]

\[l, k, i, j \sim O(\text{grid}_\text{dim}^2)\]

- A lot of simple arithmetic operations with no need for double precision.
- \(\Rightarrow\) GPU implementation

NVIDIA Tesla C1060

- 240 streaming cores
- 4 GB DDR3 GPU memory
- 933 GFLOPS peak performance
- CUDA interface (C-based)
- Host-code allows for MPI
Next generation codes: GPU/CUDA (JM et al. in prep.)

- Problem: CPU time.
- In our case:

\[
F_{lk} = a_i b_j C_{ij} D_{il} E_{jk} \\
G_l = a_i b_j C_{ij} E_{il}
\]

\(l, k, i, j \sim O(\text{grid}_\text{dim}^2)\)

- A lot of simple arithmetic operations with no need for double precision.

⇒ GPU implementation

- Gains a lot of momentum in the astrophysics community, suggestions welcome!

NVIDIA Tesla C1060

- 240 streaming cores
- 4 GB DDR3 GPU memory
- 933 GFLOPS peak performance
- CUDA interface (C-based)
- Host-code allows for MPI
Expected performance (on the back of an envelope)

- Right now: 3hrs for a highly resolved reconstruction on a 24 core, InfiniBand, Linux cluster.
- ~ 60 GFLOPS on a state-of-the-art quadcore CPU $\Rightarrow 360$ GFLOPS on the cluster.
- Because of process communication \Rightarrow effectively ~ 300 GFLOPS.
- $933/300 \sim 3 \Rightarrow 1$hr runtime on a desktop machine.
- But, GPU+MPI possible \Rightarrow minute scale already in range if you need it.
Expected performance (on the back of an envelope)

- Right now: 3hrs for a highly resolved reconstruction on a 24 core, InfiniBand, Linux cluster.
- ~ 60 GFLOPS on a state-of-the-art quadcore CPU $\Rightarrow 360$ GFLOPS on the cluster.
- Because of process communication \Rightarrow effectively ~ 300 GFLOPS.
- $933/300 \sim 3 \Rightarrow 1$hr runtime on a desktop machine.
- But, GPU+MPI possible \Rightarrow minute scale already in range if you need it.
Expected performance (on the back of an envelope)

- Right now: 3hrs for a highly resolved reconstruction on a 24 core, InfiniBand, Linux cluster.
- ~ 60 GFLOPS on a state-of-the-art quadcore CPU $\Rightarrow 360$ GFLOPS on the cluster.
- Because of process communication \Rightarrow effectively ~ 300 GFLOPS.
- $933/300 \sim 3 \Rightarrow 1$hr runtime on a desktop machine.
- But, GPU+MPI possible \Rightarrow minute scale already in range if you need it.
Expected performance (on the back of an envelope)

- Right now: 3hrs for a highly resolved reconstruction on a 24 core, InfiniBand, Linux cluster.
- ~ 60 GFLOPS on a state-of-the-art quadcore CPU $\Rightarrow 360$ GFLOPS on the cluster.
- Because of process communication \Rightarrow effectively ~ 300 GFLOPS.
- $933/300 \sim 3 \Rightarrow 1$hr runtime on a desktop machine.
- But, GPU+MPI possible \Rightarrow minute scale already in range if you need it.
Expected performance (on the back of an envelope)

- Right now: 3hrs for a highly resolved reconstruction on a 24 core, InfiniBand, Linux cluster.
- ~ 60 GFLOPS on a state-of-the-art quadcore CPU $\Rightarrow 360$ GFLOPS on the cluster.
- Because of process communication \Rightarrow effectively ~ 300 GFLOPS.
- $933/300 \sim 3 \Rightarrow 1$hr runtime on a desktop machine.
- But, GPU+MPI possible \Rightarrow minute scale already in range if you need it.
Expected performance (on the back of an envelope)

- Right now: 3hrs for a highly resolved reconstruction on a 24 core, InfiniBand, Linux cluster.
- ~ 60 GFLOPS on a state-of-the-art quadcore CPU $\Rightarrow 360$ GFLOPS on the cluster.
- Because of process communication \Rightarrow effectively ~ 300 GFLOPS.
- $933/300 \sim 3 \Rightarrow 1$hr runtime on a desktop machine.
- But, GPU+MPI possible \Rightarrow minute scale already in range if you need it.
Expected performance (on the back of an envelope)

- Right now: 3hrs for a highly resolved reconstruction on a 24 core, InfiniBand, Linux cluster.
- \(\sim 60 \text{ GFLOPS} \) on a state-of-the-art quadcore CPU \(\Rightarrow 360 \text{ GFLOPS} \) on the cluster.
- Because of process communication \(\Rightarrow \) effectively \(\sim 300 \text{ GFLOPS} \).
- \(933/300 \sim 3 \Rightarrow 1\text{hr runtime} \) on a desktop machine.
- But, GPU+MPI possible \(\Rightarrow \) minute scale already in range if you need it.
Possible targets (JM et al. in prep)

- SUBARU sample Broadhurst et al. 2008
- SUBARU sample Oguri et al. 2008
- SUBARU cluster CL0024+1654 Umetsu et al. 2009
- LBT cluster A611 Donnarumma et al. in prep.
Possible targets (JM et al. in prep)

- **SUBARU sample Broadhurst et al. 2008**

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Filters</th>
<th>Einstein Radius (arcsec)</th>
<th>$d \log N(<m)$</th>
<th>M_{vir} ($10^{13} M_\odot h^{-1}$)</th>
<th>σ_{vir}</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1689</td>
<td>0.183</td>
<td>Vi</td>
<td>52 ($z_s = 3.05$)</td>
<td>0.704</td>
<td>0.150</td>
<td>1.59$^{+0.24}_{-0.23}$</td>
<td>15.69$^{+1.36}_{-2.39}$</td>
</tr>
<tr>
<td>A1703</td>
<td>0.258</td>
<td>g$r'i'$</td>
<td>33 ($z_s = 2.8$)</td>
<td>0.722</td>
<td>0.062</td>
<td>1.36$^{+0.24}_{-0.23}$</td>
<td>9.92$^{+2.03}_{-2.39}$</td>
</tr>
<tr>
<td>A370</td>
<td>0.375</td>
<td>$BRc'z'$</td>
<td>43 ($z_s = 1.5$)</td>
<td>0.606</td>
<td>0.088</td>
<td>2.93$^{+0.26}_{-0.42}$</td>
<td>7.75$^{+0.42}_{-0.52}$</td>
</tr>
<tr>
<td>RX J1347−11</td>
<td>0.451</td>
<td>V$r'i$</td>
<td>35 ($z_s = 1.8$)</td>
<td>0.553</td>
<td>0.066</td>
<td>1.47$^{+0.23}_{-0.23}$</td>
<td>10.42$^{+0.33}_{-2.13}$</td>
</tr>
</tbody>
</table>

- **SUBARU sample Oguri et al. 2008**
- **SUBARU cluster CL0024+1654 Umetsu et al. 2009**
- **LBT cluster A611 Donnarumma et al. in prep.**

Strong lenses
Possible targets (JM et al. in prep)

- SUBARU sample Broadhurst et al. 2008

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Filters</th>
<th>Einstein Radius (arcsec)</th>
<th>d log N(< m)</th>
<th>M_{χ} (10^{13} M_\odot h_70^{-1})</th>
<th>recoil</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1689</td>
<td>0.183</td>
<td>V, i'</td>
<td>52 (z_r = 3.05)</td>
<td>0.704</td>
<td>0.150</td>
<td>1.59_{-0.22}^{+0.34}</td>
<td>15.69_{-2.29}^{+3.96}</td>
</tr>
<tr>
<td>A703</td>
<td>0.258</td>
<td>g, r, i'</td>
<td>33 (z_r = 2.8)</td>
<td>0.722</td>
<td>0.062</td>
<td>1.30_{-0.20}^{+0.24}</td>
<td>9.72_{-1.13}^{+1.38}</td>
</tr>
<tr>
<td>A370</td>
<td>0.375</td>
<td>B, R_c, z'</td>
<td>43 (z_r = 1.5)</td>
<td>0.606</td>
<td>0.088</td>
<td>2.92_{-0.42}^{+0.48}</td>
<td>7.75_{-0.42}^{+0.47}</td>
</tr>
<tr>
<td>RX J1347–11</td>
<td>0.451</td>
<td>V, R_c, z'</td>
<td>35 (z_r = 1.8)</td>
<td>0.553</td>
<td>0.066</td>
<td>1.47_{-0.23}^{+0.28}</td>
<td>10.42_{-2.33}^{+3.39}</td>
</tr>
</tbody>
</table>

- SUBARU sample Oguri et al. 2008
- SUBARU cluster CL0024+1654 Umetsu et al. 2009
- LBT cluster A611 Donnarumma et al. in prep.

Strong lenses
Possible targets (JM et al. in prep)

- **SUBARU sample Broadhurst et al. 2008**

 TABLE 1

 The Subaru Distortion Measurements Combined with the Einstein-Radius Constraint

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Filters</th>
<th>Einstein Radius (arcsec)</th>
<th>$<D_e/D>_{dm}$</th>
<th>M_{vir} $(10^{15} M_\odot h^{-1})$</th>
<th>c</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1689</td>
<td>0.183</td>
<td>V_i</td>
<td>52 ($z_s = 3.05$)</td>
<td>0.704</td>
<td>0.150</td>
<td>1.59$^{+0.23}_{-0.22}$</td>
<td>15.69$^{+7.18}_{-7.18}$</td>
</tr>
<tr>
<td>A1703</td>
<td>0.258</td>
<td>$g'r'$</td>
<td>33 ($z_s = 2.8$)</td>
<td>0.722</td>
<td>0.062</td>
<td>1.30$^{+0.34}_{-0.30}$</td>
<td>5.72$^{+1.43}_{-1.43}$</td>
</tr>
<tr>
<td>A370</td>
<td>0.375</td>
<td>B_{T}/j'</td>
<td>43 ($z_s = 1.5$)</td>
<td>0.606</td>
<td>0.088</td>
<td>2.93$^{+0.32}_{-0.32}$</td>
<td>7.75$^{+0.12}_{-0.12}$</td>
</tr>
<tr>
<td>RX J1347−11</td>
<td>0.451</td>
<td>$V_r^{R_c}z'$</td>
<td>35 ($z_s = 1.8$)</td>
<td>0.553</td>
<td>0.066</td>
<td>1.47$^{+0.28}_{-0.33}$</td>
<td>10.42$^{+2.23}_{-2.23}$</td>
</tr>
</tbody>
</table>

- **SUBARU sample Oguri et al. 2008**

- **SUBARU cluster CL0024+1654 Umetsu et al. 2009**

- **LBT cluster A611 Donnarumma et al. in prep.**

Strong lenses
Possible targets (JM et al. in prep)

- **SUBARU sample Broadhurst et al. 2008**

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Filters</th>
<th>Einstein Radius (arcsec)</th>
<th>$\langle D_e/D_o \rangle$</th>
<th>$d \log N(<m)$</th>
<th>M_{vir} ($10^{15} M_\odot , h_{70}^{-1}$)</th>
<th>v_{vir}</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1689</td>
<td>0.183</td>
<td>V_i</td>
<td>52 ($z_i = 3.05$)</td>
<td>0.704</td>
<td>0.150</td>
<td>1.59$^{+0.34}_{-0.22}$</td>
<td>15.1$^{+0.34}_{-0.22}$</td>
<td>4.94/9</td>
</tr>
<tr>
<td>A1703</td>
<td>0.258</td>
<td>$g^* r^i$</td>
<td>33 ($z_i = 2.8$)</td>
<td>0.722</td>
<td>0.062</td>
<td>1.30$^{+0.34}_{-0.20}$</td>
<td>9.92$^{+0.34}_{-0.20}$</td>
<td>2.69/5</td>
</tr>
<tr>
<td>A370</td>
<td>0.375</td>
<td>$B_{R_c} R_c$</td>
<td>43 ($z_i = 1.5$)</td>
<td>0.606</td>
<td>0.088</td>
<td>2.93$^{+0.32}_{-0.26}$</td>
<td>5.54/8</td>
<td></td>
</tr>
<tr>
<td>RX J1347−11</td>
<td>0.451</td>
<td>$V_{R_c} R_c$</td>
<td>35 ($z_i = 1.8$)</td>
<td>0.553</td>
<td>0.066</td>
<td>1.47$^{+0.32}_{-0.26}$</td>
<td>6.25/7</td>
<td></td>
</tr>
</tbody>
</table>

- **SUBARU sample Oguri et al. 2008**

- **SUBARU cluster CL0024+1654 Umetsu et al. 2009**

- **LBT cluster A611 Donnarumma et al. in prep.**

Table 1

The Subaru Distortion Measurements Combined with the Einstein-Radius Constraint

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Filters</th>
<th>Einstein Radius (arcsec)</th>
<th>$\langle D_e/D_o \rangle$</th>
<th>$d \log N(<m)$</th>
<th>M_{vir} ($10^{15} M_\odot , h_{70}^{-1}$)</th>
<th>v_{vir}</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1689</td>
<td>0.183</td>
<td>V_i</td>
<td>52 ($z_i = 3.05$)</td>
<td>0.704</td>
<td>0.150</td>
<td>1.59$^{+0.34}_{-0.22}$</td>
<td>15.1$^{+0.34}_{-0.22}$</td>
<td>4.94/9</td>
</tr>
<tr>
<td>A1703</td>
<td>0.258</td>
<td>$g^* r^i$</td>
<td>33 ($z_i = 2.8$)</td>
<td>0.722</td>
<td>0.062</td>
<td>1.30$^{+0.34}_{-0.20}$</td>
<td>9.92$^{+0.34}_{-0.20}$</td>
<td>2.69/5</td>
</tr>
<tr>
<td>A370</td>
<td>0.375</td>
<td>$B_{R_c} R_c$</td>
<td>43 ($z_i = 1.5$)</td>
<td>0.606</td>
<td>0.088</td>
<td>2.93$^{+0.32}_{-0.26}$</td>
<td>5.54/8</td>
<td></td>
</tr>
<tr>
<td>RX J1347−11</td>
<td>0.451</td>
<td>$V_{R_c} R_c$</td>
<td>35 ($z_i = 1.8$)</td>
<td>0.553</td>
<td>0.066</td>
<td>1.47$^{+0.32}_{-0.26}$</td>
<td>6.25/7</td>
<td></td>
</tr>
</tbody>
</table>

Strong lenses
Possible targets (JM et al. in prep)

- **SUBARU sample Broadhurst et al. 2008**

 TABLE 1
 The Subaru Distortion Measurements Combined with the Einstein-Radius Constraint

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Filters</th>
<th>Einstein Radius (arcsec)</th>
<th>$\langle D_e/D_i \rangle$</th>
<th>$d \log N(< m)$</th>
<th>M_{vir} (1015 M_\odot h_{70}^{-1})</th>
<th>c_{vir}</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1689</td>
<td>0.183</td>
<td>V_g</td>
<td>52 ($z_s = 3.05$)</td>
<td>0.704</td>
<td>0.150</td>
<td>1.59$^{+0.24}_{-0.22}$</td>
<td>15.69$^{+0.24}_{-0.22}$</td>
<td>4.94/9</td>
</tr>
<tr>
<td>A1703</td>
<td>0.258</td>
<td>gri</td>
<td>33 ($z_s = 2.8$)</td>
<td>0.722</td>
<td>0.106</td>
<td>1.30$^{+0.24}_{-0.20}$</td>
<td>9.02$^{+0.24}_{-0.20}$</td>
<td>2.69/5</td>
</tr>
<tr>
<td>A370</td>
<td>0.375</td>
<td>BR_c</td>
<td>43 ($z_s = 1.5$)</td>
<td>0.606</td>
<td>0.088</td>
<td>2.93$^{+0.26}_{-0.32}$</td>
<td>7.75$^{+0.12}_{-0.09}$</td>
<td>5.54/8</td>
</tr>
<tr>
<td>RX J1347−11</td>
<td>0.451</td>
<td>VR_c</td>
<td>35 ($z_s = 1.8$)</td>
<td>0.553</td>
<td>0.066</td>
<td>1.47$^{+0.28}_{-0.33}$</td>
<td>10.42$^{+0.23}_{-0.21}$</td>
<td>6.25/7</td>
</tr>
</tbody>
</table>

- **SUBARU sample Oguri et al. 2008**

<table>
<thead>
<tr>
<th>Name</th>
<th>Weak lensing</th>
<th>Strong and Weak lensing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_{vir}[1015M_\odot]</td>
<td>c_{vir}</td>
</tr>
<tr>
<td>A1703</td>
<td>1.59$^{+0.24}_{-0.22}$</td>
<td>6.5$^{+0.12}_{-0.07}$</td>
</tr>
<tr>
<td>SDSS1446</td>
<td>0.83$^{+0.24}_{-0.20}$</td>
<td>6.6$^{+0.12}_{-0.07}$</td>
</tr>
<tr>
<td>SDSS1531</td>
<td>0.56$^{+0.26}_{-0.24}$</td>
<td>11.5$^{+0.23}_{-0.22}$</td>
</tr>
<tr>
<td>SDSS2111</td>
<td>0.92$^{+0.41}_{-0.32}$</td>
<td>14.1$^{+0.32}_{-0.24}$</td>
</tr>
</tbody>
</table>

- **SUBARU cluster CL0024+1654 Umetsu et al. 2009**
- **LBT cluster A611 Donnarumma et al. in prep.**
Possible targets *(JM et al. in prep)*

- **SUBARU sample Broadhurst et al. 2008**

 ![Table 1: The Subaru Distortion Measurements Combined with the Einstein-Radius Constraint](image)

- **SUBARU sample Oguri et al. 2008**

- **SUBARU cluster CL0024+1654 Umetsu et al. 2009**

- **LBT cluster A611 Donnarumma et al. in prep.**

Strong lenses
Possible targets (JM et al. in prep)

- SUBARU sample Broadhurst et al. 2008

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Filters</th>
<th>Einstein Radius (arcsec)</th>
<th>$d log (N< m)$</th>
<th>M_{vir} $(10^{15} M_\odot h_{70}^{-1})$</th>
<th>c_{vir}</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1689</td>
<td>0.183</td>
<td>V_R</td>
<td>52 ($z_s = 3.05$)</td>
<td>0.704</td>
<td>0.150</td>
<td>1.59$^{+0.24}_{-0.25}$</td>
<td>15.69$^{+1.08}_{-1.34}$</td>
</tr>
<tr>
<td>A1703</td>
<td>0.258</td>
<td>$g'r'i'$</td>
<td>33 ($z_s = 2.8$)</td>
<td>0.722</td>
<td>0.062</td>
<td>1.30$^{+0.04}_{-0.05}$</td>
<td>9.97$^{+0.83}_{-1.63}$</td>
</tr>
<tr>
<td>A370</td>
<td>0.375</td>
<td>$B'R_c$</td>
<td>43 ($z_s = 1.5$)</td>
<td>0.606</td>
<td>0.088</td>
<td>2.93$^{+0.08}_{-0.12}$</td>
<td>7.75$^{+0.61}_{-0.62}$</td>
</tr>
<tr>
<td>RX J1347−11</td>
<td>0.451</td>
<td>$V_R R_c$</td>
<td>35 ($z_s = 1.8$)</td>
<td>0.553</td>
<td>0.066</td>
<td>1.47$^{+0.28}_{-0.33}$</td>
<td>10.42$^{+1.23}_{-2.13}$</td>
</tr>
</tbody>
</table>

- SUBARU sample Oguri et al. 2008

<table>
<thead>
<tr>
<th>Name</th>
<th>Weak lensing</th>
<th>Strong and Weak lensing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_{vir} $(10^{15} M_\odot)$</td>
<td>c_{vir}</td>
</tr>
<tr>
<td>A1703</td>
<td>1.95$^{+0.55}_{-0.50}$</td>
<td>3.3$^{+1.4}_{-1.1}$</td>
</tr>
<tr>
<td>SDSS1446</td>
<td>0.83$^{+0.29}_{-0.25}$</td>
<td>9.1$^{+1.4}_{-1.1}$</td>
</tr>
<tr>
<td>SDSS1531</td>
<td>0.56$^{+0.26}_{-0.26}$</td>
<td>11.5$^{+2.1}_{-2.4}$</td>
</tr>
<tr>
<td>SDSS2111</td>
<td>0.92$^{+0.41}_{-0.32}$</td>
<td>14.1$^{+2.9}_{-2.5}$</td>
</tr>
</tbody>
</table>

- SUBARU cluster CL0024+1654 Umetsu et al. 2009
- LBT cluster A611 Donnarumma et al. in prep.
CL0024+1654 (JM et al. in prep.)
CL0024+1654 (JM et al. in prep.)

Strong lenses
Conclusions

1. Strong lensing clusters are important cosmological probes, but we have to understand better their properties.
2. The MareNostrum Universe delivers a large sample of strong lenses.
3. High cluster concentrations are not surprising for effective gravitational lenses.
4. Second generation nonparametric codes allow for a reliable comparison between observations and simulations.
5. GPU implementations will radically reduce the runtime of these methods.