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Der kleinskalige Dynamo:
Verstärkung von Magnetfeldern im Frühen Universum

In dieser Arbeit untersuchen wir den kleinskaligen Dynamo - einen Mechanis-
mus, durch den schwache magnetische Saatfelder rasch verstärkt werden können,
indem turbulente kinetische Energie in magnetische Energie umgewandelt wird.
Der kleinskalige Dynamo wird in einer Theorie von Kazantsev beschrieben, die
empfindlich von der Art der Turbulenz abhängt. Wir schlagen ein Model für
verschiedene Turbulenztypen vor und benutzen die Kazantsev-Theorie, um Eigen-
schaften des kleinskaligen Dynamos zu bestimmen. Mit unseremModel finden wir,
dass die kritische magnetische Reynoldszahl, die für das Wirken des kleinskaligen
Dynamos überschritten werden muss, zwischen 110 und 2700 liegt. Weiterhin
leiten wir her, dass die Wachstumrate des kleinskaligen Magnetfeldes stark von
der hydrodynamischen Reynoldszahl Re abhängt. Im Grenzfall unendlich großer
magnetischer Prandtlzahlen skaliert die Wachstumrate Γ zwischen Γ ∝ Re1/2

und Γ ∝ Re1/3 für die unterschiedlichen Turbulenztypen. Für niedrigere mag-
netische Prandtlzahlen nimmt die Wachstumsrate des kleinskaligen Dynamos ab.
Wir wenden unser Model auf Magnetfelder während der Entstehung der ersten
Sterne an. Dafür schätzen wir mit Hilfe eines Ein-Zonen-Chemiecodes die typ-
ischen Eigenschaften des primordialen Gases ab. Das resultierende kleinskalige
Magnetfeld erreicht nahezu instantan die Sättigung, weshalb wir erwarten, dass
es während der primordialen Sternentstehung dynamisch wichtig ist.

The Small-Scale Dynamo:
Amplification of Magnetic Fields in the Early Universe

In this work we explore the small-scale dynamo - a mechanism which may rapidly
amplify a week magnetic seed field by converting turbulent kinetic energy into
magnetic energy. The small-scale dynamo is described by a theory of Kazantsev,
which depends crucially on the nature of turbulence. We propose a model for
different types of turbulence and use the Kazantsev theory to determine properties
of the small-scale dynamo. With our model we find that the critical magnetic
Reynolds number, which needs to be exceeded for small-scale dynamo action, lies
between 110 and 2700. Furthermore, we show that the growth rate of the small-
scale magnetic field depends strongly on the hydrodynamical Reynolds number
Re. In the limit of infinite magnetic Prandtl numbers the growth rate Γ scales
between Γ ∝ Re1/2 and Γ ∝ Re1/3 for different types of turbulence. For decreasing
magnetic Prandtl number, the growth rate of the small-scale dynamo decreases.
We apply our model to the magnetic fields in the formation of the first stars.
For this we estimate the typical quantities of primordial gas by using a one-zone
chemistry code. The resulting small-scale magnetic field reaches its saturation
value almost instantly and thus we expect it to be dynamically important in
primordial star formation.
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1 Introduction

1.1 The Magnetised Universe

Magnetic fields are observed in the whole Universe [1]. Our own planet, the Earth,
has, like other planets, a magnetic dipole field. The magnetic field strength on
the surface is about 0.5 G [1] (1 G ≈ 10−4 T). This field holds as a protective
shield for the life on Earth, as it keeps a large fraction of the dangerous cosmic
radiation from arriving at the surface. The main part of this radiation comes from
the Sun, which itself provides a magnetic field of up to 4000 G on the surface [2].
The field of the Sun goes through a cycle of twenty-two years. At its maximum,
many sun spots, which are cooler spots on the surface caused by magnetic fluxes,
can be observed. These fluxes can carry plasma and then appear at the rid of the
Sun as enormous prominences. There also exist observations of magnetic fields of
other stars. Magnetic fields lead to interesting effects especially at the beginning and
the end of the life of a star. There is observational and theoretical evidence that
protostars, i.e. stars were just born, often have jets induced by strong magnetic
fields. These jets are outflows of material, which determine the “final” mass of the
star. Stars with a mass between 1.46 M� and 3 M� end their lives as neutron
stars. These objects are known to have extremely strong magnetic fields of about
1012 G. A special class of neutron stars, the magnetars, reach even field strength
up to 1015 G [3]. On larger scales, observations show coherent magnetic fields of
galaxies. The magnetic field of our Milky Way has a strength of roughly 6 µG in
the solar neighborhood approximating equipartition of magnetic fields, cosmic rays
and thermal energy. In the center of active galaxies strong magnetic fields can lead
to the creation of galactical jets. For example in the active galaxy M 87 accretion
onto the central supermassive black hole leads to a huge jet with a length of roughly
2 kpc [4] (1 pc ≈ 3.1× 1018 cm). These jets strongly influence the host galaxy and
the intergalactic medium.
Our imaginary journey through the Universe has shown that magnetic fields play
important roles in many astrophysical objects (see also Table 1.1). In this work we
try to explain a possible origin of these magnetic fields.
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Object Magnetic Field Strength

Earth (surface) [1] ≈ 0.5 G

Jupiter (surface) [1] ≈ 10 G

Sun (strong sun spots) [2] ≈ 4× 103 G

white dwarf (if strongly magnetised) [1] ≈ 107 G

neutron star [3] ≈ 1012 G

magnetar [3] ≈ 1015 G

Milky Way (solar neighborhood) [5] ≈ 6× 10−6 G

Milky Way (at 3 kpc radius) [5] ≈ 10× 10−6 G

Table 1.1: Compilation of magnetic field strength in different astrophysical objects.

1.2 The Problem of the First Magnetic Fields

The origin of magnetic fields has been a mystery for a long time. Today there
are different theories suggesting how weak magnetic seed fields have been gener-
ated. Most of theses generation mechanisms take place in the very early Universe,
i.e. during inflation or certain phase transitions. But there are also astrophysical
mechanisms, which can take place in the present-day Universe. For example the
Biermann-battery produces magnetic fields in a plasma with a temperature gradi-
ent.
The remaining problem is that theses generation mechanisms only produce very
weak magnetic field strengths. They are many orders of magnitude below the ob-
served field strengths in stars and other astrophysical objects described above.
This contradiction between observations and theory is the main motivation for this
work. We suggest that very week magnetic seed fields have been amplified expo-
nentially by the small-scales dynamo. This is a process, by that kinetic energy from
turbulence is converted into magnetic energy.
With an initially weak seed field this amplification process could have already worked
in the early Universe during the formation of the first stars, because primordial halos
were very turbulent [6]. Dynamically important magnetic fields would have influ-
enced the primordial star formation strongly.
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1.3 Outline of this Work

In order to describe the small-scale dynamo, we present the basics of ideal hydrody-
namics in Chapter 2. We summarise the assumptions of this theory and derive the
main equations, the continuity equation, the Navier-Stokes equation and the energy
equation.
Chapter 3 is on turbulence. Although there is currently no theory that describes
turbulence in all details, there are some models handling this topic. We introduce
the concept of the hydrodynamical Reynolds number and the statistical theory de-
veloped by Taylor. In this chapter we also present our model for the correlation
function of the turbulent velocity field, which depends on the different types of tur-
bulence.
The next chapter, Chapter 4, is on electrodynamics. The basic equations for de-
scribing the electromagnetic field are the Maxwell equations. We present the Lorentz
force, the force acting on charged particles in an electromagnetic field, and the en-
ergy conservation equation of this field. Furthermore, we show the equation that
connects the electromagnetic field and matter, Ohms law.
In Chapter 5 hydrodynamics and electrodynamics are combined to the theory of
magnetohydrodynamics (MHD). The equations of MHD are the same as for hydro-
dynamics with some additional terms and one additional equation, the induction
equation. We also summarise the most important effects of non-ideal MHD.
Chapter 6 treats magnetic fields in the Universe. In the first section we present
a selection of important observations of magnetic fields, in the present-day as well
as in the high-redshifted Universe. In the second section we introduce theories de-
scribing the fundamental origin of these fields. There are many different generation
scenarios postulated in the literature, but they typically result in very low magnetic
field strengths. The observed field strengths cannot be explained by these theories
alone. Thus, there need to be processes that amplify magnetic fields, which we list
up and describe phenomenologically in the last section of this chapter.
Magnetohydrodynamical dynamos are one possibility to amplify the weak magnetic
seed fields. The theory of dynamos is presented in Chapter 7. We give derivations
for the main equations of the two different types of dynamos: the large-scale dy-
namo and the small-scale dynamo. The small-scale dynamo, on which we focus in
this work, is described by the so-called Kazantsev theory.
In Chapter 8 we use our model for different types of turbulence to calculate properties
of the small-scale dynamo. We use the quantum-mechanical WKB-approximation
to solve the evolution equation of the small-scale dynamo, the Kazantsev equation.
The validity of the WKB-approximation is tested in detail in the first section. In
the next section we calculate the critical magnetic Reynolds number that needs to
be exceeded for small-scale dynamo action. Furthermore, we determine the growth
rate of the small-scale magnetic field. In the limit of large magnetic Prandtl num-
bers, which is the ratio of the magnetic to the hydrodynamic Reynolds number, an
analytical solution can be found. We also give numerical results for large, but finite
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magnetic Prandtl numbers.
We apply our results of the small-scale dynamo in Chapter 9 to primordial star for-
mation. For that we estimate typical quantities in primordial gas using a one-zone
chemical code. This way we can calculate the magnetic Reynolds number and check
if it is larger than the critical value. We determine the growth rate of the small-scale
magnetic field in primordial gas. Finally, we calculate the magnetic field strength
as a function of the density.
We close our work with a summary of the main results and implications for primor-
dial star formation.
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2 Basic Formalism of Hydrodynamics

2.1 Why do we use Hydrodynamics in
Astrophysics?

It is not obvious that we can think of fluids in astrophysical problems. In our
imagination a fluid is something dense like water, which has a particle density of
1022 cm−3 under standard conditions. In comparison to that, for example, the
interstellar medium (ISM) has a density of only a few particles per cm−3. Why can
this be treated as a fluid?
The answer to this problem lies in the definition of a fluid. A fluid is an object build
of many particle, which collide in a high frequency. In these collisions “information”,
i.e. momentum and energy, is exchanged and the fluid acts locally as a unit.
Now on a scale of a few cm, which is the typical extension a glass of water, the mean
free path1 of a water molecule is about 10−10 cm. Compared to the extension of
the glass this is very short. The ratio between the length scale of the system “water
glass” and the mean free path is extremely high. We find such a high ratio also in
the ISM. Here the typical lengthscale is 1 pc = 1018 cm and the mean free path of
the particles is 1013 cm. This implies that the particles interact highly frequently
and we can treat the ISM as a fluid.

2.2 Describing Fluids

Hydrodynamics is the theory of fluid motions. To describe the dynamics of gases and
fluids there are, in principle, two different ways: the Eulerian and the Lagrangian
point of view.
In the Eulerian point of view, the time differentiation of a given quantity Q is taken
with respect to a fixed point. We will denote Eulerian time derivations from now
on with ∂/∂t.
In the Lagrangian point of view, on the other hand, one takes the time differentiation
associated with a certain fluid element, which is moving with the fluid velocity v
(A bold letter represents a vector: v ≡ ~v.). The Lagrangian time differentiation,

1The mean free path is the typical way a particle travels between two collisions.
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denoted by d/dt, is defined as

dQ
dt

= lim
δt→0

Q(x + vδt, t+ δt)−Q(x, t)
δt

≈ lim
δt→0

Q(x, t) + δt∂Q
∂t

+ δtv · ∇Q−Q(x, t)
δt

=
∂Q

∂t
+ v · ∇Q. (2.1)

In the second line we applied a first order Taylor expansion. Equation (2.1) connects
the Lagrangian and the Eulerian point of view.

2.3 Derivation of the Equations of Hydrodynamics

Three differential equations build the mathematical framework of hydrodynamics.
The continuity equation describes the time evolution of the density, the Navier-
Stokes equation the evolution of the momentum and the energy equation governs
the time evolution of the energy.
In this chapter we want to illustrate the derivation of these equations by using the
Boltzmann equation and explain their meanings. For this purpose we mainly follow
the book of Choudhuri [7].

2.3.1 The Boltzmann Equation

For a complete description of the state of a fluid, one has to predict the position and
the velocity of every single fluid particle at every time. For a typical molecular cloud
with about 1063 particles this is impossible. Thus, a statistical ansatz is necessary.
If our fluid consists of N particles we have to consider a (6+1)-dimensional coordi-
nate space (3 coordinates for the position, 3 for the velocity vector and one for the
time). In this space we can introduce a distribution function

f(x,u, t) ≡ lim
δV→0

δN

δV
. (2.2)

The volume in this limit needs to be small compared to the extension of the points
in space, but still large enough to contain many particles.
If we now consider a fluid, in which the particles do not interact with each other, the
time derivation of the distribution function in our (6+1)-dimensional space along
any trajectory needs to vanish,

Df
Dt

= 0

⇔ ∂f

∂t
+ ẋ · ∇f + u̇ · ∇uf = 0, (2.3)

18
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where

∇u ≡
∂

∂ux
ex +

∂

∂uy
ey +

∂

∂uz
ez. (2.4)

Equation (2.3) tells us how the distribution function evolves in time. As we call a
fluid without particle interaction collisionless, equation (2.3) is called the collisionless
Boltzmann equation.
Now let us go one step further and consider the more realistic case of a fluid, in
which the particles interact with each other. Due to collisions particles can change
their velocities. This means that a particle, which has a velocity u before a collision,
can change its velocity leading to a decrease of the distribution function f(x,u, t).
On the other hand, a particle with an initially different velocity can be changed u
due to a collision, which increases f(x,u, t). So the general form of the evolution of
f(x,u, t) is

Df
Dt

dx3du3 = Cin − Cout, (2.5)

where Cin and Cout describe the amount of particles changing their velocity to and
from u.
This two quantities can be determined for example for a dilute gas, in which only
binary collisions take place. Choudhuri [7] finds for this special case

Cin = dx3du3

∫
dũ3

∫
dΩσ(u, ũ|u′, ũ′) |u− ũ| f(x,u′, t)f(x, ũ′, t), (2.6)

Cout = dx3du3

∫
dũ3

∫
dΩσ(u, ũ|u′, ũ′) |u− ũ| f(x,u, t)f(x, ũ, t). (2.7)

In the above expressions u and ũ are the velocities of the two particles before the
collision, u′ and ũ′ afterwards, Ω is the scattering angle and σ(u, ũ|u′, ũ) the cross
section for the collision. The full Boltzmann equation follows as

∂f

∂t
+ ẋ · ∇f + u̇ · ∇uf =

∫
dũ3

∫
dΩσ(Ω) |u− ũ| ·

(f(x,u′, t)f(x, ũ′, t)− f(x,u, t)f(x, ũ, t)) . (2.8)

This equation tells us how the distribution function of the gas changes in time.

2.3.2 The Moment Equations

Now let us consider a quantity χ that is conserved in a binary collision, i.e.

χ+ χ̃ = χ′ + χ̃′, (2.9)

where the ′ denotes a later time. If we multiply the Boltzmann equation with this
quantity χ and integrate over d3u we have∫

d3uχ
Df
Dt

=

∫
d3u

∫
d3ũ

∫
dΩσ(Ω)|u− ũ| ·

(f(x,u′, t)f(x, ũ′, t)− f(x,u, t)f(x, ũ, t))χ. (2.10)
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One can show that the right hand side equals zero [7]. Thus, we are left with∫
d3uχ

(
∂f

∂t
+ ui

∂f

∂xi
+
Fi

m

∂f

∂ui

)
= 0, (2.11)

where we have used equation (2.3) and the relations ẋ = u and u̇ = F/m with F
being the acting force and the mass of the particle m. We can rewrite this as

∂

∂t

∫
d3uχf +

∂

∂xi

∫
d3uχuif −

∫
d3uuif

∂χ

∂xi
− 1

m

∫
d3u

∂χ

∂ui
Fif

− 1

m

∫
d3uχ

∂Fi

∂ui
f = 0. (2.12)

This equation simplifies, if we introduce the definition of the average. Given a
quantity Q we define its average 〈Q〉 by

〈Q〉 ≡ 1

n

∫
d3uQf, (2.13)

where the number density per unit volume is

n ≡
∫

d3uf. (2.14)

Using this definition we can modify equation (2.12) and end up with

∂

∂t
(n 〈χ〉) +

∂

∂xi
(n 〈uiχ〉)− n

〈
ui
∂χ

∂xi

〉
− n

m

〈
Fi
∂χ

∂ui

〉
− n

m

〈
∂Fi

∂ui
χ

〉
= 0 . (2.15)

This is the so-called conservation equation, which tells us how the volume density
n 〈χ〉 of a conserved quantity χ changes in time. This equation is of crucial impor-
tance for hydrodynamics. We will see that evaluating it for the conserved quantities
in a fluid, the mass, the momentum and the energy, will give us the three central
equations of hydrodynamics.
Now let us start with substituting the particle mass m, which is conserved in a
binary collision, into the conservation equation (2.15). The value of the mass does
not depend on the position of the particle nor its velocity (in the non-relativistic
limit at least). If we additionally consider the force F to be independent of velocity,
we end up with

∂

∂t
(nm) +

∂

∂xi
(nm 〈ui〉) = 0. (2.16)

We used that 〈m〉 = m, as we consider for simplicity a fluid made of particles having
all the same mass. By introducing the mass density

ρ ≡ nm (2.17)
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and the average velocity

v ≡ 〈u〉 (2.18)

we obtain for equation (2.16)

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0

⇒ ∂ρ

∂t
+∇ (ρv) = 0. (2.19)

This is the first moment of the Boltzmann equation and also known as the continuity
equation.
For deriving the second moment equation we substitute χ in (2.15) by a momentum
muj. This leads to

∂

∂t
(nm 〈uj〉) +

∂

∂xi
(nm 〈uiuj〉)− n 〈Fiδij〉 = 0

⇒ ∂

∂t
(ρvj) +

∂

∂xi
(ρ 〈uiuj〉)−

ρ

m
Fj = 0. (2.20)

We can simplify this further by defining a tensor

Pij ≡ nm 〈(ui − vi)(uj − vj)〉
= nm (〈uiuj〉 − vivj) . (2.21)

With Pij we can put equation (2.20) into the form

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj) =

ρ

m
Fj −

∂Pij

∂xi
. (2.22)

Using the continuity equation (2.19) we can simplify the left hand side and get

ρ

(
∂vj
∂t

+ vi
∂vj
∂xi

)
=

ρ

m
Fj −

∂Pij

∂xi
. (2.23)

At last we calculate the third moment of the conservation equation. We assume
that the translational kinetic energy 1/2m|u − v|2 is a conserved quantity in a
monoatomic gas. Substituting this quantity into the conservation equation (2.15),
we get

∂

∂t
(ρε) +

∂

∂xi
(ρεvi) +

∂qi
∂xi

+ PijΛij = 0, (2.24)

with the internal energy per unit mass

ε =
1

2

〈
|u− v|2

〉
, (2.25)
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the energy flux

ε =
1

2
ρ
〈
(u− v) |u + v|2

〉
, (2.26)

and

Λij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
. (2.27)

We can simplify this by using of the continuity equation and end up with

ρ

(
∂ε

∂t
+ vi

∂ε

∂xi

)
+
∂qi
∂xi

+ PijΛij = 0. (2.28)

The moment equations describe the evolution of the conserved quantities in a fluid.
However, the equations (2.20), (2.23) and (2.28) are not a dynamical theory, because
we have, in total, 5 individual equations including 14 variables.

2.3.3 The Equations of Hydrodynamics

In the last section we derived the three momentum equations by inserting the con-
served quantities of an idealised fluid into the Boltzmann equation. If we want to
develop to a full dynamical theory, we have to reduce the number of free variables.
We will see that this can be done, when we assume a system that is fluid-like, i.e. has
many collisions between the particles. A system with many collisions is in zero-order
approximation Maxwell-Boltzmann distributed with

f(x,u, t) = n(x, t)
(

m

2πkT (x, t)

)3/2

exp

(
−m (u− v(x, t))2

2kT (x, t)

)
. (2.29)

With this distribution function we can calculate the quantities Pij, q, ε and PijΛij.
We find after some algebra

Pij = pδij, (2.30)
q = 0, (2.31)

ε =
3

2

kT

m
, (2.32)

PijΛij = p∇ · v, (2.33)

with

p = nkT. (2.34)

If we put this expressions into the momentum equations from the last section, we end
up with the hydrodynamic equations. We present the results in the next paragraphs,
where we also add additional terms, which come from transport phenomena, that
we have not discussed here (see [7]).
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Continuity Equation

The first conserved quantity we considered in the last section was the mass. We
ended up with the so-called continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 . (2.35)

This equation describes how the mass or better the density is conserved in a fluid.
If the density changes in a fluid element in time, there needs to be a flux ρv through
the surface of this fluid element such that no mass gets lost. This argument becomes
clear by looking at the integral form of the continuity equation,

∂

∂t

∫
V
ρdV = −

∫
V
∇ · (ρv)dV = −

∫
∂V
ρvdf, (2.36)

where we used Gauss’ theorem in the last transformation. The left-hand side of the
equation above is the change of the mass

∫
ρdV and the right-hand side the material

flux through the surface of the fluid element.
An important special case are fluids of constant density in time. For these holds in
general

∇ · (ρv) = 0. (2.37)

If the density is also constant in space, we have

∇ · v = 0. (2.38)

We speak of an incompressible fluid in this case.

Navier-Stokes Equation

The Navier-Stokes equation, which follows from further modifications of the conser-
vation of momentum (2.23), reads

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p+ nF + µ

(
∇2v +

1

3
∇ (∇ · v)

)
. (2.39)

Here µ is the dynamical viscosity. Also common is the kinetic viscosity, which
is defined as ν ≡ µ/ρ. The Navier-Stokes equation describes the conservation of
momentum in a fluid, i.e. it is an equation of motion. All appearing forces are
collected on the right-hand side of (2.39). The first term on the right hand-side is
the pressure force, the second term represents the external forces like gravity or the
Coriolis force and the last term represents forces caused by viscosity, which is the
inner friction of the fluid.
For the special case of an incompressible fluid, the term including ∇ · v vanishes.
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The Navier-Stokes equation simplifies in the special case of negligible viscosity (µ =
0). It then reduces to the Euler equation

∂v
∂t

+ (v · ∇)v = −1

ρ
∇p+

1

m
F. (2.40)

This equation is much easier to solve than (2.39), as it does not contain derivatives
of high order any more and thus requires less boundary conditions.

Energy Equation

The conservation of energy gives us the last hydrodynamical equation. Modification
of equation (2.28) results in an equation for the energy density ε

ρ

(
∂ε

∂t
+ (v · ∇) ε

)
= ∇ · (K∇T )− p∇ · v , (2.41)

where K is the coefficient of thermal conductivity.

Equation of State

To close our system of equations we need one additional equation, the equation of
state. The equation of state relates the pressure p to another variable of state, for
example the temperature T .

p = p(T ) (2.42)

For an ideal gas the equation of state is the ideal gas law

p = nkT, (2.43)

with the Boltzmann constant k.

The hydrodynamic equations, the continuity equation (2.35), the Navier-Stokes
equation (2.39) and the energy equation (2.41), together with the equation of state
(2.42) form a full dynamical theory. They contain 6 variables, the density ρ, the
velocity v with three components, the pressure p and the internal energy ε. But
two of these variables are related due to the equation of state, which leaves us with
5 independent variables. Those variables are determined by the 5 hydrodynamical
equations.
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3 Turbulence

“When I meet God, I am going to ask him two questions: Why relativity? And why
turbulence? I really believe he will have an answer for the first.”
(This quotation is accredited to Werner Heisenberg.1)

3.1 Describing Turbulence

Chaotic motion is called turbulence. The description of chaos has alway been a
problem and there is, until today, no complete theoretical description of that topic.
Thus, turbulence is one of the last major mysteries in classical physics. In this
section we give the common approaches of handling turbulence.

3.1.1 Concept of the Reynolds Number

The appearance of turbulence in a flow depends crucially on properties like the
flow velocity, the geometry and its chemical composition. The latter determines the
viscosity ν. Fluids with high viscosity, like for example honey, are only turbulent
when the velocity is very high. Fluids with vanishing viscosity can become turbulent
easily.
In order to find a dimensionless quantity that tells if a flow is turbulent or not,
we have to make the Navier-Stokes equation (2.39) dimensionless. The curl of the
Navier-Stokes equation is

∂ω

∂t
= ∇× (v× ω) + ν∇2ω, (3.1)

where ω ≡ ∇ × v is called vorticity. The term with the conservative force F in
(2.39) vanishes. Also the term with the pressure gradient vanishes in the case of
incompressible fluids.
The upper equation becomes dimensionless, if we express all quantities through the
typical length L, time T and velocity V of the system. Hence we substitute x = L x̃,
v = V ṽ, t = T t̃, ω = V/L ω̃ and ∇ = 1/L ∇̃ into (3.1) and get

∂ω̃

∂t̃
= ∇̃ × (ṽ× ω̃) +

ν

V L
∇̃2ω̃. (3.2)

The prefactor of the last term is labeled

ν

V L
≡ 1

Re
, (3.3)

1http://scienceworld.wolfram.com/biography/Heisenberg.html, 11/9/2011
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CHAPTER 3 3.2 Describing Turbulence

with the hydrodynamical Reynolds number Re. If Re is high the viscosity is low
and the first term on the RHS of (3.2) overwhelms. This term creates vorticity and
the flow is very turbulent. A flow with Reynolds number higher than about one
thousand is referred to be turbulent. For smaller Re the second term of (3.2) is the
important one. As this term is the dissipation term, the vorticity is dissipated. The
flow is then called laminar.

3.1.2 Statistical Description by Taylor

A statistical description of turbulence starts with decomposing the velocity field v
in a mean field 〈v〉 and a turbulent component δv:

v = 〈v〉+ δv. (3.4)

Following the work of Taylor [8] we model the spatial appearance of turbulence
via the two-point correlation function. The correlation of two turbulent velocity
components at the positions r1 and r2 at the times t and s for a Gaussian random
velocity field with zero mean, which is isotropic, homogeneous and δ-correlated in
time, is given as

〈δvi(r1, t)δvj(r2, s)〉 = Tij(r)δ(t− s) . (3.5)

Tij(r) is the two-point correlation function with r ≡ |r1 − r2|. It was shown by
Bachelor [9] that the correlation function can be divided into a transversal part TN
and a longitudinal part TL,

Tij(r) =
(
δij −

rirj
r2

)
TN(r) +

rirj
r2

TL(r) + C(r)εijkr
k . (3.6)

The last term including C(r), refers to the effect of helicity.
In the special case of a divergence-free turbulent velocity field (div δv = 0), charac-
teristic of incompressible fluids, one can easily show that

∂

∂xi
Tij(r) = 0. (3.7)

From this it follows that
∂

∂xi
(rirjTij(r)) = Tij(r)

∂

∂xi
(rirj) (3.8)

and hence the transversal correlation function is connected to the longitudinal one
via

TN(r) =
1

2r

d
dr
(
r2TL(r)

)
. (3.9)

For the other extreme case, an irrotational turbulent velocity field (rot δv = 0), as
expected for purely shock-dominated flows, we find in a similar way as above the
relation

TL(r) = r
dTN(r)

dr
+ TN(r). (3.10)
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3.2 Turbulence Picture of Kolmogorov

Figure 3.1: The different scales of turbulence in the picture of Kolmogorov.

Kolmogorov [10] described in 1941 the very different behavior of turbulence on differ-
ent scales (see Figure 3.1) by dimensional analysis. Below a scale L turbulent eddies
of a maximal length L appear. These cascade into smaller and smaller eddies. Kol-
mogorov assumed that the kinetic energy flux stays constant during this process.
By this kinetic energy cascade the kinetic energy is transported onto smaller and
smaller scales. The range, where this eddy decay takes place is called the inertial
range. The decay of eddies ends at the so-called cut-off scale `c, where the Reynolds
number becomes unity. Here the fluid is, per definition, not turbulent any more and
microscopic diffusion gets important. Below `c the kinetic energy is converted into
heat.
The assumption of a constant kinetic energy flux ˙Ekin in the inertial range of the
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CHAPTER 3 3.3 Burgers-Turbulence

turbulence leads to

Ekin ∝ v2

⇒ ˙Ekin ∝ 2vv̇ ∝ v2

t
=
v2v

`
≡ const

⇒ v ∝ `1/3, (3.11)

where Ekin is the kinetic energy, v is the velocity, t the time and ` the length. The
˙ denotes the time derivation. Thus, Kolmogorov turbulence is characterised in the
inertial range via the relation between the length of the a turbulent fluctuation `
and the velocity v on that scale.
With this we can calculate the Reynolds number on the cut-off scale of turbulence.

Re(`c) =
vc`c
ν

=
V L

ν

vc`c
V L

= Re
vc`c
V L

= Re
`

4/3
c

L4/3
, (3.12)

where we have defined Re ≡ Re(L) and in the last step used vc ∝ `
1/3
c and V ∝ L1/3.

However, the cut-off scale is defined as the scale below that there is no turbulence
and so the Reynolds number at this scale is just one. This leads to

Re(`c) = 1

⇒ Re
`

4/3
c

L4/3
= 1

⇔ `c = LRe−3/4. (3.13)

3.3 Burgers-Turbulence

The counterpart to the incompressible turbulence of Kolmogorov is the extremely
compressible turbulence. The latter is very important in the astrophysical context.
Here we often find high Mach numbers2, which means that astrophysical gases are
highly compressible. In cold molecular clouds the Mach number can be around 50
[11].
In 1948 Burgers described this extreme case by assuming that the momentum flux
in the inertial range is constant [12]. This leads to

p ∝ v

⇒ ṗ ∝ v̇ ∝ v

t
=
v2

`
≡ const

⇒ v ∝ `1/2, (3.14)

where p is the momentum.
The cut-off scale in Burgers turbulence is

`c = LRe−2/3. (3.15)

2The Mach number is defined by the ratio of the velocity and the sound speed in the medium.
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3.4 Model for a General Type of Turbulence

We analyse the case of general turbulence types, i.e. turbulence with arbitrary com-
pressibility. We can describe them with the relation between the velocity v(`) and
the size ` of a turbulent fluctuation,

v(`) ∝ `ϑ . (3.16)

The power-law index ϑ varies for the different types. It has its minimum value of
ϑ = 1/3 for Kolmogorov theory [10], i.e. incompressible turbulence. For Burgers
turbulence [12], i.e. highly compressible turbulence, ϑ has its maximum value of 1/2
[13]. With this relation we can determine the cut-off scale of the turbulence for a
general exponent ϑ.

Re(`c) =
vc`c
ν

=
V L

ν

vc`c
V L

= Re
vc`c
V L

= Re
`ϑ+1
c

Lϑ+1
≡ 1

⇒ `c = LRe−1/(1+ϑ). (3.17)

With relation (3.16) we are able to model the correlation function of the turbulent
velocity field, which provides of statistical description of turbulence. The correlation
tensor Tij has per definition the same unit as a diffusion coefficient. Thus, modeling
this tensor starts with the ansatz Tij ∝ v`, which is in the inertial range Tij ∝
`1+ϑ. At first we construct a model for the longitudinal correlation function of the
turbulent velocity field TL(r). We assume the correlation function in the inertial
range to be [14, 15]

TL(r) =
V L

3

(
1− (r/L)ϑ+1

)
. (3.18)

The prefactor, V L, fixes the unit, which should be the same as for a diffusivity. V
and L are the velocity and the length scale of the largest eddies. On the diffusive scale
the correlation function should be steadily continued and satisfy the condition that
its derivative T ′L(0) vanishes at r = 0. This is accomplished for example for TL ∝ r2.
The exact form of TL in the diffusive range does not effect the results crucially [15].
Furthermore, we expect no correlation on scales larger than the largest eddies, thus
TL should vanish there.
Taken all together, we can set up a general turbulence model for the longitudinal
correlation function on the different length scales as follows

TL(r) =


V L
3

(
1−Re(1−ϑ)/(1+ϑ)

(
r
L

)2
)

0 < r < `c

V L
3

(
1−

(
r
L

)ϑ+1
)

`c < r < L

0 L < r,

(3.19)

where `c = L Re−1/(ϑ+1) denotes the cut-off scale of the turbulence and L the length
of the largest eddies. The hydrodynamic Reynolds number Re is defined as V L/ν
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Figure 3.2: The longitudinal and transversal correlation function, TL and TN, de-
pending on the dimensionless parameter y ≡ r/L for Kolmogorov
(ϑ = 1/3) and Burgers turbulence (ϑ = 1/2). We choose a fixed
Reynolds number of 105. The vertical lines indicate the cut-off scale
of the turbulence `c and the largest scale of the eddies L. Notice that
the cut-off scale for Kolmogorov turbulence (`Kc = Re−3/4L) is different
from the one for Burgers turbulence (`Bc = Re−2/3L). In the middle one
can see a zoom of the dissipative range.

with the typical velocity of the largest eddies V and the viscosity of the gas ν.
The transversal correlation functions TN for a divergence-free, i.e. Kolmogorov

turbulence, and for an irrotational turbulent velocity field, i.e. Burgers turbulence,
can be derived from the relations (3.9) and (3.10). Note, however, that a turbulent
velocity field that is divergence free (or irrotational) in the initial range does not
have to be this in the diffusive range. We find for the extreme cases in the inertial
range (`c < r < L)

TK
N (r) =

V L

3

(
1− 5

3

( r
L

)4/3
)
, (3.20)

TB
N (r) =

V L

3

(
1− 2

5

( r
L

)3/2
)
. (3.21)

In order to find a general expression for TN we make the ansatz

TN(r) =
V L

3

(
1− t(ϑ)

( r
L

)ϑ+1
)

(3.22)
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where we assume a linear interpolation between TK
N and TB

N with t(ϑ) = a− bϑ.
With equations (3.20) and (3.21) we find that a = 21/5 and b = 38/5. Furthermore,
we find the small-scale transversal correlation, i.e. 0 < r < `c, by steady continua-
tion. So we end up with the following model for the transversal correlation function
for a general slope of the turbulent velocity spectrum:

TN(r) =


V L
3

(
1− t(ϑ)Re(1−ϑ)/(1+ϑ)

(
r
L

)2
)

0 < r < `c

V L
3

(
1− t(ϑ)

(
r
L

)ϑ+1
)

`c < r < L

0 L < r,

(3.23)

with t(ϑ) = (21− 38ϑ)/5.
The longitudinal and transversal correlation functions depend on the dimensionless
parameter y ≡ r/L as shown in Figure 3.2 for Kolmogorov and Burgers turbulence.
We choose here a fixed hydrodynamical Reynolds number of 105. In Figure 3.2 we
also show a zoom into the dissipative range (0 < r < `c).

3.5 Turbulence in Astrophysics

Turbulence is a ubiquitous phenomenon in the Universe. For example the outer
layers of the Sun are turbulent. In stars regions with large temperature gradients
become unstable and, thus, turbulent. We then speak of convection. Hot blobs of
gas rise up until they give their thermal energy to the environment. Then the cool
blobs sink again, because they have a larger density. This behavior is described in
the “mixing length theory” (see for example [16]). Fortunately, the stellar structure
seems not to depend on the details of turbulence.
Observations show that spectra of giant molecular clouds in the Milky Way and
nearby galaxies have significant non-thermal line widths [17]. This is a signature of
supersonic, i.e. highly compressible, turbulence [18].
The main driving mechanisms of this turbulence are thought to be supernovae [11].
Korpi et al. [19] simulated a galactic disk with randomly distributed supernova ex-
plosions. They find that the first explosions give rise to density fluctuations in the
interstellar medium. The shock wave of a new supernova propagates through this
clumpy medium, while its velocity changes with changing density. This way vortic-
ity is generated.
Moreover, Klessen and Hennebelle [20] and Federrath et al. [21] show that the accre-
tion process during a gravitational collapse itself leads generally to turbulence. This
is a very important driving mechanism for turbulence, as accretion appears in many
different astrophysical objects. The presence of turbulence affects star formation in
these molecular clouds, as the turbulent pressure works against the collapse to a
star [11, 22].
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4 Electromagnetism

4.1 Maxwell’s Equations

In the 19th century Maxwell developed the theoretical basis of electromagnetism.
He described the electromagnetic field with a set of four linear coupled differential
equations, which are known as the Maxwell equations.
In this chapter, we derive the Maxwell equations, which determine the electric field
E and the magnetic field B1 from fundamental laws of electrodynamics.2

4.1.1 Basic Laws of the Electric Field

The electric flux Φ appearing from an arbitrary distribution of charge ρ(x) with
total charge Q is given as

Φ =

∫
∂V

E df =

∫
∂V

∫
V
ρ(x’)

r
r

3

d3x′df = 4π

∫
V
ρ(x’) d3x′ = 4πQ, (4.1)

where we have used Coulombs law for the electric field E. The second step in this
calculation can be rewritten with Gauss’ theorem, which leads to∫

∂V
E df =

∫
∂V

divE dV = 4π

∫
V
ρ(x’) dV. (4.2)

The relation

divE = 4πρ(x) (4.3)

is the first Maxwell equation.
The second Maxwell equation can be derived from the Faradays law of induction,
which says that the electric voltage is proportional to the change of the magnetic
flux, ∫

c
E ds = −1

c

d
ct

∫
∂V

B df. (4.4)

1In this work, we will call B the magnetic field strength. Officially B is called the magnetic induc-
tion and B/µ is the magnetic field strength. However, in cgs-units the magnetic permeability
µ equals 1 and B and H are the same.

2We will use here Gaussian/cgs units, which are typical for theoretical works. During developing
the electromagnetic equations one is free to choose a few parameters which then give rise to
different units like cgs or SI (see Table B.1).
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With Stokes’ theorem we find∫
∂V

rotE df = −1

c

∫
∂V

∂B
∂t

df (4.5)

Thus, we find the second Maxwell equation

rotE +
1

c

∂B
∂t

= 0 . (4.6)

4.1.2 Basic Laws of the Magnetic Field

The derivation of the divergence of the magnetic field is simple, when we use our
experience that there are no magnetic charges. So the magnetic flux through a
closed area always vanishes,∫

∂V
B df =

∫
V
divB dV = 0, (4.7)

and we find the third Maxwell equation

divB = 0 . (4.8)

For the last Maxwell equation we have to rewrite Ampere’s law, which is given as∮
c
B dx =

4π

c
I, (4.9)

where I =
∫
∂V jdf is the electric current. With Stokes law we find∮

c
B dx =

∫
∂V

rotB dV =

∫
∂V

4π

c
j df. (4.10)

The equation

rotB =
4π

c
j (4.11)

does not fulfill the continuity equation for the charge. For this reason an additional
term, the Maxwells displacement current c−1∂E/∂t, needs to be included. Thus, we
end up with the fourth Maxwell equation

rotB− 1

c

∂E
∂t

=
4π

c
j . (4.12)

We have found four equations that describe the divergence and the rotation of the
electric and the magnetic field. According to the fundamental theorem of vector
analysis these equations determine the electromagnetic field completely as long as
E and B decrease fast enough for large distances.
Obviously, one can collect the Maxwell equations into to groups. Equations (4.6) and
(4.8) are source-free and therefore are also called homogeneous and equations (4.3)
and (4.12), which include the distribution of matter in space ρ and the distribution
of the current j, depend on a source and are called inhomogeneous equations.

34



CHAPTER 4 4.4 Gauging of the Electromagnetic Field

4.2 Gauging of the Electromagnetic Field

From the homogeneous equations one can construct general electric potentials [23].
The vanishing divergence of the magnetic field says that there should exist a vector
field A known as vector potential with

rot A ≡ B. (4.13)

Due to the properties of the rotation operator the magnetic field is invariant under
the gauge transformation

A→ A′ = A +∇χ. (4.14)

By putting rot A = B into the second homogeneous equation we find

rot (E +
1

c
Ȧ) = 0,

where the dot over the vector potential denotes the time derivation. This leads
directly to the definition of an electric potential φ,

−grad φ ≡ E +
1

c
Ȧ. (4.15)

Now one can show that the electric field is invariant under following gauge transfor-
mation,

φ→ φ′ = φ− 1

c

d

dt
χ. (4.16)

4.3 Lorentz Force

A charged particle moving in an electromagnetic field is deflected. The equation for
describing the movement of a particle with charge q and velocity ẋ in an electro-
magnetic field can be derived in the Lagrangian formalism of electrodynamics. The
resulting equation of motion with the momentum p is

dp
dt

= q

(
E(x, t) +

1

c
ẋ×B(x, t)

)
. (4.17)

The force

FL(x, t) = q

(
E(x, t) +

1

c
ẋ×B(x, t)

)
. (4.18)

is known as the Lorentz force. Notice that the term including the E-field is parallel
to the force FL, while the term including the B-field is perpendicular to FL. This
tells us that the magnetic field never exerts any work.
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4.4 Energy in the Electromagnetic Field

In order to determine the energy of the electromagnetic field we look at the power
it exerts on a test particle with charge q,

P = FL · v = qE · v =

∫
V
j · E d3x. (4.19)

Substituting j by the Maxwell equation (4.12) leads to

P = − 1

4π

(
1

2

∫
d
dt
(
B2 + E2

)
d3x− c

∫
∂V

(B× E) df
)
. (4.20)

Thus, the law of energy conservation for the electromagnetic field is

−j · E =
1

8π

d
dt
(
B2 + E2

)
+

c

4π
div (B× E) . (4.21)

This law tells us that the kinetic energy particles lose in a volume V , j · E, goes
either in the energy of the electromagnetic field, 1/(8π) (B2 + E2), or streams out
of the volume, c/(4π) div (B× E).

4.5 Ohm’s Law

We have seen in the last section that charged particles get deflected and accelerated
in a electromagnetic field. Thus, we can conclude that the electric current, which
is a collection of many moving charged particles, is connected to the Lorentz force.
Typically the electric current density is proportional to the force density F/q that
is acting,

j(x, t) = σ
F
q
, (4.22)

where the proportional factor σ is labeled the electric conductivity. One can show
that

σ =
nee

2τei
me

, (4.23)

where me and ne are the mass and the density of the electrons, e their charge and τei
the collision time. As the force that acts in the electromagnetic field is the Lorentz
force, we get

j(x, t) = σ

(
E(x, t) +

1

c
ẋ×B(x, t)

)
. (4.24)
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The upper equation is known as Ohm’s law, which describes the coupling between
the electromagnetic field and matter.
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5 Expansion of Hydrodynamics to
Magnetohydrodynamics

In order to model astrophysical objects more realistically we have to include electro-
magnetic fields. As we have seen in the introduction, magnetic fields and charged
particles are ubiquitous in the Universe. The combination of hydrodynamics with
of electrodynamics leads us to the theory of magnetohydrodynamics (MHD).
Besides the two thermodynamical variables, the density ρ and the internal energy
ε, and the velocity of the gas v, we now have to include the magnetic field B in our
equations1. This also means that we need one additional equation to have a fully
dynamical theory.

5.1 The Equations of Magnetohydrodynamics

5.1.1 Continuity Equation

The equation, which describes the density evolution, stays the same, if we include
the magnetic field,

∂ρ

∂t
+∇ · (ρv) = 0 . (5.1)

The density is obviously still a conserved quantity in the presence of an electromag-
netic field.

5.1.2 Momentum Equation

The Navier-Stokes equation describes the evolution of the momentum in hydrody-
namics. It relates all the forces that appear in a system. If now a magnetic field
flows though our plasma, we have to consider an additional magnetic body force.
The Lorentz force for a continuous system is 1/c j × B. Thus, we have to include
the term

1

cρ
j×B =

1

4πρ
(∇×B)×B =

(B · ∇)B
4πρ

− 1

ρ
∇B

2

8π
, (5.2)

1It is enough to include either the magnetic field or the electric field in our equations, because
those fields are not independent.
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where we have used Amperes law. Altogether, in magnetohydrodynamics we have
to use the momentum equation

∂v
∂t

+ (v · ∇)v = −1

ρ
∇
(
p+

B2

8π

)
+

1

m
F +

(B · ∇)B
4πρ

+
µ

ρ
∇2v . (5.3)

One can easily see, that the magnetic field leads to an magnetic pressure B2/(8π).
Furthermore, one can show, that the second term including B is responsible for a
tension along the magnetic field lines (see [7]).

5.1.3 Energy Equation

The equation of the internal energy is in magnetohydrodynamics almost the same
as it is in hydrodynamics,

ρ

(
∂ε

∂t
+ v · ∇ε

)
= ∇ · (K∇T ) +

j2

σ
− p∇ · v . (5.4)

We only have one additional term, j2/σ, which takes care of the Ohmic heating.

5.1.4 Induction Equation

As mentioned earlier in this chapter, we have to find an additional equation for the
theory of MHD, because there are now four independent variables. We need an
equation describing the magnetic field B, which we can derive from the Maxwell
equations and Ohm’s law.
By combination of the law of Faraday (4.6) with Ohm’s law (4.24) we can eliminate
the electric field E,

1

c

∂B
∂t

= −∇×
(
j
σ
− v×B

)
. (5.5)

When we neglect Maxwell’s displacement current c−1∂E/∂t in Ampere’s law (4.12)
and substitute the current density j into the upper equation we get the induction
equation

∂B
∂t

= ∇× (v×B− η∇×B) , (5.6)

where we have defined the magnetic diffusivity as

η ≡ c2

4πσ
. (5.7)
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We can make the induction equation dimensionless by introducing the typical quan-
tities of our system B, L, V and T . With B = BB̃, ∇ = 1/L∇̃, v = V ṽ and t = T t̃
we get

∂B̃
∂t

= ∇̃ ×
(
ṽ× B̃− 1

Rm
∇× B̃

)
. (5.8)

We defined here the magnetic Reynolds number

Rm ≡ V L

η
, (5.9)

which is an indicator for the importance of the two terms on the RHS. The limit
of Rm � 1 leads to a diffusion equation. In this case the magnetic field can only
decay. The other limit, Rm � 1, is the limit of perfect conduction, where the
electric conductivity σ � 1. Only in this case the magnetic field can increase.

5.2 Ideal Magnetohydrodynamics

We speak of ideal MHD, if several conditions are fulfilled:

1. In an ionised gas the collision rate between ions and neutrals needs to be very
high. This makes sure, that the neutral and the charged particles are coupled
perfectly and behave as one fluid. If there is for example a strong external
magnetic field the whole fluid feels the Lorentz force and not only the ions.

2. The viscosity needs to vanish (ν → 0).

3. The electric conductivity needs to be infinite (σ → ∞), while the resistivity
vanishes (η ∝ 1/σ → 0). Because of this ideal MHD is also known as non-
resistive MHD. The magnetic Reynolds number also is infinite in this limit
(Rm ∝ 1/η →∞).

Thus, in ideal magnetohydrodynamics the induction equation becomes
∂B
∂t

= ∇× (v×B) . (5.10)

It can be shown, that the equation ∂Q/∂t = ∇ × (v×Q) for an arbitrary vector
field Q, can be written as d/dt

∫
∂VQdf = 0 [7]. Hence we get

d
dt

∫
∂V

B df = 0. (5.11)

Note, that here the Lagrangian time derivation appears. This means that we follow
the moving fluid elements, while determine the variation in time. Thus, the magnetic
field is frozen in the fluid, which is also known as Alvén’s theorem of flux freezing [24].
However, the flux freezing only takes place, as long as the magnetic field is weak.
With increasing magnetic energy, magnetic back reactions become more important
and at some point the neutrals will not follow the magnetic field any more.
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5.3 Effects of Non-Ideal Magnetohydrodynamics

Non-ideal magnetohydrodynamics is also called resistive MHD, as here the resistivity
does not vanish. This opens a way for magnetic field decay. For very high resistivity
η, the induction equation becomes

∂B
∂t

= −η∇× (∇×B) , (5.12)

which is, due to the freedom of divergence of the magnetic field (4.8) equivalent to

∂B
∂t

= η∇2B. (5.13)

The upper equation is a diffusion equation, which only has solutions in which the
magnetic field decays. The dissipation of the magnetic energy has a typical timescale
of L2/η, where L is the length of the system.
Furthermore, in non-ideal MHD the plasma may not act as one fluid anymore. At
certain conditions, like in the presence of strong magnetic fields, the charged par-
ticles can react different then the neutrals. The drift between ions and neutral is
called ambipolar diffusion.
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6 Magnetic Fields in the Universe

6.1 Observations of Magnetic Fields

6.1.1 Present-Day Universe

In the present-day Universe magnetic fields can be observed with different more or
less direct methodes [25, 26]. The most intuitive way to measure the magnetic field
strength is using the Zeemann effect. With Zeemann splitting of radio spectral lines
one can measure the strength of relatively strong fields, like for example in stellar
objects.
Another powerful tool for observing magnetic fields is synchrotron radiation. This
non-thermal radiation appears, when charged particles with high energy move in
magnetic fields. By measuring the intensity of synchrotron radiation the magnetic
field strength can be estimated. This radiation can also be polarised. It gets linearly
polarised due to extinction by enlongated dust grains in the line of sight, which is
called the Davis-Greenstein effect. Optical light can also get polarised by scattering
and not distinguished from polarisation by dust grains. This is why infrared or sub-
millimeter measurements are used to detect magnetic fields. Polarisation is used to
determine the direction of the magnetic field in the plane of the sky. It indicates
an ordered field structure, which has been genereted for example by a large-scale
dynamo. Observations find the strongest polarised synchrotron radiation in galaxies
in the interarm region 10-15 µG and in the radio halo of edge-on galaxies. In galaxies
also unpolarised synchrotron radiation is found, interpreted as a turbulent magnetic
field generated by the small-scale dynamo. This has been observed in the spiral arms
and bars of galaxies with a strength of 20-30 µG and in central starburst regions
with 50-100 µG [26].
A third important method to detect magnetic fields is Faraday rotation, which
describes the rotation of the polarisation vector in a magnetised thermal plasma.
With this method the strength and the direction of the magnetic field in the line-of
sight can be determined.
With the upper methods the magnetic field of the Milky Way can be determined.
Using the total synchrotron emission at 408 MHz (from survey of Haslam et al.
[27]) Beuermann et al. [28] find a field strength of 6 ± 2 µG locally and 10 ± 3 µG
at 3 kpc galactic radius. The structure of magnetic fields can be observed easier
in other galaxies. Observations show, generally, that the spatial structure of the
magnetic field in spiral galaxies follows the spiral arms. For example, in Figure 6.1
the face-on galaxy M 51 is shown. Moreover, observations confirm that magnetic
fields in galaxies are dynamically important, as they have an energy density up to
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ten times higher than the thermal energy density of the ionised gas.
Recent studies confirm that magnetic fields can not only be found within galaxies,
but also in the intergalactic medium. Neronov & Vovk [29] find, using gamma-ray
observations of the intergalactic medium, a lower limit of B0 ≈ 10−16 G (see also
[30, 31]). This might be indicative of an early generation scenario, if its was not
generated by outflows of galaxies or the Biermann battery. However, they neglected
certain plasma instabilities in their derivation, which could change the results.

Figure 6.1: The magnetic field of the spiral galaxy M 51. The contours indicate the
total radio emission, the yellow lines show the magnetic field vectors.
These observations come from the VLA and Effelsberg telescopes at a
wavelength of 6 cm [32] and an optical image from the Hubble space tele-
scope. (Copyright: MPIfR Bonn and Hubble Heritage Team, Graphics:
Sterne und Weltraum)
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6.1.2 Early Universe

Naturally it is much more difficult to make predictions of magnetic fields in the
early Universe. Observations suggest that magnetic fields have been space-filling
already in the early Universe. Until today we only have upper limits for the very
early Universe, but no direct observations showing the presence of magnetic fields.
Yamazaki et al. [33] derive an upper limit of the magnetic field strength from the
cosmic microwave background (CMB) temperature anisotropy. They predict that
the magnetic field strength at a present scale of 1 Mpc.
Primordial nucleosynthesis provides additional constraints on the magnetic field
strength. Grasso and Rubinstein [34] find that the magnetic field needs to have
been less than 1011 − 1012 G at a temperature of 109 K. This corresponds to a
comoving field strength of 1− 10 µG.
Moreover, Schleicher and Miniati [35] present a method to derive the magnetic field
strength in the reionisation epoch (redshift z > 6). They show that the upper halo
mass is set by the magnetic pressure and conclude, by using data from the reionisa-
tion epoch, that the co-moving magnetic field strength is B0 . 3 nG (see also [36]).
Kronberg et al. [37] observed the Faraday rotation of high-redshift quasars out to
z ≈ 3.7. They find that the Universe becomes increasingly “Faraday-opaque” for
sources beyond z ≈ 2, which indicates that galaxies at these redshifts were signifi-
cantly magnetised.
Hints towards high-redshift (z ≈ 1.3) magnetic fields in galaxies come from the
study of Bernet et al. [38]. They used high resolution spectra from normal galaxies
and observed a magnetic field strength of a few microgauss, which is of the same
order as present-day magnetic fields.

6.2 Generation of Magnetic Seed Fields

The last section shows that the Universe is strongly magnetised. Magnetic fields are
even observed in the space between galaxies. But where do these fields come from?
There is no possibility to explain the generation of magnetic seed fields from the
standard MHD-equations (Section 5). In the induction equation (5.6) every term
contains the magnetic field strength B. Thus starting with a zero magnetic field
will never create a non-zero field.

6.2.1 Field Generation in the Early Universe

There are different theories that describe the origin of primordial magnetic fields.
The first seed fields could already have been produced during inflation. Turner and
Widrow [39] find that a magnetic field B0 ≈ 10−25–10−1 nG on a scale of 1 Mpc can
be produced when the conformal invariance is broken.
Following Sigl et al. [40], there is also a possibility to create a magnetic field during
first-oder phase transitions in the very early Universe. They predict a field strength
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B0 ≈ 10−20 nG from the electroweak phase transition and B0 ≈ 10−11 nG from the
QCD phase transition on a scale of 10 Mpc.
Miniati and Bell [41] suggest that cosmic rays generated magnetic fields in the early
Universe. Cosmic rays, which are charged particles with relativistic velocities, were
emitted from supernova explosions of the first stars. They act like an electric current
and, thus, there is a return current in the cold plasma. This leads to Ohmic heating
of the gas, from which a rotational component of the electric field develops. By
Faraday’s induction law a magnetic field is generated. Miniati and Bell [41] find
that cosmic ray propagation can produce a magnetic field of 10−8–10−7 nG, until
the intergalactic medium is reionised.
The generation mechanisms of magnetic fields in the very early Universe lead only
to very low field strengths. We can use these results as a lower limit.

6.2.2 Biermann Battery

Besides a cosmological origin of magnetic fields there are so-called battery mecha-
nisms, which can continuously work in the Universe. We have seen, that the normal
induction equation (5.6) provides no way of creating a magnetic field. Every term
of this equation includes B and thus B = 0 is a valid solution. However, we have
so far used the one-fluid approximation for magnetohydrodynamics, which means,
that we assumed that there is only one charged species. We will see that additional
terms will appear in our equations if we go one step further and use a two-fluid
approximation, including two different charged species.
We consider a partially ionised hydrogen gas, which consists of electrons, protons
and neutrals. In the two-fluid approximation the generalised Ohm’s law reads [42]

E + vi ×B =
j
σ
− ∇pe
ene

+
1

ene
j×B +

me

e2

∂

∂t

(
j
ne

)
. (6.1)

The first term on the right hand side refers to the classical Ohm’s law with the
current density j and the electric conductivity σ = nee

2τei/me. Here me and ne are
the mass and the density of the electrons, e their charge and τei the collision time.
The second term, which includes the gradient of the electronic pressure, is called the
Biermann term. We will see that this term provides us a way of creating magnetic
fields, if it has a curl. The third term on the right hand side refers to the Hall effect
and the fourth one is the inertial term. The last terms are usually very small and
we ignore them from now on.
Deriving the induction equation in the same way like we did in Section 5.1, but now
using the generalised Ohm’s law, gets us [42]

∂B
∂t

= ∇× (vi ×B)− η

4π
∇× (∇×B)− ck

e

∇ne
ne
×∇T, (6.2)

where we used pe = nekT . This generalised induction equation has, compared to
equation (5.6), one new term ck/(ene)∇ne×∇T . Note, that it is independent of the
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magnetic field B. Thus, this source term can generate a field, if there is a pressure
and a temperature gradient that are not parallel.
The descriptive explanation of this generation mechanism uses the fact that our two
charged species have very different masses, i.e. me � mp. If there is a pressure
gradient in the plasma the particles become accelerated. The electrons are more
strongly accelerated than the protons, because they have a smaller mass. This leads
to separation of charge and an electric field is generated. If now the electron density
ne is constant in space the electric field is static. But a spatial dependence of ne gives
rise to an electric current and thus to the generation of a magnetic field [43, 44].
Let us now estimate how strong the fields produced by the Biermann battery are
[44]. In a system that is formed by gravity, the energy that can be transformed into
the magnetic energy is the gravitational energy. The typical timescale on which the
magnetic field is generated is then the free-fall time Tff = 1/

√
Gmn, where G is the

gravitational constant, m the mean partial mass and n the particle number density.
From the generalised induction equation (6.2) we get

B
Tff
≈ ck

e

1
L
ne

ne

1

L
T =

ckT

L2e
. (6.3)

The typical lengthscale of a gravitationally formed system is the Jeans length, hence
we set L ≈

√
γkT/(Gm2n). Here k is Boltzmann’s constant and T the temperature.

Thus, we find

B ≈ c
√
Gm3/2

γe

√
n. (6.4)

For the typical intergalactic medium with γ ≈ 1.4, m ≈ 1.75mu and n ≈ 1cm−3 [45]
the Biermann battery can generate a magnetic field of roughly 10−21G.
On the numerical side, there are a number of magnetohydrodynamical simulations
including the Biermann battery effect. For example Xu et el. [46] explored primordial
star formation with a self-consistent three-dimensional adaptive mesh refinement
simulation. They find that the Biermann battery is most important in the early
evolution of a primordial halo. The generated magnetic field gets amplified further
in the collapse through gravitational compression. Xu et al. find a peak magnetic
field strength of 10−19 G at a redshift of 17.55.

6.2.3 Additional Generation Mechanisms

There are more generation mechanisms of magnetic fields suggested in literature.
For example Schlickeiser and Shukla [47] find that magnetic fields can be produced in
the intergalactic medium through Weibel instability, which arises from an electron
temperature anisotropy. This instability appears in interpenetrating electron-ion
flows with high Mach numbers. Schlickeiser and Shukla predict that flows develop
in large-scale structure evolution and can give rise to a magnetic field strength of
maximal 10−7 G.
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Shukla et al. [48] suggest another way of generating magnetic seed fields in very
dense astrophysical plasmas like white dwarfs or neutron stars. They show that
the ponderomotive force1 of large-amplitude electromagnetic waves in a quantum
plasma with streaming degenerate electrons can generate a magnetic field.

6.3 Amplification of Magnetic Fields

In this section we present the four most important mechanisms to amplify weak
magnetic seed field in a collapsing cloud.
At first, and most intuitively, a magnetic field which is perfectly coupled to the gas
becomes stronger due to gravitational compression, as here simply the field lines get
closer. Another mechanism is the magnetorotational instability, which takes place
in magnetised accretion disks. An amplification can also take place through the
action of so-called dynamos, where we differentiate between a small-scale dynamo,
which can only act on preexisting seed magnetic fields, and a large-scale dynamo
appearing in protostellar and galactic disks.

6.3.1 Amplification due to Gravitational Collapse

When the magnetic field follows the motion of the plasma, i.e. the magnetic flux is
frozen into the fluid (see Section 5.2), it can be amplified when the density increases.
We present here a derivation from the book on plasma physics of Frank-Kamenezki
[49]. A mathematical treatment of this amplification by gravitational compression
starts with the continuity and the induction equation, as these describe the evolution
of the density and the magnetic field strength. In the Lagrangian notation, they are

dρ
dt

= −ρ∇ · v,
dB
dt

= (B · ∇)v−B (∇ · v) . (6.5)

Elimination of ∇ · v leads to
dB
dt

= (B · ∇)v +
B
ρ

dρ
dt

⇔ d
dt

(
B
ρ

)
=

(
B
ρ
· ∇
)
v. (6.6)

Now let us imagine what happens to a field line, when the plasma is compressed
arbitrarily and the field is frozen into the matter. We consider two fluid elements
and connect them through a fluid line l. If these elements have the velocities v1 and
v2, the length of the fluid line l changes as

dl
dt

= (v2 − v1)l, (6.7)

1The ponderomotive force is the force that acts in an inhomogeneous oscillating electromagnetic
field on charged particles.
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where the index l indicates the protection of the velocities on the fluid line. For an
infinitesimal fluid line δl this expression becomes

dδl
dt

= (δl∇)v. (6.8)

By comparing the upper equation with equation (6.6), we directly find
B

ρ
∝ δl. (6.9)

This means that the ratio of the magnetic field strength over the density changes
proportional to the length of the fluid line. We can consider some special cases of
this result. When the compression of the fluid, for example, is perpendicular to the
magnetic field lines, the length of the field line δl does not change (see Figure 6.2).
With δl = const, we find

B ∝ ρ. (6.10)

In this case the magnetic field strength increases proportional to the density, because
the magnetic field lines get closer together.
When, on the other hand, the compression takes place parallel to the field lines,
the single fluid lines get shorter, but the distance between the fluid lines does not
change (see Figure 6.2). In this change δl changes inversely proportional to ρ, and
we find

B = const. (6.11)

Figure 6.2: Compression of magnetic field lines. In the upper picture the field lines
are compressed perpendicular, which results in a compaction of the field
lines and thus to an amplification of the field strength. The lower picture
shows parallel compression, which has no effect on the magnetic field
strength.
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In astrophysics the most important case is spherical compression, where ρ ∝ δl−3.
With equation (6.9) we find for this case

B ∝ ρ2/3. (6.12)

The effect of magnetic field amplification due to gravitational compression is also
seen in numerical simulations. Xu et al. [46] find in their simulation of Population
III star formation, besides the field generation due to the Biermann battery, an am-
plification of the field roughly proportional to ρ2/3. Also Federrath et al. [21] test the
amplification due to spherical compression in their MHD simulations. They start
with a weak field in z-direction and analyse the magnetic field strength during the
collapse. The field grows less than proportional to ρ2/3 at the beginning, as here the
field is not isotropic. Due to the collapse, the field lines get stretched and the typical
hour-glass shape is generated (see Figure 6.3). Then the field becomes isotropic and
grows almost2 proportional to ρ2/3.

Figure 6.3: The typical hour-glass shape of the magnetic field resulting from a col-
lapsing sphere. The left picture shows the initial condition of a magnetic
field in z-direction. This field is not isotropic. In the later stages of the
collapse the field becomes more and more isotropic (see right picture).
Then the magnetic field gets amplified proportional to ρ2/3.

In the astrophysical context we find often a spherical collapse for example during the
formation of a galaxy. We want to estimate the typical timescale for amplifying a
Biermann seed field of B1 = 10−20 G by gravitational compression to B2 = 10−6 G,
which is observed in the Milky Way. In spherical compression we have

B1ρ
−2/3
1 = B2ρ

−2/3
2 , (6.13)

2However, Federrath et al. [21] find in a test of the ideal MHD-approximation small derivations
from B ∝ ρ2/3, which depend on the resolution of the simulation. This is caused by non-ideal
magnetohydrodynamical effects due to small numerical diffusivity.
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where we take ρ2 = 10−24 g as the density of the Milky Way. The galaxy formed
from the collapse of a cloud with density ρ1 within the free-fall time T = 1/

√
Gρ1.

Thus, we find

B1G
2/3T 4/3 = B2ρ

−2/3
2

⇔ T =

(
B2

B1

)3/4
1√
Gρ2

. (6.14)

For our example we find a typical timescale for amplification by gravitational com-
pression of 1018 years, which is many orders higer than the Hubble time. We thus
conclude that gravitational compression alone can not explain the high magnetic
fields observed in galaxies.

6.3.2 Magnetorotational Instability

An effect that leads to amplification of magnetic fields in accretion discs is magne-
torotational instability (MRI).
The magnetorotational instability, which was first found by Velikhov [50] in 1959
and later generalised by Chandrasekhar [51], solves an important problem of accre-
tion. In accretion discs the particles follow Kepler orbits. This means that the inner
particles have a larger angular velocity Ω than the outer particles (Ω ∝ r−3/2). In
ideal hydrodynamics there is no cause for particles to move to the central object.
Different ideas, like the effect of viscosity or turbulence, tried to explain how parti-
cles could lose angular momentum and get accreted [52]. But simulations show that
those effects are not important enough.
Balbus & Hawley [53] showed in 1991 that a weak magnetic field can lead to an
instability in an astrophysical accretion disk. The condition for this instability is,
that the angular velocity needs to decrease with increasing radius. This is the case
for Keplerian motion like in accretion disk. If the magnetic flux is frozen in the gas,
it gets twisted up due to this differential rotation. The field lines get tangled and
the magnetic energy increases in the inner part of the disk. By this the inner parts
slow down and the angular momentum is transported to the outer parts. So the
inner parts can move further inside and accretion takes place.

6.3.3 Magnetohydrodynamical Dynamos -
Phenomenologically

Under special physical conditions, flows of magnetised fluids can amplify magnetic
seed fields by converting kinetic energy into magnetic energy. These processes are
called magnetohydrodynamical dynamos. It turns out that dynamos amplify the
magnetic energy exponentially until they are saturated. One has to distinguish two
different types of dynamos: the large-scale dynamo, which is excited by large-scale
motions, and the small-scale dynamo, which is excited by turbulence on very small
scales.
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In this section we provide a phenomenological description of the magnetohydrody-
namical dynamos.

The Large-Scale Dynamo The magnetic field of the Sun has been observed for
the first time by Hale in 1908 [54]. He discovered the Zeemann effect of H-alpha
lines in Sun spots. Later he showed that the sunspots on the two hemispheres have
different polarities [55]. Moreover, the whole magnetic activity seemed to change
periodicly within a time of 22 years (see “butterfly-diagramm” by Maunder [56]).
With this observations many questions appeared and a theory that aims to describe
the magnetism of the Sun, would need to explain all these observed effects. In
1955 Parker [57, 58] published the first physical interpretation of magnetic field in
the Sun. Today that mechanism is referred to as the alpha-omega dynamo. The
systematic mathematical desciription of this large-scale dynamo was formulated in
1966 by Steenbeck, Krause and Rädler [59] (see Chaper 7).

Figure 6.4: The αΩ-mechanism as a toy model for the large-scale dynamo [60].

We want to describe the αΩ-dynamo, as it takes place for example in the Sun,
qualitatively [7]. We divide the magnetic field into a toroidal field Bφeφ and a
poloidal field Brer + Bθeθ. Now let us assume we have an inital poloidal field for
instance from gravitational compression during the formation of the Sun. This
poloidal field is shown in part (a) of Figure 6.4. As the Sun rotates differentially,
i.e. it rotates faster on the equator than on the poles, the poloidal field lines get
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stretched on the sphere (see (b) in Figure 6.4). Note that we assume here flux
freezing. By this stretching a torodial magnetic field component is generated. The
torodial field lines become denser and denser (part (c)) until a full toroidal field is
created by magnetic reconnection (part (d)). There is still a poloidal component, of
course, but this is omitted now in the figure for simplicity. However, if there is no
mechanism that generates a poloidal field it will decay away at some point and thus
also the production of the toroidal field will stop. Parker solved this problem by
including the convective motions inside the Sun [57]. He assumed that, with partial
flux freezing, the field lines of the torodial field are stretched (see (e)). As this takes
place in a rotating system, the Coriolis force leads to vorticity of the field lines and
a poloidal field is build up again (see part (f) of Figure 6.4).

The Small-Scale Dynamo The small-scale dynamo, also called “turbulent dy-
namo” or “fluctuation dynamo”, converts turbulent kinetic energy into magnetic
energy. The turbulent motions lead to a winding of the magnetic field lines and
compact them. This way the magnetic field energy is amplified.

Figure 6.5: The “stretch-twist-fold”-mechanism as a toy model for the small-scale
dynamo [61].

For a physical interpretation it is useful to take the stretch-twist-fold dynamo as a
toy-model of the turbulent dynamo [61, 62]. Figure 6.5 shows the principle mech-
anism. In this picture we think of a magnetic flux rope that gets stretched due to
turbulent motions as indicated in the transition from picture (A) to (B). This mo-
tion decreases the cross section of the flux rope A. If we assume that the magnetic
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flux B · A is frozen into the gas, then the magnetic field increases during this pro-
cess, because the magnetic flux is a conserved quantity. In step (C) the flux rope is
twisted and then folded in step (D). In the end, the two parts of the flux rope merge
again (step (D) to (A)) and result in a flux rope with the same appearance as the
one at the beginning, but the magnetic field strength has increased. This process
works best in a purely rotational turbulent velocity field. Therefore, we expect the
dynamo to be more easily excited in Kolmogorov turbulence rather than in Burgers
turbulence.
In this picture the magnetic energy is amplified fastest on small-scales, i.e. on
the scales of the smallest turbulent eddies. Smaller turbulent eddies have smaller
turnover times and thus the field lines are tangled up faster.
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7 Theoretical Description of
Magnetohyrodynamical Dynamos

In this chapter we present the most important steps for the theoretical treatment of
magnetohydrodynamical dynamos following Subramanian [15]. We distinguish the
mean magnetic field 〈B〉 and the fluctuating field δB. The total field can be written
as

B = 〈B〉+ δB. (7.1)

In the following derivation we include the effect of ambipolar diffusion (see Section
5.3). For that we start with generalising the induction equation. We will end with
a theory for the large-scale dynamo describing the evolution of 〈B〉 and a theory for
the small scale dynamo describing the evolution of the fluctuating field δB.

7.1 Induction Equation with Ambipolar Diffusion

Astrophysical plasmas are often only partially ionised. If there is a magnetic field in
such a plasma, only the ions feel a force. Hence, we have to be careful when using
the magnetohydrodynamical equations. The induction equation, which is the most
important equation for describing dynamos, contains the velocity of the ions vi,

∂B
∂t

= ∇× vi ×B− η∇×∇×B, (7.2)

with the magnetic diffusivity

η ≡ c2

4πσ
. (7.3)

But often we know only the velocity of the whole gas, which is, for gases with a
low degree of ionisation, in sum the velocity of the neutrals vn. When the magnetic
field is strong enough the Lorentz force acts on the ions and leads to a drift between
the ions and the neutrals. This effect is called ambipolar drift (described in Section
5.3).
Now let us assume that the Lorentz force acting only on the ions, is balanced by
the friction between ions and neutrals, which affects both species. This is a good
approximation, if the ion-neutral collisions are rapid enough. Then we have a force
equilibrium

Ff,i + Ff,n = FL. (7.4)
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The force due to friction for a particle with mass m and velocity v is in general

Ff = m
dv
dt
≈ mνniv, (7.5)

where we have approximated the time derivation of the velocity by the product of
velocity and collision frequency νin.
The Lorentz force (4.18), which acts on a particle with charge q in a magnetic field,
can be combined with the Maxwell equation (4.12) in order to substitute the particle
velocity v

FL =
q

c
v×B =

V

4π
(∇×B)×B. (7.6)

Here we have used the definition of the current density j = q/V v, where V is the
volume.
Substituting the friction and the Lorentz force into equation (7.4) gives us

miνnivi −mnνnivn =
V

4π
(∇×B)×B

⇒ ρiνni(vi − vn) =
1

4π
(∇×B)×B

⇔ vi =
1

4πρiνni
(∇×B)×B + vn

= a(∇×B)×B + vn, (7.7)

where we have assumed that the masses of the ions and the neutrals are almost
equal (mi ≈ mn) and defined a mass density of the ions ρi = mi/V . Furthermore,
we have introduced a coefficient a with

a ≡ 1

4πρiνni
. (7.8)

If the collision rate between the neutrals and the ions νni is very high, the two fluids
are coupled very well and we have ideal MHD. In this case the coefficient a vanishes
and from equation (7.7) it follows that the velocity of the ions equals the velocity
of the neutrals. If the collision rate is low the velocities of ions and neutrals are
different, leading to ambipolar diffusion.
Substituting the velocity of the ions into (7.2) gives an induction equation, which
takes the ambipolar diffusion into account

∂B
∂t

= ∇× (vn ×B− a((∇×B)×B)×B− η∇×B) . (7.9)

We will use this induction equation, which is generalised for ambipolar diffusion, to
determine the evolution equation for the magnetohydrodynamical dynamos.
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7.2 Large-Scale Dynamo: Time Evolution of the
Mean Field

The initial point of our analysis is the induction equation, which describes the evo-
lution of the total magnetic field in time. An iterative solution to the first order in
a timestep δt of equation (7.9) gives us

B(x, δt) = B(x, 0)+δtη∇2B(x, 0)+

∫ δt

0

dt∇×D1(x, t)+
∫ δt

0

dt
∫ δt

0

ds∇×D2(x, t, s)

(7.10)

with

D1(x, t) = vi(x, t)×B(x, 0) (7.11)
D2(x, t, s) = δv(x, t)× [∇× (δv(x, s)×B(x, 0))] (7.12)

Taking the ensamble average of the fluctuating velocity field δv over equation (7.10)
and simultaneously taking the limit of δt→ 0 leads to

∂ 〈B〉
∂t

= ∇×[〈v〉 × 〈B〉+ 2C(0) 〈B〉 − (η + TL(0))∇× 〈B〉]+〈∇ × vD ×B〉 . (7.13)

TL(r) is the longitudinal part of the correlation function of the turbulent velocity
field δv and C(r) corresponds to helicity (see Section 3.1.2). Furthermore, we have
defined the drift velocity vD ≡ vi − vn.
Now let us assume that the magnetic fluctuation field δB is, like the velocity field, a
homogeneous, isotropic Gaussian random field with zero mean. Then we can write
the correlation function as

〈δBi(x, t)δBj(y, t)〉 = Mij(r, t) (7.14)

with the two-point correlation function

Mij(r, t) =
(
δij −

rirj
r2

)
MN(r) +

rirj
r2
ML(r) +H(r)εijkr

k. (7.15)

As the magnetic field is divergence free, we can derive a relation between the trans-
verse and the longitudinal correlation function,

MN =
1

2r

∂

∂r

(
r2ML(r)

)
, (7.16)

where we have used that (rirj/r
2)Mij = ML and (ri/rj)Mij = MN. We can use this

to simplify equation (7.13), for which we get after a some algebra

∂B0

∂t
= ∇× [v0 ×B0 + αeffB0 − ηeff∇×B0] , (7.17)
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where we have defined the effective parameters

αeff = 2C(0)− 4aH(0, t) + a(B0 · ∇ ×B0), (7.18)
ηeff = η + TL(0) + 2aML(0, t) + aB2

0. (7.19)

The evolution equation of the mean magnetic field (7.17) looks very similar to the
induction equation. The only difference is that the two effective parameters αeff and
ηeff appear. The term including αeff is responsible for the alpha effect of the large-
scale dynamo (see alpha-omega dynamo in Section 6.3.3). The last term in (7.17)
is a diffusion term. The effective parameter ηeff contains, besides the usual mag-
netic diffusivity η, a turbulent diffusivity TL(0) and terms including from ambipolar
diffusion coefficient.

7.3 Small-Scale Dynamo: Time Evolution of
Magnetic Fluctuations

In 1968 Kazantsev developed a theory for describing the time evolution of the fluc-
tuating magnetic energy. He found that the field grows due to turbulent motions of
a conducting fluid [63]. The mechanism of converting kinetic energy into magnetic
energy in this way is known as the turbulent or small-scale dynamo.
In this section we describe the Kazantsev theory following the formalism proposed
by Brandenburg and Subramanian [61] and Subramanian [15]. For simplicity we ig-
nore from now on the effects due to helicity, i.e. C(r) = 0, and ambipolar diffusion,
i.e. a = 0.

7.3.1 Kazantsev Theory

In the last section we have introduced the correlation function of the fluctuating
magnetic field 〈δBiδBj〉 in equation (7.14). The time derivative of this is

∂Mij

∂t
=

∂

∂t
(〈δBiδBj〉)

=
∂

∂t
(〈BiBj〉 − 〈Bi〉 〈Bj〉)

=

〈
∂Bi

∂t
Bj

〉
+

〈
Bi
∂Bj

∂t

〉
− ∂

∂t
(〈Bi〉 〈Bj〉) (7.20)

In the upper equation we can substitute the induction equation

∂B
∂t

= ∇× v×B− η∇×∇×B, (7.21)

where η ≡ c2/(4πσ) is the magnetic diffusivity with the speed of light c and the
electrical conductivity σ, and the evolution equation of the magnetic mean field
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(7.17). After a lengthy derivation (see [61]) this leads to

∂ML

∂t
= 2κdiffM

′′
L + 2

(
4κdiff
r

+ κ′diff

)
M ′

L +
4

r

(
TN
r
− TL

r
− T ′N − T ′L

)
ML (7.22)

with

κdiff(r) = η + TL(0)− TL(r). (7.23)

The ′ denotes differentiation with respect to r. The diffusion of the magnetic correla-
tions, κdiff, contains besides the magnetic diffusivity η the scale-dependent turbulent
diffusion TL(0)− TL(r).
With the solution of equation (7.22) we can calculate also MN by using relation
(7.16) and so find the total correlation function of the magnetic field fluctuations
Mij. We note that this quantity is proportional to the energy density of the mag-
netic field B2/(8π).
In order to separate the time from the spatial coordinates we use the ansatz

ML(r, t) ≡ 1

r2
√
κdiff

ψ(r)e2Γt. (7.24)

The factor Γ in the exponential function is called the growth rate of the small-scale
dynamo. Substituting this ansatz in equation (7.22) gives us

−κdiff(r)
d2ψ(r)

d2r
+ Uψ(r) = −Γψ(r) . (7.25)

This is the Kazantsev equation. It formally looks like the quantum-mechanical
Schrödinger equation with a “mass” ~2/(2κdiff) and the “potential”

U(r) ≡ κ′′diff
2
− (κ′diff)2

4κdiff
+

2κdiff
r2

+
2T ′N
r

+
2(TL − TN + κdiff)

r2
. (7.26)

It describes the kinematic limit, because U is independent of the time.

7.3.2 WKB-Approximation

We can use common methods from quantummechanics, like theWKB-approximation,
to solve the Kazantsev equation (7.25). WKB stands for Wentzel, Kramers and Bril-
louin, who developed this method in 1926 [64].

Solution of the Kazantsev Equation in WKB-Approximation In order to
use the standard WKB-method, we have to make some substitutions. Let us first
introduce a new radial coordinate x by defining r ≡ ex. This leads to

κdiff(x)

ex
d
dx

(
1

ex
dψ(x)

dx

)
− (Γ + U(x))ψ(x) = 0. (7.27)
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Next we eliminate the first derivative terms through the substitution

ψ(x) ≡ ex/2θ(x), (7.28)

to obtain

d2θ(x)

dx2
+ p(x)θ(x) = 0, (7.29)

with the definition

p(x) ≡ −(Γ + U(x))e2x

κdiff(x)
− 1

4
. (7.30)

The WKB-solutions of this equations are linear combinations of

θ(x) =
1

p1/4
exp

(
±i
∫ √

p(x′)dx′
)
. (7.31)

The boundary conditions for ψ(r) and θ(x) are

ψ(r)
r→0,∞−−−−→ 0

⇒ θ(x)
r→±∞−−−−→ 0. (7.32)

We can make some predictions about the shape of the function θ(x). For very small
x (x → −∞), p(x) goes to −1/4 < 0, which leads to exponentially growing and
decaying solutions of θ. In the other limit (x → ∞), p(x) → −Γ/η e2x, so we have
growing mode solutions only for positive Γ. The boundary conditions require that
θ grows exponentially for x → −∞ and decay exponentially at x → ∞. In order
to arrange this, p(x) must go through zero, so U(x) needs to become negative for
some r. From now on we label the roots of U(x) as x1 and x2 > x1. As U(r) gets
negative for some r, p(r) gets positive for certain values of r. This means that we
have oscillatory solutions for x1 < x < x2. The conditions for the eigenvalues Γ in
this case is [65]∫ x2

x1

√
p(x′)dx′ =

2n+ 1

2
π (7.33)

for different excitation levels n ∈ N. In this work we concentrate on the lowest mode
n = 0.

Validity of the WKB-Approximation in General In order to find the limits
in which the WKB-method leads to valid solutions of the Kazantsev equation, we
derive the differential equation that is solved exactly by

θ(x) =
1

p1/4
exp

(
±i
∫ x2

x1

√
p(x′)dx′

)
. (7.34)
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The second derivative of θ(x) with respect to x can be written as

θ′′(x) +

(
1 +

p′′

4p2
− 3

16

(p′)2

p3

)
pθ(x) = 0, (7.35)

where now ′ denotes d/dx. This equation results in the Kazantsev equation (7.29)
if

|f(x)| � 1, (7.36)

with

f(x) ≡ p′′

4p2
− 3

16

(p′)2

p3
. (7.37)

We use this result in the next section to check in which range of parameters the
WKB-method produces accurate results of the Kazantsev equation.
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8 Small-Scale Dynamo with Different
Turbulence Models

In this section we use our model of the turbulent velocity correlation function (3.19)
and (3.23) as the input for the Kazantsev theory. We solve the Kazantsev equation
in order to get the characteristic properties of the small-scale dynamo. For this we
use the WKB-method which gives a good approximative solution for large magnetic
Prandtl numbers. In fact, in the limit of infinite magnetic Prandtl numbers the
WKB-approximation is an exact solution of the Kazantsev equation.
In this section, we closely follow Schober et al. [66].

8.1 Validity of the WKB-Approximation

The WKB-method is only an approximate solution of the Kazantsev equation. We
derived condition (7.36), |f | � 1, for which the WKB-method is valid in order to
find solutions. In z-space, f reads

f(z) ≡ z2p′′(z) + 2zp′(z)

4p(z)2
− 3

16

(zp′(z))2

p(z)3
. (8.1)

However, we have seen that the magnetic field is amplified strongest on the scale
`c(z) =

√
Pm/3, as here the potential U has its minimum. So we analyse f(z,Γ)

on this scale and get a dependency of the Prandtl number Pm. Hence we label
f(`c,Γ) ≡ f(Pm,Γ).
One can show that the f(Pm,Γ) vanishes in the limit of large Prandtl numbers for
all Γ and all turbulence types,

lim
Pm→∞

f(Pm,Γ) = 0. (8.2)

This means that the WKB-method is very good in the limit of large magnetic Prandtl
numbers.

8.1.1 Validity of the WKB-Approximation for Kolmogorov
Turbulence

In order to check also lower Prandtl numbers we plot f(Pm, Γ̄) for different nor-
malised growth rates

Γ̄ ≡ L

V
Γ . (8.3)
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Figure 8.1: The function f(Pm, Γ̄) for different values of the normalised growth
rate for Kolmogorov turbulence. Γ̄max is the normalised growth rate in
the limit of infinite magnetic Prandtl numbers, Γ̄max = 37/36 Re1/2.
The WKB-approximation is valid within the non-hatched area, i.e., for
|f(Pm,Γ)| < 0.1.

and Kolmogorov turbulence in Figure 8.1. However, one can show that f(Pm, Γ̄)
does not depend on the Reynolds number for Kolmogorov turbulence. So we choose
values for Γ̄ between 0 and the maximal value Γ̄max for the plot in Figure 8.1,
where Γ̄max is the value for an infinite Prandtl number and depends on the Reynolds
number. One can see that the critical Prandtl number for the WKB-approximation
gets larger with increasing normalised growth rate.
To make a more quantitative estimate of the critical Prandtl number we hatched
the area above f(Pm, Γ̄) = 0.1 and below f(Pm, Γ̄) = −0.1. When f is not in this
area, its absolute value is smaller than ten percent. We take this as a threshold for
our approximation.
We find that our method is applicable in the case of Γ̄ = 0 for

Pm & 13. (8.4)

For higher normalised growth rates the critical Prandtl number increases.
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8.1.2 Validity of the WKB-Approximation for Burgers
Turbulence

We can analyse of the validity of the WKB-solutions for Burgers turbulence in the
same way as for Kolmogorov turbulence using (7.36).
However, we find that the function f given in (8.1) now not only depends on the
normalised growth rate Γ̄ and the Prandtl number Pm, but also on the Reynolds
number Re. The result is shown in Figure 8.2, where we plot f against the Prandtl
number for different Reynolds numbers and different normalised growth rates.
We again determine the critical Prandtl number for the WKB-method for the a
vanishing normalised growth rate. For our different values of the Reynolds number
we get the following critical Prandtl numbers at vanishing growth rate

Pm(Re = 102) & 500, (8.5)
Pm(Re = 104) & 1100, (8.6)
Pm(Re = 108) & 5100. (8.7)

8.2 Critical Magnetic Reynolds Number for
Small-Scale Dynamo Action

8.2.1 Derivation of the Critical Magnetic Reynolds Number

Intuitively, one expects that the high magnetic diffusivity for very low magnetic
Reynolds numbers prevents the amplification of the magnetic field. Even higher
diffusivity eventually results in a net decrease of the field strength. In this section
we calculate a critical magnetic Reynolds number Rmcrit for small-scale dynamo
action. To accomplish this we set the growth in our equations zero.
It should be noted that we use the inertial range (`c < r < L) for determining
Rmcrit as the potential in this range is always negative and for that we have a
positive growth rate (see Figure 8.3). In this range with our turbulence spectrum
(see equations (3.19) and (3.23)) and Γ = 0 we get for the p-function (7.30)

p(y) =
−9/4− a(ϑ)Rmcrity

ϑ+1 + b(ϑ)Rm2
crity

2(ϑ+1)(
1 + 1

3
Rmcrityϑ+1

)2 (8.8)

Figure 8.2 (facing page): The function f(Pm, Γ̄) for fixed Reynolds numbers and
different values of the normalised growth rate for Burgers
turbulence. Notice that in the limit Pm → ∞ the nor-
malised growth rates are Γ̄ = 0.85 for Re = 102, Γ̄ = 3.95
for Re = 104 and Γ̄ = 85.1 for Re = 108. The WKB-
approximation is valid within the non-hatched area, i.e.,
for f(Pm, Γ̄) < 0.1.
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Figure 8.3: The potential depending on the dimensionless parameter y ≡ r/L for
Kolmogorov (ϑ = 1/3) and Burgers turbulence (ϑ = 1/2). We choose
two different Reynolds numbers, Re = 105 and Re = 107, and different
Prandtl numbers, Pm = 102, Pm = 104 and Pm = 108. The cut-off
scale `c depends on the turbulence model and the Reynolds number.
For Kolmogorov turbulence `c = Re−3/4L, for Burgers turbulence `c =
Re−2/3L. A Reynolds number 10x is indicated in the cut-off scale as `(x)c .
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Figure 8.4: The p-function for a magnetic Prandtl number of 1010 as a function of the
dimensionless parameter y ≡ r/L for Kolmogorov (ϑ = 1/3) and Burgers
turbulence (ϑ = 1/2). We set here L = 1 and choose three different
Reynolds numbers, Re = 105, Re = 1010 and Re = 1015. The cut-off
scale `c depends on the turbulence model and the Reynolds number.
For Kolmogorov turbulence `c = Re−3/4L, for Burgers turbulence `c =
Re−2/3L.
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Figure 8.5: The dependence of the critical magnetic Reynolds number Rmcrit from
the slope of the turbulent velocity spectrum ϑ. The dashed line is an
empirical fit through our results.

with a(ϑ) ≡ 5/6− 79/30 ϑ+ 157/30 ϑ2 and b(ϑ) ≡ 14/15 ϑ− 103/60 ϑ2.
Now we can evaluate the eigenvalue condition (7.33) for this p(y) at the “ground
state” n = 0:∫ y02

y01

√
p(y)

dy
y

=
π

2
, (8.9)

in which the additional y comes from the substitution y = r/L = ex/L. The limits
of the integral are the roots of p(y). There is only one real and positive root of p(y),
which we label y1. For the upper limit we have to realise that the potential (7.26)
changes for y > 1 to 2η/(yL)2, which is clearly always positive. Furthermore, also
the diffusion coefficient κdiff = η + TL(0) > 0 for y > 1. With U and κdiff being
positive p(y) is negative in this range, which means that p(y) needs to go through
zero during this transition. So we have our second root at roughly r ≈ L and y2 = 1.
We can solve equation (8.9) numerically for the critical magnetic Reynolds number
Rmcrit if we put in a fixed value of ϑ. Recall, that ϑ was defined in the inertial
range of the turbulence via the relation v(`) ∝ `ϑ. Results for common models
in the literature can be found in Table 8.1. In Figure 8.5 we show how the critical
magnetic Reynolds number depends on ϑ. Here one can see that the critical magnetic
Reynolds number increases rapidly, as ϑ gets closer to its maximum value of 1/2.
An empirical fit Rmcrit,fit(ϑ) through this data in the range 0.33 < ϑ < 0.5 is

Rmcrit,fit(ϑ) = 88 · (tan(2.68ϑ+ 0.2)− 1) . (8.10)
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Model/Reference ϑ Rmcrit Γ̄ (Pm→∞)

Kolmogorov [10] 1/3 ≈ 107 37/36 Re1/2

intermittency of Kolmogorov turbulence
(She and Leveque [67])

0.35 ≈ 118 0.94 Re0.48

driven supersonic MHD-turbulence
(Boldyrev et al.[68])

0.37 ≈ 137 0.84 Re0.46

observation in molecular clouds
(Larson [17])

0.38 ≈ 149 0.79 Re0.45

solenoidal forcing of the turbulence
(Federrath et al. [18])

0.43 ≈ 227 0.54 Re0.40

compressive forcing of the turbulence
(Federrath et al. [18]),
observations in molecular clouds
(Ossenkopf and Mac Low [69])

0.47 ≈ 697 0.34 Re0.36

Burgers [12] 1/2 ≈ 2718 11/60 Re1/3

Table 8.1: The critical magnetic Reynolds number Rmcrit and the normalised growth
rate of the small-scale dynamo Γ̄ in the limit of infinite magnetic Prandtl
numbers. We show our results for different types of turbulence, which
are characterised by the exponent ϑ of the slope of the turbulent velocity
spectrum, v(`) ∝ `ϑ. The extreme values of ϑ are 1/3 for Kolmogorov
turbulence and 1/2 for Burgers turbulence.

Furthermore, we collect the results for common turbulence models in the literature
in Table 8.1. The two extrema of turbulence are Kolmogorov turbulence [10], i.e.
incompressible turbulence, with ϑ = 1/3 and Burgers turbulence with ϑ = 1/2,
which describes highly compressible turbulence with vanishing rotational component
[12]. Between those extreme values we choose values of ϑ from observations of
molecular clouds, like ϑ ≈ 0.38 from Larson [17] and ϑ ≈ 0.47 from Ossenkopf and
Mac Low [69]. Furthermore, we give ϑ ≈ 0.35 as an example for a theoretical model
of intermittency [67]. Numerical experiments give ϑ ≈ 0.37 for driven supersonic
MHD-turbulence [68] and ϑ ≈ 0.43 and ϑ ≈ 0.47 for solenoidal and compressive
forcing of the turbulence [18]. Notice, however that the mean values of ϑ from
observations and simulations have a typical uncertainty of ten percent.
We find that the small-scale dynamo is more easily excited in the case of a purely
rotational turbulent velocity field, i.e. for Kolmogorov turbulence, where we find
Rmcrit ≈ 110. The critical magnetic Reynolds number for a turbulent field with a
vanishing rotational component, i.e. Burgers turbulence, is roughly 2700.
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8.2.2 Discussion of the Critical Magnetic Reynolds Number

From these results we see that for all types of turbulence a high magnetic Reynolds
number needs to be exceeded for small-scale dynamo action. In astrophysical ob-
jects we often find very high magnetic Reynolds numbers (see compilation in [62]).
The core of Jupiter, for example, has a Rm ≈ 106, the solar convection zone has
Rm ≈ 108 and the solar corona already Rm ≈ 1012. In the interstellar medium
we find Rm ≈ 1017 and in a typical galaxy about 1019. Consequently, the critical
magnetic Reynolds number is exceeded by far in nature and we expect that the
small-scale dynamo operates in typical astrophysical objects.
Recent high-resolution numerical studies confirm the existence of a critical magnetic
Reynolds number for small-scale dynamo action. Haugen et al. [70] find Rmcrit ≈ 35
for subsonic turbulence and Rmcrit ≈ 70 for supersonic turbulence at a magnetic
Prandtl number of about unity. In numerical simulations, the magnetic Reynolds
number can be estimated by Rm ≈ (λ/`c)

ϑ+1, where λ is the typical size of tur-
bulent structures and `c is the cut-off scale of the turbulence. The latter can be
estimated with the minimal resolved size in a simulation ∆x by `c ≈ 0.5 ∆x [71].
In resolution studies, Sur et al. [72] and Federrath et al. [21] find that the typical
length of a turbulent fluctuation needs to be resolved with at least 30 grid cells in
magnetohydrodynamical simulations of self-gravitating gas (see Figure 8.6). Only
then the magnetic field is amplified exponentially, which is explained by the action
of the small-scale dynamo.
For a physical interpretation of this result it is useful to take the stretch-twist-fold-
dynamo as a toy-model of the turbulent dynamo, which is described in Section
(6.3.3). This process works best in a purely solenoidal turbulent velocity field.
Therefore, we expect the dynamo to be more easily excited in Kolmogorov turbu-
lence. In order to see this process in simulations, one needs to resolve the stretching,
twisting and folding of the field lines, which leads to the required high resolution.
The determination of the critical magnetic Reynolds number is, moreover, the first
step to understand the saturation of the small-scale dynamo. If the magnetic field
in a system increases, back reactions from the gas become more important. Then
processes like the Lorentz force or ambipolar diffusion can change the properties of
the gas and the magnetic Reynolds number can decrease. If the magnetic Reynolds
number gets smaller than the critical magnetic Reynolds number, the magnetic field
stops growing and the small-scale dynamo is saturated.

71



CHAPTER 8 8.3 Growth Rate of the Small-Scale Magnetic Field

Figure 8.6: The growth of the magnetic field as a function of time in a numerical
simulation from Federrath et al. [21]. As the effect due to gravitational
compression is corrected, the pure dynamo growth is shown. The mag-
netic field only grows for resolutions higher that about 30 cells.

8.3 Growth Rate of the Small-Scale Magnetic Field

8.3.1 Derivation of the Growth Rate

Growth Rate in the Limit Pm→∞
In this paragraph we derive a general analytic solution for the growth rate Γ for an
arbitrary slope of the turbulent velocity spectrum, in the limit of infinite magnetic
Prandtl numbers.
As the potential has its minimum in the small-scale range, i.e. the dissipation
range of the turbulence (see Figure 8.3), the growth rate, which is the eigenvalue of
the Kazantsev equation, takes its maximum value there. So we expect the fastest
growing mode to be in the small-scale range.
In order to have scale-independent equations, we introduce the substitution

z ≡
(
V
√
Re

3Lη

)1/2

r =

(
Re3/2Pm

3

)1/2

y, (8.11)

where the magnetic Prandtl number is Pm = Rm/Re.
The p-function in z-space, see (7.30) and (8.11), for the general turbulence spectrum
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(3.19) in the dissipation range is

p(z) =
A0z

4 −B0z
2 − 45Re(3+7ϑ)/(2+2ϑ)

20Re1/2 (Re(1+3ϑ)/(2+2ϑ) +Re1/(1+ϑ)z2)
2 (8.12)

with the definitions

A0 = Re(5+ϑ)/(2+2ϑ) (163− 304ϑ)− 20

3
Re5/2Γ̄, (8.13)

B0 = (304ϑ− 98)Re2 +
20

3
Re(2+8ϑ)/(1+ϑ)Γ̄. (8.14)

and the normalised growth rate Γ̄ (8.3). In the limit of large Prandtl numbers z is
large, too, and we can neglect the constant terms. We obtain

p(z) =
Re−(5+ϑ)/(2+2ϑ)

20

A0z
2 −B0

z2
. (8.15)

The one real and positive root of this function is z1 =
√
B0/A0. At the cut-off

scale of the turbulence the p-function changes its sign. We take this as our second
root and so have z2 =

√
Pm/3 Re(3ϑ−1)/(4ϑ+4). So we get for the general eigenvalue

condition

Re−(5+ϑ)/(4+4ϑ)

2
√

5

∫ z2

z1

√
A0z2 −B0

z4
dz =

π

2
, (8.16)

resulting in the analytical solution of the integral

Re−(5+ϑ)/(4+4ϑ)

2
√

5z

[√
A0ln

(
2
(√

A0z +
√
A0z2 −B0

))
−
√
A0z2 −B0

]∣∣∣z2
z1

=
π

2
. (8.17)

For z2 � 1 this becomes

Re−(5+ϑ)/(4+4ϑ)

2
√

5

√
A0

[
1− ln

(
4
√
A0z2

)
+

1

2
ln (4B0)

]
=
π

2
. (8.18)

A zero-order iterative solution for Γ̄ gives us

Γ̄ =
163− 304ϑ

60
Re(1−ϑ)/(1+ϑ) −

(
√

5π
Re(5+ϑ)/(4+4ϑ)[

1− ln
(
4
√
A0z2

)
+ 1/2 ln (4B0)

])2

,

(8.19)

which becomes for large Prandtl numbers

Γ̄ =
163− 304ϑ

60
Re(1−ϑ)/(1+ϑ). (8.20)

73



CHAPTER 8 8.3 Growth Rate of the Small-Scale Magnetic Field

0.1

1

10

100

10−1 100 101 102 103 104 105 106

Γ̄

Re

K41: ϑ = 1/3
SL94: ϑ = 0.35

BNP02: ϑ = 0.37
L81: ϑ = 0.38

FRKSM10(sol): ϑ = 0.43
FRKSM10(comp),OM02: ϑ = 0.47

B48: ϑ = 1/2

Figure 8.7: The normalised growth rate of the small-scale dynamo in the limit of
infinite magnetic Prandtl numbers, depending on the Reynolds number,
Re. For the slopes of the turbulent velocity spectrum ϑ we choose com-
mon values from the literature: K41 [10], SL94 [67], BNP02 [68], L81
[17], FRKSM10 [18] (sol: solenoidal forcing, comp: compressive forcing),
OM02 [69], B48 [12].

As a result we get for the absolute growth rate Γ for a general slope of the turbulent
velocity spectrum

Γ =
(163− 304ϑ)

60

V

L
Re(1−ϑ)/(1+ϑ) (8.21)

in the limit Pm→∞.
In Figure 8.7 we show the dependency of the normalised growth rate Γ̄ on the
Reynolds number for different types of turbulence. One extreme case is incompress-
ible turbulence, i.e. Kolmogorov turbulence, with Γ̄ ∝ Re1/2. In the other extreme
case, highly compressible turbulence, i.e. Burgers turbulence, the growth rate in-
creases only with Re1/3. Altogether we find that the growth rate increases faster
with the Reynolds number when the compressibility is lower.
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Figure 8.8: The normalised growth rate of the small-scale dynamo, depending on
the magnetic Prandtl number, Pm, for Kolmogorov turbulence. We
choose different values of the Reynolds number. Notice that in the limit
Pm → ∞ the normalised growth rates are Γ̄ = 10.28 for Re = 102,
Γ̄ = 102.78 for Re = 104 and Γ̄ = 10277.78 for Re = 108. These limits
are indicated in the plot as vertical lines.

Growth Rate as a Function of the Prandtl Number

In this section we discard the assumption of infinite Prandtl numbers. In this case
we have to solve the full equation resulting from the WKB-method (7.33)∫ √

p(z)

z
dz =

π

2
, (8.22)

with p(z) from (8.12). There is no analytical solution of this integral equation.
The numerical results of the normalised growth rate are shown in Figure 8.8 for
Kolmogorov turbulence and in Figure 8.9 for Burgers turbulence. We plot the nor-
malised growth rate depending on the Prandtl number for different values of the
Reynolds number.
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Figure 8.9: The normalised growth rate of the small-scale dynamo, depending on
the magnetic Prandtl number, Pm, for Burgers turbulence. We choose
different values of the Reynolds number. Notice that in the limit Pm→
∞ the normalised growth rates are Γ̄ = 0.85 for Re = 102, Γ̄ = 3.95 for
Re = 104 and Γ̄ = 85.1 for Re = 108. These limits are indicated in the
plot as vertical lines.

8.3.2 Discussion of the Growth Rate

Our results show that the growth rate is proportional to the velocity V of the largest
eddy divided by its length L. The ratio V/L is one over the turnover time of an
eddy. Thus, the growth rate increases with decreasing turnover time, and the small-
est modes grow at the highest rate. This is expected, because smaller turnover times
lead to a faster tangling of the magnetic field lines.
Furthermore, the growth rate increases with increasing hydrodynamical Reynolds
number for all types of turbulence, characterised by v(`) ∝ `ϑ. In order to achieve
the same growth rate for Kolmogorov and Burgers turbulence we have to provide a
larger Reynolds number in the latter case. Assuming a different Reynolds numbers
in both cases, ReK and ReB, the growth rate of the two different turbulence types
are the same for ReK ≈ 0.18(ReB)3/2. This fact can again be motivated with the
stretch-twist-fold model (see Section 6). We need solenoidal modes, i.e. divergence-
free modes, of the turbulence for this process [73], which explains that incompressible
turbulence amplifies the magnetic field more effectively.
There are recent high-resolution numerical simulations that model the turbulent dy-
namo. The two limiting ways of driving the turbulence are solenoidal, i.e. divergence-
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free, forcing and compressive, i.e. rotation-free, forcing. These simulations show, in
agreement with our study, that solenoidally driven turbulence leads to larger growth
rates of the small-scale dynamo. Waagan et al. [74] find, using a Reynolds number of
about 15001 and a magnetic Prandtl number of about 1, for totally solenoidal forc-
ing of the turbulence Γ̄sol = 0.60 and for totally compressive forcing Γ̄comp = 0.28.
These values of the growth rate are in comparison with our model (with Re = 1500),
Γ̄sol = Γ̄ϑ=0.43 ≈ 10.07 and Γ̄comp = Γ̄ϑ=0.47 ≈ 4.73, about a factor of 17 lower. This
can be explained by the fact that the simulations have a very low magnetic Prandtl
number of about 1. However, our result for the growth rate in Table 8.1 has been
derived with the assumption of infinite Prandtl numbers. We have also explored the
range of smaller Prandtl numbers. The result is presented in Figures 8.8 for Kol-
mogorov turbulence and in Figure 8.9 for Burgers turbulence. But with our model,
we can make no predictions for Prandtl numbers around unity, because in this range
the WKB-approximation is no longer applicable (see Appendix 8.1). However, the
trend is that the growth rate decreases for smaller Prandtl numbers, which can ex-
plain the lower growth rates from simulations. Yet the ratio of the growth rate of
turbulence driven by solenoidal and compressive forcing is in both cases about 2
(our model: Γ̄sol/Γ̄comp ≈ 2.1, Waagan et al. [74]: Γ̄sol/Γ̄comp ≈ 2.1), which shows
that incompressible turbulence is more efficient in amplifying a magnetic field by
the small-scale dynamo.
Furthermore, Federrath et al. [73] have presented a study of the Mach number depen-
dence of the growth rate of the small-scale dynamo, where they compare solenoidal
with compressive forcing of the turbulence. They find that, for low Mach numbers,
the ratio of the growth rate of turbulence driven by solenoidal and compressive forc-
ing is about 30 (for Mach number M = 0.1: Γ̄sol ≈ 1.2, Γ̄comp ≈ 0.04). However, for
higher Mach numbers their calculations also result in a ratio of Γ̄sol/Γ̄comp ≈ 2 (for
Mach number M = 10: Γ̄sol ≈ 0.7, Γ̄comp ≈ 0.3), which is in agreement with our
results. The lower growth rates in the simulation again may come from low Prandtl
numbers in the simulations of order of unity. However, a great uncertainty is the
Reynolds number in numerical simulations, which is only a crude estimate.

1Waagan et al. [74] give a magnetic Reynolds number of about 200. However, these ideal MHD-
simulations were later calibrated with resistive non-ideal MHD-simulations in Reference [73]
showing that the Reynolds number is about 1500.
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9 Small-Scale Dynamo in Primordial Star
Formation

As an application for the amplification of magnetic fields via the small-scale dy-
namo we consider primordial star formation. We start with a presentation of the
most important issues on primordial star formation. Then we estimate the different
microscopic and macroscopic properties of primordial gas, like viscosity, magnetic
diffusivity and the Reynolds numbers. With these quantities we can determine the
growth rate of the small-scale dynamo during primordial star formation, and finally
the evolution of the magnetic field strength during the early phase of the collapse.

9.1 Primordial Star Formation

9.1.1 Star Formation in General

Stars form in the interstellar medium within overdense gas clouds [11]. In principle,
there are two important forces in a cloud, the gravitational force, which leads to con-
traction of the cloud, and the pressure, which leads to expansion. In hydrodynamical
equilibrium those two forces are equal,

dp(r)
dr

= −Gρ(r)M(r)

r2
, (9.1)

whereM(r) is the enclosed mass. As soon as the gravitational force is stronger than
the pressure force, the cloud becomes unstable and collapses.
The two forces act on different timescales. The pressure changes in the time a sound
waves needs to cross the could with a diameter d,

Ts =
d

cs
, (9.2)

where cs is the sound speed. On the other hand, gravity acts on the free-fall time
scale, which is

Tff =
1√
Gρ

, (9.3)

where ρ is the density of the cloud. At a critical diameter of the cloud

LJ ≡
cs√
Gρ

, (9.4)
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called the Jeans length1 [75], these two timescales are equal. Now we imagine that
the cloud is perturbed and starts contracting. If the timescale of the pressure Ts is
larger than the free-fall time, the pressure will not have enough time to compensate
and the gravity predominates. Thus, the cloud collapses, if

Ts > Tff, (9.5)

which means

d > LJ. (9.6)

A very important quantity in this context is the Jeans mass, which is defined by

MJ ≡
4π

3
ρ

(
LJ

2

)3

. (9.7)

Substitution of the Jeans length (9.4) leads to

MJ ≡
π

6

c3
s

G3/2ρ1/2
. (9.8)

With this definition, a cloud collapses if its mass M is larger than the Jeans mass,
i.e.

M > MJ. (9.9)

Thus, gravitational collapse happens easiest, if the Jeans mass is small. This is the
case for low temperatures, as the sound speed increases with temperature. These
are ideal conditions for star formation.
As the equation of state changes from an isothermal to an adiabatic one, the collapse
slows down. When the gas reaches a density of about 1 g cm−3, the temperature
becomes roughly 107 K and nuclear fusion sets in. This provides an additional force
acting against gravity and the system gets into equilibrium. In this way a new star
is born.
This is of course a very idealised picture. We assumed here a spherical gas cloud
with a homogeneous density. External influences like large scale flows and shocks
have not been included. Furthermore, we have not taken care of additional physical
processes. Rotation and magnetic fields act against the collapse. Also turbulence
changes the collapse as it provides an additional pressure.

9.1.2 Primordial Star Formation

The first stars mark an important transition in the Universe. Before their formation,
the Universe was homogeneous, rather simple and, except for the cosmic microwave
photons, dark. In this section we present the ideas of primordial star formation
following mainly the review of Bromm and Larson [76].
At redshifts between 20 and 30 the first stars, also called Population III stars,
formed in dark matter halos of a typical mass of 106 M�2. The main difference

1A proper derivation from the hydrodynamical equations leads to LJ ≡ πcs/
√
Gρ.

2M� is the mass of the Sun, which is about 2× 1033 g.
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to present day star formation is the composition of the gas and related to this the
cooling mechanisms. Primordial gas consists of roughly 75% hydrogen and 25%
helium in terms of mass fraction. There is no dust, which is the main coolant
in present-day star formation. The virial temperature of the dark matter halos is
about 1000 K, which excludes cooling by hydrogen lines3. At these temperature
cooling is possibile via rotational-vibrational transitions of H2. Thus, the formation
of molecular hydrogen is very important. Numerical simulations show that during
the collapse of a primordial halo almost all hydrogen is converted to H2 via different
chemical reactions. In primordial star formation H2 is the most important coolant.
For a long time calculations showed that the first stars were extremely massive
and no multiple systems formed. For example Abel et al. [77] show in their three-
dimensional hydrodynamical simulations that the mass of the first stars was larger
than 100 M�. Stars of these masses would have lived only for a very short time,
before they exploded in an extremely high-energy supernova explosion. On the other
side, newer simulations of Clark et al. [78], which follow the evolution of protostellar
disks, result in very tight systems of many first stars with lower masses.
The first stars themself produced a negative feedback in the form of soft UV-photons,
which destroy the molecular hydrogen via photodissociation. This affects the cooling
mechanism. Furthermore, the first stars enriched the gas with heavy elements by
supernova explosions. This leads to the transition to Population II stars.
Many questions on primordial star formation remain unanswered. For example the
initial mass function is unclear. Furthermore, the effect of magnetic fields has often
been neglected.

9.2 Properties of Primordial Gas

9.2.1 Composition of Primordial Gas

Primordial gas at a redshift of about 800 consists mostly of atomic hydrogen, which
makes up about 75% of the total mass. Most of this hydrogen is neutral, but roughly
0.25% is singlely ionised. Almost all the remaining mass of the primordial gas, i.e.
25%, is helium. The main helium isotope is 4He, but there is also a small fraction
of 3He, while ionised helium plays no role. The primordial gas also includes some
deuterium, which has a fraction relative to hydrogen of D/H ≈ 2.5× 10−3. There is
also a low fraction of D+. Besides, there is also a trace of lithium, which makes up
a ratio of Li/H ≈ 5× 10−10. Most of the lithium is singly ionised [79].
In the further evolution of the Universe these species produce secondary species
due to chemical reactions. We use the chemistry code of Glover and Savin [80] to
calculate the abundances of the different species during the collapse of a primor-
dial halo, including a treatment relating the collapse time to the equation of state
from Schleicher et al. [81]. The numerical code determines the thermal and chem-
ical evolution of the gas in a one-zone model. The density evolves according to a

3The threshold for hydrogen line cooling is roughly 104 K.
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Figure 9.1: The abundances of different chemical species as a function of the density.

free-fall collapse and the temperature is calculated by solving the energy equation.
Glover and Savin model the chemistry with a chemical network including around
400 reactions and 30 different atomic and molecular species. They take the full
time-dependent non-equilibrium chemistry into account for many species. The ini-
tial fractional abundances relative to hydrogen are 0.083 for helium, 2.6× 10−5 for
deuterium and 4.3× 10−10 for lithium. The initial density is 1 cm−3 and the initial
temperature 1000 K.

9.2.2 Estimate of Physical Properties

The goal of this section is to estimate different microscopic and macroscopic prop-
erties of primordial gas.

Viscosity The kinematic viscosity ν can be estimated as

ν ≈ V (`c)L(`c), (9.10)

where V (`c) is the typical velocity on the viscous scale `c and L(`c) the typical length
on that scale. For the latter we use the mean free path λ. Thus, we set

L(`c) ≈ λ =
1

σn
, (9.11)

where we insert the geometrical cross section σ ≈ πd2. Here, d =
∑

i ξidi is the
mean particle diameter with the Van-der-Waals diameter di of the different species
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Figure 9.2: The viscosity and the Ohmic diffusivity as a function of the density.

of normalised fraction ξi. The typical velocity of the gas on small scales is the
thermal velocity vtherm. With m/2 v2

therm = 3/2 kT we find

V (`c) ≈ vtherm =

(
3kT

m

)1/2

. (9.12)

Here, k is Boltzmann constant and T the temperature. Moreover, m =
∑

i ξimi is
the mean particle mass, with the masses of the different species mi and the relative
abundances ξi. The temperature as well as the abundances of the individual species
depend on the density. We take these quantities from the chemistry code of Glover
and Savin [80]. Thus, we find for the kinematic viscosity

ν =

(
3kT

m

)1/2
1

πd2n
. (9.13)

We show the resulting viscosity as a function of the density in Figure (9.2).

Diffusivity For the magnetic diffusivity η we use the Ohmic resistivity ηOhm as
derived by Pinto et al. [82],

ηOhm =
c2

4πσ||
. (9.14)

The parallel conductivity σ|| for a neutral species n is calculated by

σ||,n =
c

B

∑
s

nsqsβns. (9.15)
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The sum is taken over the different charged species s, which carry the charge qs.
The Hall parameters βns are given as

βns =
qsB

msc

ms +mn

mnξnn 〈σv〉sn
. (9.16)

Here mn and mn are the masses of the neutral and the charged particles, ξs is the
fraction of the species s and 〈σv〉sn the momentum transfer rate coefficient. We take
these coefficients, which are functions of the temperature, from Pinto and Galli [83],
where we use the polarisation approximation for Li+.
We use the most important neutral species H, He and H2 and the charged species H+,
e− and Li+. For each neutral species we calculate the Ohmic resistivity, ηOhm,n =
c2/(4πσ||,n). Notice that the final expression does not depend on the magnetic field
strength B. Finally, the total Ohmic magnetic diffusivity ηOhm is

ηOhm =
1∑

n η
−1
Ohm,n

. (9.17)

Reynolds Numbers The hydrodynamic and magnetic Reynolds numbers are de-
fined as

Re ≡ V L

ν
(9.18)

Rm ≡ V L

η
, (9.19)

where L is the length of the largest turbulent fluctuations and V the typical velocity
on that scale.
For the typical velocity of the largest fluctuations we use the sound speed cs, as the
Mach number in a primordial halos is roughly one [84]. With the assumption of
ideal gas we get

V ≈ cs =

√
γkT

m
. (9.20)

Here γ is the adiabatic index defined as γ = 1 + dlogT/(dlogρ), which we take from
the chemistry code [80].
We estimate the length of the largest turbulent fluctuations as the Jeans length
(9.4), which is the typical length scale of a collapsing cloud, i.e.

L ≈ cs√
Gmn

, (9.21)

where G is the gravitational constant.
The resulting Reynolds numbers are shown in Figure 9.3 as a function of the density.
The critical magnetic Reynolds number, which we derived in Chapter 8, is also
indicated for the two extreme types of turbulence.
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Figure 9.3: The hydrodynamic and magnetic Reynolds numbers as well as the mag-
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lines indicate the critical magnetic Reynolds number for Kolmogorov and
Burgers turbulence.

Magnetic Prandtl Number The definition of the magnetic Prandtl number is

Pm ≡ Rm

Re
=
ν

η
. (9.22)

We can calculate this quantity easily by using the equations (9.13) and (9.17). In
Figure 9.3 the density dependency of the magnetic Prandtl number is shown.
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9.3 The Small-Scale Dynamo in Primordial Star
Formation

9.3.1 Validity of our Approximation

In Figure 9.3 the magnetic Prandtl number Pm is shown as a function of the density.
During the whole collapse its value changes over 25 orders of magnitude. At the
beginning of the collapse Pm ≈ 1015, which is very high. With increasing density
Pm decreases rapidly. We assume the approximation of large magnetic Prandtl
numbers to be valid until a particle density of about 103 cm−3, when Pm ≈ 109.
Compare this to our results in Section 8.1.
This means we can use the formula (8.21) safely to calculate the growth rate of the
small-scale dynamo up to densities of roughly 103 cm−3. For larger densities the
growth rate decreases. However, this decrease is strong only for rather low Pm,
depending on the turbulence model and the hydrodynamical Reynolds number (see
Figures 8.8 and 8.9).

9.3.2 Small-Scale Dynamo Action during the Collapse

Critical Magnetic Reynolds Number In Section 8.2 we found that the critical
magnetic Reynolds number for small-scale dynamo action Rmcrit is roughly 110 for
Kolmogorov turbulence and 2700 for Burgers turbulence. The dependence of the
magnetic Reynolds number on the density is shown in Figure 9.3 together with the
two extreme cases of Rmcrit. We can see that the magnetic Reynolds number is
larger than Rmcrit for all densities. This means that the small-scales dynamo can
operate at all densities, unless, of course, it is already saturated.

Growth Rate of Magnetic Fields With the quantities determined in the last
section, we can calculate the growth rate of the small-scale dynamo. We use our
result from equation (8.21),

Γ =
(163− 304ϑ)

60

V

L
Re(1−ϑ)/(1+ϑ), (9.23)

and analyse the two extreme types of turbulence, Kolmogorov with ϑ = 1/3 and
Burgers turbulence with ϑ = 1/2. We find

ΓK =
37

36

V

L
Re1/2,

ΓB =
11

60

V

L
Re1/3. (9.24)

For the typical velocity of the gas V we again use the sound speed cs from equation
(9.20) and for the typical length L we use the Jeans length (9.21). Figure 9.4 shows

86



CHAPTER 9 9.3 The Small-Scale Dynamo in Primordial Star Formation

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 102 104 106 108 1010 1012

Γ
[s

−
1
]

n[cm−3]

ΓB

ΓK
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the growth rates for the two extreme cases of turbulence as a function of the density.
We fit the growth rates with a simple power law

Γ(n) = a nb, (9.25)

where n is in units of cm−3. For Kolmogorov turbulence we find the fit parameters
aK = 4.00 × 10−13 s−1 and bK = 0.75. In the case of Burgers turbulence we find
aB = 7.10× 10−15 s−1 and bB = 0.67. We estimate the time scale of the magnetic
field amplification by the small-scale dynamo by

Tdynamo =
1

Γ
(9.26)

and compare it to the free-fall time

Tff =

√
1

Gmn
. (9.27)

The result is shown in Figure 9.5. In our model the magnetic field on the fastest
growing scale growths one to three orders of magnitude faster than the halo collapses.
Note, however, that the dynamo growth is exponential in time. This means that
one e-folding in density corresponds to 10 e-foldings in the growth rate for Burgers
turbulence, which is roughly 104, and 1000 e-foldings for Kolmogorov turbulence,
which is roughly 10434!
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Dissipation of Magnetic Energy The magnetic energy can be dissipated again.
The dissipation term in the induction equation (5.6) is ηOhm∇2B. We approximate
this by ηOhmB/L

2 and ∂B/∂t by B/TD. We then get
B

TD
≈ ηOhm

B

L2

⇔ TD ≈ L2

ηOhm
, (9.28)

where TD is the typical timescale for dissipation of magnetic energy and we use the
Jeans length for L.
We show the comparison of the dissipation timescale, the free-fall time and the
dynamo timescales in Figure 9.5. For low densities the dissipation timescale is
many orders of magnitude higher than the other timescales. This means that it has
a minor influence on the magnetic field during the collapse. With increasing density
the dissipation timescale decreases, but even at a density of 1015 cm−3 it is still 5
orders of magnitude larger than the free-fall time. This behavior may change if we
include besides the Ohmic resistivity also the ambipolar diffusivity.
We define the dissipation rate DOhm as

DOhm =
B2/(8π)

TDOhm

≈ ηOhm

8π

B2

L2
. (9.29)
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The Resulting Magnetic Field The magnetic field is generated by the small-
scale dynamo with a growth rate Γ as we have seen in this section. At the same
time a part of the magnetic field decays again with DOhm. Thus, the evolution of
the magnetic energy EB = B2/(8π) is described by the differential equation

dEB

dt
= ΓEB −DOhm. (9.30)

However, the timescale for dissipation is very high, as shown in Figure (9.5). Hence
we can neglect DOhm,

dEB

dt
= ΓEB. (9.31)

For the time t we use what we call the “collapse time” from now on,

tcoll =
1√

Gm0n0

− 1√
Gmn

. (9.32)

This is the time that starts from the beginning of the collapse, when the gas has a
density n0 = 1 cm−3 and a mean particle mass of m0 = 2.2×10−24 g, to an arbitrary
point of the collapse, when the gas has a density n. Figure 9.6 visualises this time.
One can see, that the collapse is very slow in the beginning and becomes very fast
in the end. The total time of the collapse is roughly 2.6 × 1015 s = 8.2 × 107 yr.
With the collapse time we can rewrite equation (9.31) in terms of the density with
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dn
dt

=
Gm

(Gmn)3/2
(9.33)

and find

dEB

dn
=

Gm

(Gmn)3/2
Γ(n)EB. (9.34)

For the dependence of the growth rate on the density we use the power-law fit from
equation (9.25). Then the solution of equation (9.33) is

EB(n) = EB,0 exp
(

a√
Gm(b− 1/2)

(
nb−1/2 − nb−1/2

0

))
. (9.35)

The equation for the evolution of the magnetic field strength is

B(n) = B0 exp
(

a

2
√
Gm(b− 1/2)

(
nb−1/2 − nb−1/2

0

))
, (9.36)

with B(n0) ≡ B0. Equation (9.36) tells us how the magnetic field grows due to
small-scale dynamo action. If we include the effect of amplification due to spher-
ical gravitational compression (see Section 6.3.1), we get an additional factor of
(n/n0)2/3. In total, the magnetic field strength is

B(n) = B0 exp
(

a

2
√
Gm(b− 1/2)

(
nb−1/2 − nb−1/2

0

))
·
(
n

n0

)2/3

. (9.37)

A natural upper limit of the magnetic field is given by equipartition with the tur-
bulent kinetic energy. With B2

max/(8π) = 1/2ρV 2 we find the maximum magnetic
field strength

Bmax =
√

4πρV 2. (9.38)

Using the thermal velocity vtherm (9.12) for a typical turbulent velocity, we find

Bmax =
√

12πkT . (9.39)

As the magnetic field strength can never be larger than the saturation field strength
(9.39), we have

B(n) = min

{
B0 exp

(
a

2
√
Gm(b− 1/2)

(
nb−1/2 − nb−1/2

0

))
·
(
n

n0

)2/3

, Bmax

}
.

(9.40)
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In Figure 9.7 we show the resulting growth of the field strength. As an initial field
strength B0 we use 10−20 G, which is a typical field generated by a Biermann battery.
The field strength grows extremely fast with the density during the dynamo growth.
For Kolmogorov turbulence the saturation value is obtained already at a density
of about 1.08 cm−3. The collapse time at this density is roughly 9.9 × 1013 s ≈
3.1 × 106 yr. For Burgers turbulence the dynamo is saturated at roughly 16 cm−3,
which refers to a collapse time of roughly 2.0× 1015 s ≈ 6.2× 107 yr.
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Figure 9.7: The magnetic field strength as a function of the density. The green
line is the field generated by the small-scale dynamo with Kolmogorov
turbulence, the orange line indicates the field in case of Burgers turbu-
lence. The red line is the maximum magnetic field strength. The total
field strength is the minimum of the dynamo generated field and the
saturated field.

91



CHAPTER 9 9.4 Effects of Magnetic Fields in Star Formation

9.4 Effects of Magnetic Fields in Star Formation

We have seen in this chapter, that there may have been reasonably strong magnetic
fields in the primordial gas generated by the small-scale dynamo. These fields could
have affected the formation of the first stars in different ways.
An important effect of magnetic fields in star formation is the magnetorotational
instability (MRI, see 6.3.2). Maki and Susa [85] find in their simulation of the col-
lapse and the accretion phase of primordial star formation, that the magnetic flux
is frozen into the gas during the whole evolution. This is the precondition for the
MRI, which takes place in the accretion disk. Silk and Langer [86] explored the
MRI in protostellar disks. They find that with magnetic fields, generated by MRI,
primordial star formation can take place at any metallicity by regulating angular
momentum transfer, fragmentation, accretion and magnetic feedback. Furthermore,
they argue that the initial mass function (IMF) is a consequence of magnetic feed-
back and suggest that the IMF might be closer to the present-day IMF.
Magnetic fields can suppress the fragmentation of a cloud. Hennebelle et al. [87]
find in their high resolution MHD-simulations of 100 M� clouds with turbulence
and magnetic fields that the fragmentation is reduced by a factor of 1.5 to 2 in
comparison to simulations without magnetic fields. Furthermore, they show that
the angular momentum in the inner part of the cloud can be reduced by magnetic
braking (see also Banerjee and Pudritz [88]). These two effects lead to stars with
higher final masses.
In addition the condition of flux freezing leads to the formation of jets. Machida
et al. [89] simulate a slowly rotating spherical cloud in an initially uniform weak
magnetic field. They find that protostars with masses of 10−3 M� formed with a
magnetic field strength of 106 G. This leads to the formation of jets, which blow
off 3-10 % of the total accreting matter. This way the final mass of the stars can
be significantly reduced. Moreover, the shocks provided by the jets can change the
chemistry in the ISM, which influences the formation of the following generation of
stars.
Magnetic fields influence also the final stages of star formation [90]. On the one
hand, the fields control the kinematics of the in-falling gas from the circumstellar
disk. On the other hand, they launch and collimate outflows of the star. When
the magnetic field couples with the disk, the rotational evolution of the star can be
influenced strongly. Also planet formation in the disk is sensitive to magnetic fields.
Magnetic winds influence the migration of planets and the disk chemistry, which
sets the initial conditions for planet formation.
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10.1 Summary of our Results

In the first part of this work, we presented an analytical treatment of the small-scale
dynamo, using the Kazantsev theory. For this purpose we modelled the correlation
function of the turbulent velocity field, depending on the slope of the turbulent ve-
locity spectrum ϑ in v(`) ∝ `ϑ. With this model, we solved the Kazantsev equation
in the WKB-approximation and tested the validity of this approximation. We de-
termined the critical magnetic Reynolds number for the small-scale dynamo and its
growth rate in the case of infinite and finite magnetic Prandtl numbers.
The main results of our work are:

• The critical magnetic Reynolds number Rmcrit for the small-scale dynamo in-
creases as the exponent ϑ increases (see Figure 8.5). For Kolmogorov tur-
bulence (ϑ = 1/3) RmK

crit ≈ 110 and for Burgers turbulence (ϑ = 1/2)
RmB

crit ≈ 2700.

• The growth rate of the magnetic field energy in the limit of infinite magnetic
Prandtl numbers is

Γ =
(163− 304ϑ)

60

V

L
Re(1−ϑ)/(1+ϑ) (10.1)

(see also Figure 8.7).

• For decreasing magnetic Prandtl number the growth rate decreases. The de-
tails of this drop depend on the type of turbulence (see Figures 8.8 and 8.9).

• A validity test shows that the WKB-approximation gives exact solutions in the
limit of infinite magnetic Prandtl numbers. The approximation breaks down
at a Prandtl number of around unity (see Figures 8.1 and 8.2).

We applied these results to the magnetic fields during primordial star formation. We
estimated, based on a detailed chemistry network, typical quantities of primordial
gas, like kinematic viscosity and magnetic diffusivity of the gas, and the growth rate
of magnetic field. Finally, we determined the magnetic field strength as a function
of the density.
We found:

• The magnetic Reynolds number during the collapse always exceeds the critical
magnetic Reynolds number for small-scale dynamo action (Figure 9.3).
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• The magnetic Prandtl number is very large up to densities of rougly 103 cm−3

(Figure 9.3).

• The dynamo timescale in primordial star formation is shorter than the free-fall
time (Figure 9.5).

• The dissipation timescale of the magnetic field is longer than the free-fall time
(Figure 9.5).

• The magnetic field grows very quickly for all types of turbulence. With an
initial Biermann field of 10−20 G and an initial density of 1 cm−3, the dynamo
saturates for Kolmogorov turbulence at a density of 1.08 cm−3 and for Burgers
turbulence at 16 cm−3 (Figure 9.7).

10.2 Implications of this Work

With these results we are able to make predictions about the first magnetic fields
in the Universe. We found that, during the collapse of a primordial halo a magne-
tohydrodynamical dynamo can amplify the magnetic field, at least on small scales,
almost instantly up to saturation. For that reason there might already have been
high magnetic field strengths even before the formation of the first stars, the first
galaxies and the first galaxy clusters.
Turbulence and magnetic fields are key ingredients of current star formation theory
[11, 91, 92]. Magnetic fields drive jets and outflows from young stars. Stellar winds
and supernova explosions, which end the lives of massive stars, enrich the interstel-
lar medium with heavy elements forged in the stellar interior. These processes are
crucial for the chemical composition of the Universe, determining cooling and heat-
ing processes in the gas. This, in turn, is very important for the formation of the
next generation of stars. The momentum from jets and outflows around accreting
protostars may disperse some of the envelope material that otherwise will fall onto
the central star. Thus, they are important ingredients for our understanding of the
physical origin of the observed distribution of stellar masses [93].
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B Tables of Definitions and Constants

cgs-unit SI-unit Meaning

1 cm 1 m = 102 cm distance

1 s 1 s time

1 g 1 kg = 103 g mass

1 dyn = 1 cm g s−2 1 N = 105 dyn force

1 erg = 1 cm2 g s−2 1 J = 107 erg energy

1 esu = 1
√erg cm 1 C = 3.336 · 1010√erg cm electric charge

1 G 1 T = 104 G magnetic field strength

Table B.1: Different unit systems: cgs verses SI.

Symbol Value (cgs-units) Name

c 2.998× 1010 cm s−1 speed of light

G 6.673× 10−8 cm3 s−2 g−1 Gravitational constant

e 4.803× 10−10 √erg cm elementary charge

k 1.38× 10−16 erg K−1 Boltzmann constant

mu 1.661× 10−24 g atomic mass unit

me 9.109× 10−28 g electron mass

M� 1.99× 1033 g mass of the Sun

pc 3.086× 1018 cm parsec

Table B.2: Table of physical constants.
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Name Definition Physical Meaning

n particle density

m mass

ρ ρ = mn mass density

µ dynamic viscosity

ν ν ≡ µ

ρ
kinematic viscosity

θ turbulence index

ω ω = ∇× v vorticity

Re Re =
V L

ν
hydrodynamical Reynolds
number

T ij Tijδ(t− s) ≡ 〈δvi(x, t)δvj(y, s)〉 correlation function of the
turbulent velocity field

TL longitudinal correlation function
of the turbulent velocity field

TN transversal correlation function
of the turbulent velocity field

`c `c = L Re−1/(ϑ+1) cut-off scale of turbulence

B magnetic field

E electric field

j electric current density

σ electric conductivity

r distance coordinate

η η ≡ c2

4πσ
magnetic diffusivity

Rm Rm ≡ V L

η
magnetic Reynolds number

Mij Mij ≡ 〈δBi(x, t)δBj(y, t)〉 correlation function of the
turbulent magnetic field

ML longitudinal correlation function
of the turbulent magnetic field
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MN transversal correlation function
of the turbulent magnetic field

x x(r) ≡ ln(r) distance coordinate

y y(r) ≡ r

L
distance coordinate

z z(r) ≡
(
Re3/2Pm

3L2

)1/2

r distance coordinate

ψ(r) ML ≡
1

r2
√
κdiff

ψ(r)e2Γt eigenfunction of the Kazantsev
equation

θ(x) ψ(x) ≡ ex/2θ(x) eigenfunction of the Kazantsev
equation

p(x) p(x) ≡ −(Γ + U(x))e2x

κdiff(x)
− 1

4
“p-function” (in Kazantsev
equation)

Γ growth rate

Γ̄ Γ̄ ≡ L

V
· Γ normalised growth rate

κdiff diffusion coeffient

U “potential” in Kazantsev
equation

cs sound speed

Tff Tff ≡ (Gρ)−1/2 free-fall time

LJ LJ ≡
cs√
Gρ

Jeans length

MJ MJ ≡
4

3
π

(
LJ

2

)3

Jeans mass

ηOhm Ohmic diffusivity

Tdynamo Tdynamo ≡ Γ−1 dynamo timescale

tcoll tcoll ≡ Tff(n0)− Tff(n) collapse time

Table B.3: Table of frequently used definitions.
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