Building a simple ISM model (Glover & Mac Low 2007)

Paul Clark Zentrum für Astronomie (ZAH) der Universität Heidelberg Institut für Theoretische Astrophysik

Some basic chemistry concepts

- Chemical rate equations work in number densities. Often convenient to define *n* as the number density of H nuclei.
- The number density of species A is then related to the number density of H nuclei via its **abundance**, *x*:

$$n_{\rm A} = x_{\rm A} n$$

• So a gas that is full molecular (in hydrogen terms), has: $x_{\rm H2} = 0.5$

Some basic chemistry concepts

- $A^+ + BC \rightarrow AB^+ + C$
- $A + BC \rightarrow AB + C$
- $A^+ + e^- \rightarrow A + \gamma$
- $AB^+ + e^- \rightarrow A + B$
- $A^+ + B \rightarrow A + B^+$
- $A + B \rightarrow AB + \gamma$
- $AB + \gamma \rightarrow A + B$
- $AB + \gamma \rightarrow AB^+ + e^-$

- (ion-neutral)
- (neutral-neutral)
- (radiative recombination)
- (dissociative recombination)
- (charge transfer)
- (radiative association)
- (photodissociation)
- (photoionization)

WNM elemental abundances (solar)

Abundances by number, relative to hydrogen:

Helium - 0.1

Oxygen - 3.2 × 10⁻⁴

Carbon - 1.4×10^{-4}

Nitrogen - 7.6 × 10⁻⁴

Sulphur - 1.2×10^{-5}

Silicon -1.5×10^{-5}

Reaction rates

• In a two-body reaction, we can write the reaction rate per unit volume as:

 $R_{AB} = k_{rec} n_A n_B$

- k_{rec} is the reaction rate coefficient; n_A and n_B are the number densities of A and B
- The rate coefficient itself can be written as:

$$k_{rec} = \langle \sigma v \rangle$$

 σ is the reaction cross-section, v is the relative velocity of A and B, and we average over the velocity distribution

Reaction rates

- A convenient way to think of the reaction cross-section is as a product of the collision cross-section and a reaction probability
- Size of the collision cross-section depends on the form of the long-range inter-particle potential
- If there is no long-range force between the particles the **hard-sphere approximation** then σ roughly corresponds to the physical size of the target

Reaction rates

• In this case, σ is independent of velocity, which means that:

$$k_{rec} \propto v_{therm} \propto T^{1/2} \mu^{-1/2}$$

- If there is a long-range force between the particles, then σ can be much larger than the actual physical size of the system.
- In this case, σ typically depends on the KE of the particles, growing smaller as this increases
- In the extreme case of a Coulomb potential, we have:

$$k_{rec} \propto T^{-1/2} \mu^{-1/2}$$

Photodissociation

 $(AB + photon \rightarrow A + B)$

- Different chemical species photodissociate in different ways
- Why is this important? If dissociation through continuum, only effective shielding comes from dust. If dissociation through discrete lines, **self-shielding** may be important
- Self-shielding particularly effective in case of H₂: photodissociation occurs through narrow lines, and we (potentially) have lots of H₂
- In contrast, CO dissociation occurs via a wide range of fairly broad lines and C and O are much less abundant -dust shielding is more effective.

• Most obvious route is via simple radiative association:

$H + H \rightarrow H_2 + photon$

- H_2 has no dipole moment, and so this route is incredibly slow
- At typical ISM densities it would take longer than the age of the Universe to turn even 50% of H into H₂.

• Ion-neutral reactions are more promising:

H + e⁻ \rightarrow H⁻ + photon H⁻ + H \rightarrow H₂ + e⁻ H⁺ + H \rightarrow H₂⁺ + photon H₂⁺ + H \rightarrow H₂ + H⁺

- Two main problems:
 - Both chains are initiated by radiative association reactions. These are typically slow.
 - H⁻ & H₂⁺ are fragile -- easily destroyed by the ISRF.

• Ion-neutral reactions are more promising:

H + e⁻ → H⁻ + photon H⁻ + H → H₂ + e⁻ H⁺ + H → H₂⁺ + photon H₂⁺ + H → H₂ + H⁺

- Two main problems:
 - Both chains are initiated by radiative association reactions. These are typically slow.
 - H⁻ & H₂⁺ are fragile -- easily destroyed by the ISRF.

• Three body reactions (with other species) provide a means by which to remove the excess energy:

 $H + H + H \rightarrow H_2 + H$ $H_2 + H + H \rightarrow H_2 + H_2$

- At typical GMC/ISM densities, these reactions are slower than the ion-neutral routes.
- Become important only at high T (> 500K) and high densities (> 10⁸ cm⁻³).
- Plays an important role in primordial chemistry.

• Formation on dust grains is actually the most effective route for forming H_2 in the ISM:

$$H + H_S \rightarrow H_2$$

• For standard MW dust properties, this process yields an H_2 formation rate of around

$$R_{H2} = 3 \times 10^{-18} \text{ T}^{-\frac{1}{2}} \text{ f}(T, T_{dust}) \text{ n } n_{H}$$

- When T, and T_{dust} are small, $f(T, T_{dust}) \sim I$
- H₂ formation timescale in the CNM (T ~100K) is therefore around ~10⁹ / n years.

A simple ISM model

- I have put together a simple model of the ISM, based on that found in Glover & Mac Low 2007(a).
- Follows the formation of H₂ & H⁺, and main heating/cooling processes.
- The code is a subroutine that can be called for each SPH particle.
- Given the input conditions (rho, u, abundances, etc), the code will advance the particle's properties over the required timestep Δt .
- Essentially, this is a **one-zone** algorithm: for a given rho, T, etc it gives you the solution over the required Δt).

Which reactions are included?

Reaction

1. $H + H + grains \rightarrow H_2 + grains$ 2. $H_2 + H \rightarrow 3H$ 3. $H_2 + H_2 \rightarrow 2H + H_2$ 4. $H_2 + photon \rightarrow 2H$ 5. $H + c.r. \rightarrow H^+ + e^-$ 6. $H + e^- \rightarrow H^+ + 2e^-$ 7. $H^+ + e^- \rightarrow H + photon$ 8. $H^+ + e^- + grain \rightarrow H + grain$

References

Hollenback & McKee (1979) Mac Low & Shull (1986) (low density) Martin et al. (1998) (low density) Drain & Bertoldi (1996)

> Abel et al. (1997) Ferland et al. (1992) Weingartner & Draine (2001)

What about H and e?

- The chemical rate equations also require the abundances of neutral hydrogen (H) and the electron fraction... How do we get them?
- From conservation laws:

$$x_{\rm H} = 1 - 2x_{{\rm H}_2} - x_{{\rm H}^+}$$

 $x_{\rm e} = x_{{\rm H}^+} + x_{\rm C} + x_{{\rm Si}}$

- Here $x_{\rm C}$ and $x_{\rm Si}$ are the relative abundances of carbon and silicon in the ISM, and we are assuming that they are both singly ionised.
- Remember that in our definition above, a gas that is fully H₂ has,

$$x_{\rm H_2} = 0.5$$

Chemical heating/cooling

Reaction

1. $H + H + grains \rightarrow H_2 + grains$ 2. $H_2 + H \rightarrow 3H$ 3. $H_2 + H_2 \rightarrow 2H + H_2$ 4. $H_2 + photon \rightarrow 2H$ 5. $H + c.r. \rightarrow H^+ + e$ 6. $H + e \rightarrow H^+ + 2e$ 7. $H^+ + e \rightarrow H + photon$ 8. $H^+ + e + grain \rightarrow H + grain$

References

Hollenback & McKee (1979) Mac Low & Shull (1986) (low density) Martin et al. (1998) (low density) Black & Dalgarno (1977) Goldsmith & Langer (1978) Abel et al. (1997) Wolfire et al. (2003) Wolfire et al. (2003)

Chemical heating/cooling

Reaction	References
I. H + H + grains \rightarrow H ₂ + grains	Hollenback & McKee (1979)
2. $H_2 + H \rightarrow 3H$	Mac Low & Shull (1986) (low density)
$3. H_2 + H_2 \rightarrow 2H + H_2$	Martin et al. (1998) (low density)
4. H_2 + photon \rightarrow 2H	Black & Dalgarno (1977)
5. H + c.r. \rightarrow H ⁺ + e	Goldsmith & Langer (1978)
6. H + e → H ⁺ + 2e	Abel et al. (1997)
7. $H^+ + e \rightarrow H + photon$	Wolfire et al. (2003)
8. H^+ + e + grain \rightarrow H + grain	Wolfire et al. (2003)

Chemical heating/cooling

Reaction	References
I. H + H + grains \rightarrow H ₂ + grains	Hollenback & McKee (1979)
2. $H_2 + H \rightarrow 3H$	Mac Low & Shull (1986) (low density)
$3. H_2 + H_2 \rightarrow 2H + H_2$	Martin et al. (1998) (low density)
4. H_2 + photon \rightarrow 2H	Black & Dalgarno (1977)
5. H + c.r. → H ⁺ + e	Goldsmith & Langer (1978)
6. H + e → H ⁺ + 2e	Abel et al. (1997)
7. $H^+ + e \rightarrow H + photon$	Wolfire et al. (2003)
8. H ⁺ + e + grain \rightarrow H + grain	Wolfire et al. (2003)

Heating and cooling in the ISM

Photoelectric emission from dust grains

• UV radiation from the ISRF (or nearby stars) results in photoelectric emission from dust grains.

$$\Gamma_{\rm pe} = 1.3 \times 10^{-24} n \epsilon \chi_{\rm eff} \ {\rm ergs} \ {\rm s}^{-1}$$

 $\chi_{\rm eff} = e^{-2.5A_{\rm V}}\chi$

Bakes & Tielens (1994) Wolfire et al. (2003)

- Depends on the extinction (A_V) to the radiation source (position in cloud)
- There is also an efficiency factor E, that depends on the electron fraction in the gas.

How to treat the shielding?

- Reaction 4 in our network follows the destruction of H₂ by Lyman-Werner photons (11.5 to 13.6 eV).
- Also important for the photoelectric emission heating.
- Need to know the flux of these photons passing through our cell/ particle.
- Depends on the column density of H_2 and dust between the source (the ISRF -- normally that of Draine 1978) and the cell.
- How to estimate?
- Simple prescription is currently implemented:

$$N = n L$$

Heating and cooling in the ISM

Cooling

- Upwards of around 8000 K, the cooling is dominated by atomic resonance lines -- in this simple model, we are only considering Lyman alpha cooling (HI electronic excitation cooling). Others also contribute. A tabulated function is available from Sutherland & Dopita (1993).
- Cooling by CII and OI dominate at lower temperatures. CII tends to dominate so in our simple model, we only include it.
- In gas at high densities (n ~ 10⁵ cm⁻³), gas → grain energy transfer dominates. Use prescription from Hollenbach & McKee (1989):

$$\Lambda_{\rm gr} = n_{\rm gr} n \bar{\sigma}_{\rm gr} v_{\rm p} f (2kT - 2kT_{\rm gr}) \text{ erg s}^{-1} \text{ cm}^{-3}$$

ISM heating/cooling

Glover & Clark (2012)

The equations

H₂ abundance:

$$n_{\rm H_2}(t_1) = \frac{n_{\rm H_2}(t_0) + C_{\rm H_2}(t_1)\Delta t}{1 + D_{\rm H_2}(t_1)\Delta t}$$

H⁺ abundance:

$$n_{\rm H^+}(t_1) = \frac{n_{\rm H^+}(t_0) + C_{\rm H^+}(t_1)\Delta t}{1 + D_{\rm H^+}(t_1)\Delta t}$$

The energy (density):

$$e_1 = e_0 + \left[\Gamma_{\rm chem} + \Gamma_{\rm ISM} + \Lambda_{\rm chem} + \Lambda_{\rm ISM}\right] \Delta t$$

Treating the energy

Two options:

I) Operator split the energy. Evolve pdV and shocks in the code, and pass the updated e to the chemistry iterator to use as e_0 in

 $e_1 = e_0 + \left[\Gamma_{\rm chem} + \Gamma_{\rm ISM} + \Lambda_{\rm chem} + \Lambda_{\rm ISM}\right] \Delta t$

ii) Pass the heating/cooling rates from the SPH code into the chemistry iterator and solve them with the ISM and chemistry heating/cooling rates:

 $e_{1} = e_{0} + \left[\Gamma_{\rm chem} + \Gamma_{\rm ISM} + \Lambda_{\rm chem} + \Lambda_{\rm ISM} + \Gamma_{\rm pdV} + \Gamma_{\rm shock}\right]\Delta t$

• Pass the heating/cooling rates from the SPH code into the chemistry iterator and solve them with the ISM and chemistry heating/cooling rates:

How to solve?

(Jacobi iteration)

- Our equations have t_1 on both sides, so we need to iterate.
- Simplest way to proceed is to use the Jacobi method.
- Can be summarised as follows:

(i) Compute the new H_2 abundance using the values at t_0

- (ii) Compute the new H^+ abundance using the values at t_0
- (iii) Compute the new energy using the values at t_0
- (iv) Update H and e⁻ abundances

(v) Now go back to (i) using the new values of H_2 , H^+ , H and e^- , and T

How to solve?

(Gauss-Seidel iteration)

- Better, is the Gauss-Seidel method:
 - (i) Compute the $t_1 H_2$ abundance using the values at t_0
 - (ii) Update H and e⁻ abundances
 - (iii) Compute the $t_1 H^+$ abundance using the new H_2 , H and e^-
 - (iv) Update H and e⁻ abundances
 - (v) Compute the t_1 energy using the new values of H_2 , H^+ , H and e^-
 - (vi) Update T
 - (vii) Now go back to (i) using the new values of H_2 , H^+ , H and e^-

Sub-cycling

- During the timestep (Δt), the iteration may fail in a number of ways:
 - The chemical abundances fail to converge!
 - The chemical abundances want to change too rapidly over timestep Δt (i.e. greater than some pre-allowed tolerance).
 - The energy may want to change too much over Δt
 - The energy may go negative
- Simplest option is to reduce the timestep for the iteration, and try again.
- But main the SPH code wants the chemistry/thermodynamics updated over Δt for this particle.
- This is where sub-cycling comes in: keep calling the BD solver until the step Δt is complete.

Controlling the stepsize

- Particles are on different timesteps, which depend on what's happening to it.
- Ideally, we'd like to take the cooling time into consideration, to stop the code creating cold spots.
- Constrain particle's timestep to be some fraction of the "cooling time":

$$\Delta t = C_e \frac{e}{\mathrm{d}e/\mathrm{d}t}$$

- But what happens first time step? Does the code just cool/heat as much as it wants?
- Probably this is OK (equivalent to starting with a new equilibrium), but might not be good when stopping and starting the code.
- Safer is to call the chemistry for every particle at the beginning of the simulation to find the d*e*/d*t*, to get the cooling time (not implemented!).

Introduce the subroutines!

In src/chemcool/

- do_chemcool_step.F90 :
 - Evolves the chemical abundances and energy for SPH particle over timestep Δt . Controls the sub-cycling of the iteration.
- solve_chem_timestep.F90 :
 - The iterative solver for the chemistry and the ISM heating/ cooling.
- chemical_rate_coeff.F90:
 - Stores the reaction rate coefficients (with the exception of the cosmic-ray ionisation rate, since it requires no functional form).

Introduce the subroutines!

In src/chemcool/

- ism_heat_cool_rate.F90 :
 - The heating and cooling from non-chemical sources (line cooling, PE heating, gas-dust cooling).
- compute_stim.F90 :
 - Computes the simulated emission for a level, given a background radiation temperature.
- chemistry_constants.F90:
 - Holds the various constants needed by the chemical model, such as metallicity, gas-to-dust ratio, as well as tolerances for the iteration scheme.

Where the chemistry appears...

- Integration scheme (currently on the KDK leapfrog):
 - File: src/advance/advance_leapfrog_kdk.F90
- Also need to modify the timestep control:
 - File: src/timestep/timestep_size.F90
- EOS and pressure calculations, etc:
 - Files: i) src/sph/thermal.F90

ii) src/sph/thermal_properties.F90

• And also in the header file (need to add the abundances to the SPH particle structure).

Science with this setup?

 Similar in terms of included physics to the model by Dobbs et al. (2008):

Good test case?

Test problem I

- Possible test setup is a low-density turbulent box
- Try setting $T_0 = 7000 \text{ K}$; $n = 1 \text{ cm}^{-3}$; mass $= 1 \times 10^5 \text{ M}_{\odot}$
- Start with H_2 and H^+ abundances of 0 and ~ 0.001 respectively.
- Maybe use 1,000,000 SPH particles to start with.
- Best to use all 16 cores in the node ;-)

Good test case?

Test problem 2

- Could also try to set up 2 colliding clouds.
- Create two turbulent spheres (with $E_K \sim 0.5E_G$)
- Masses of around $1 \times 10^5 M_{\odot}$
- You will need the external pressure term.
- Collide with 10-20 km/s.