Assignment #6: due June 19

1. Dust Extinction

- (a) The $R_{\rm V}$ of the diffuse ISM in our Galaxy is generally taken to be 3.1. Assuming that the extinction can be represented as a power law with wavelength, $A_{\lambda} \propto \lambda^{\beta}$, what is the value of β that will give $R_{\rm V} = 3.1$.
- (b) If I measure an A_V of 1 along a sight line, by how much does the *B* band extinction change if the $R_V = 5.5$ instead of the typical 3.1?
- (c) Bohlin et al. (1978) found a direct relation between the reddening and column density of gas, with:

$$N_{\rm H}/(A_B - A_V) = 5.8 \times 10^{21} \,\rm cm^{-2} mag^{-1}.$$
⁽¹⁾

What would be the difference in column density be between the sight lines with $R_{\rm V} = 5.5$ and $R_{\rm V} = 3.1$ mentioned above in question 1(b)?

2. Dust Emission

- (a) At 850 μ m, the absorption cross-section per unit mass of galactic dust is estimated to be $\kappa_{850} \sim 0.47 \text{ cm}^2 \text{g}^{-1}$. If we assume this arises from a MRN power-law grain size distribution $(dN/da \propto a^{-3.5} \text{ with } 0.01 < a < 1.0 \ \mu\text{m})$, and that $Q_{\text{abs},850} \propto a^{0.8}$, what would be the value of κ_{850} if the grain size distribution was flattened to $dN/da \propto a^{-3.3}$?
- (b) Using the SPIRE instrument on the Herschel space telescope we measure a 500 μ m flux of 51 MJy / steradian ($5.1 \times 10^{-19} \text{ Wm}^{-2} \text{ Hz}^{-1} \text{ sr}^{-1}$) in the centre of the Whirlpool galaxy (M51, distance=7.6 Mpc). The temperature of dust in this region is 25 K. Determine what the surface density of dust is given the values of κ_{850} from question 2(a) (assume the emissivity $Q_{abs}(\lambda) \propto \lambda^{-2}$, and use $M_{\odot} \text{ pc}^{-2}$).