Assignment #7: due June 26

1. Thermal instability

Consider a simplified model for the heating and cooling of the ISM, in which the only source of cooling is C^+ fine structure emission, with a cooling rate

$$\Lambda = 3 \times 10^{-27} \exp\left(-\frac{92}{T}\right) n^2 \,\mathrm{erg}\,\mathrm{s}^{-1}\,\mathrm{cm}^{-3},\tag{1}$$

and the only source of heating is photoelectric heating, with a heating rate

$$\Gamma = 6 \times 10^{-26} n \,\mathrm{erg}\,\mathrm{s}^{-1}\,\mathrm{cm}^{-3}.$$
(2)

- (a) Show that in this model, thermal equilibrium is impossible for $n < 20 \text{ cm}^{-3}$, irrespective of the value of T.
- (b) Find the equilibrium temperature of the gas when $n = 100 \text{ cm}^{-3}$.
- (c) Find the temperature T_c at which the gas first becomes unstable to the isobaric thermal instability. Is there any temperature at which the gas is isochorically unstable?

2. Heating

(a) The heating rate from photoelectric dust emission on the diffuse ISM is given by

$$\frac{\Gamma}{n_H} = 1.4 \times 10^{-26} \frac{\text{erg}}{\text{s}} \left(\frac{n_{photon}}{3 \times 10^{-3} \text{cm}^{-3}} \right) \frac{\langle \sigma_{abs} \rangle}{10^{-21} \text{cm}^2} \frac{\langle Y \rangle}{0.1} \frac{E_{net}}{1 \text{eV}}$$
(3)

where σ_{abs} is the dust photoabsorption cross section, $\langle Y \rangle$ is the averaged photoelectric yield and E_{net} is the net energy released.

Another possible heating source for HI clouds is cosmic ray heating. The cosmic ray ionisation rate ζ_{CR} is of order $\sim 10^{-16} \text{ s}^{-1}$ and the energy deposited by cosmic rays is

$$E_h = 6.5 \text{eV} + 24.4 \text{eV} \left(\frac{\mathbf{x}_e}{\mathbf{x}_e + 0.07}\right)^{1/2}$$
 (4)

where $x_e \equiv n_e/n_H$ is the ratio of electrons to hydrogen atoms. Which of these heating mechanisms will be the most significant.

(b) The contribution of X-rays to the local radiation field is not a dominant one, but nonetheless, X-rays emitted by compact objects or interstellar plasma may still impinge on neutral regions. The photo-absorption cross section for an H nucleon is $\sim 4 \times 10^{-22}$ cm². Describe how X-rays will penetrate neutral clouds.