
1 Radiative processes

1.1 Atomic structure, selection rules

• We begin with a brief reminder of the basics of atomic structure, and the rules governing
allowed and forbidden transitions. This material should hopefully be familiar from
previous quantum mechanics courses. For those of you who are interested in a more
detailed overview, there is a set of notes available on the course website, and I can also
recommend the textbook by Atkins & Friedman1.

1.1.1 Atomic structure

• Atomic lines are produced by transitions between different atomic states. These states
can be characterised by a set of quantum numbers. The most important of these
quantum numbers are:

n – the principal quantum number

l – the orbital angular momentum quantum number

s – the electron spin angular momentum

j – the total angular momentum

• n has values 1, 2, ... and describes which of the possible radial eigenfunctions describes
the atomic state. It has the largest influence on the energy of the state.

• l has values 0, 1, ...n− 1 and describes the orbital angular momentum of the state. For
a multi-electron atom, there is also a quantum number L describing the total orbital
angular momentum, which is given by the vector sum of the individual orbital angular
momenta.

• s has values −1/2,+1/2 for a single electron. For multi-electron atoms, there is also
an associated quantum number S describing the total spin, given by the vector sum of
the individual spins.

• j is given by the vector sum of l and s. Similarly, J , the total angular momentum of
a multi-electron atom, is given by the vector sum of L and S.

• Although the energies of different atomic states are typically determined primarily by
n, they also depend on J because of an effect known as spin-orbit coupling. This
coupling occurs because the electron has a magnetic moment due to its orbital motion
and also an intrinsic magnetic momentum due to its spin. States where these magnetic
moments are parallel have higher energy than states where they are anti-parallel.

• The resulting splitting of energy levels that would otherwise be degenerate is known
as atomic fine structure.

1Atkins & Friedman, Molecular Quantum Mechanics (5th Edition), Oxford University Press



• Note that not all states have fine structure: we need both non-zero L and also non-
zero S, or the spin-orbit coupling term in the Hamiltonian vanishes. For example: the
ground state of the hydrogen atom has S = 1/2 but L = 0, and hence has no fine
structure. On the other hand, the ground state of neutral atomic carbon has L = 1
and S = 1 and hence does have fine structure.

• Atoms may also have hyperfine structure, caused by spin-spin coupling (i.e. in-
teraction between the electron spin and the nuclear spin). In general, this is of little
astrophysical importance, with one extremely large exception: atomic hydrogen.

• In atomic hydrogen, the hyperfine splitting of the ground-state results in two closely
separated states with an energy difference of 5.87× 10−6 eV, corresponding to a wave-
length of approximately 21 cm. The spectral line produced by transitions between the
two hyperfine states is our main observational tool for studying neutral hydrogen, both
in our Milky Way and beyond.

1.1.2 Selection rules for atomic transitions

• The probability for a transition to occur between two different atomic states is directly
proportional to the size of the transition matrix element linking these two states. This
can be derived using the techniques of time-dependent perturbation theory, but doing
so is outside the scope of the current lecture course2. Here, we simply state a few
important results, without proof.

• The most probable transitions are those known as electric dipole transitions (often
simply referred to as dipole transitions). These are transitions for which the transition
dipole moment is non-zero. For a transition between an initial state |i〉 and a final
state |f〉, the transition dipole moment is defined as

~µif = 〈i|~µ|f〉, (1)

where ~µ = −e~r is the electric dipole operator.

• Transitions for which ~µif 6= 0 are known as allowed transitions, while those for which
~µif = 0 are known as forbidden transitions.

• Symmetry considerations allow us to determine the transitions for which the transition
dipole moment is non-zero (i.e. for which there is an allowed transition). The results
are easily summarized as a set of selection rules. The most important ones are:

(i) ∆J = 0,±1 (but transitions with J = 0→ J = 0 are forbidden)

(ii) Parity change

(iii) One electron jumping, ∆l = ±1, ∆n arbitrary

(iv) ∆S = 0

2For an in-depth discussion, see Atkins & Friedman, Chapter 6.



(v) ∆L = 0,±1 (but transitions with L = 0→ L = 0 are forbidden)

• The classic example of an allowed transition is the Lyman-α transition in hydrogen.
The electron jumps from a state with l = 1 and n = 2 to l = 0 and n = 1. The
system changes parity during this process, and we also see that ∆l = −1, ∆L = −1
and ∆n = 1. The spin quantum number S does not change, so the spin selection rule
is satisfied, and hence the total angular momentum selection rule is also satisfied.

• On the other hand, if we apply the selection rules, we find that transitions between
fine structure levels with the same n are forbidden, as they do not involve a change in
l.

• Transitions which are forbidden at the electric dipole level may still occur, if the mag-
netic dipole transition matrix element

~µif = 〈i|~L|f〉, (2)

is non-zero, where ~L is the total orbital angular momentum operator.

• Magnetic dipole transitions have their own set of selection rules:

(i) ∆J = 0,±1 (but transitions with J = 0→ J = 0 are forbidden)

(ii) No parity change

(iii) For all electrons, ∆l = 0, ∆n = 0

(iv) ∆S = 0

(v) ∆L = 0, ∆J = ±1

• We see that fine structure transitions, which involves changes with ∆n = 0 and ∆l =
0, are allowed under these selection rules. Fine structure transitions are therefore
generally magnetic dipole transitions.

• An important point to remember is that magnetic dipole transitions are much weaker
than electric dipole transitions (i.e. they have much smaller transition matrix elements,
and hence much smaller probabilities of occurring). Consequently, forbidden transi-
tions are generally much weaker than allowed transitions.

• Another possible type of forbidden transition is an electric dipole transition. These are
weaker still than the magnetic dipole transitions, and obey yet another set of selection
rules (see e.g. Tielens, Physics and Chemistry of the Interstellar Medium, Table 2.2).
However, these transitions are of limited importance for understanding the ISM, so we
will not discuss them further here.

1.2 Einstein coefficients

• Having refreshed our memory about the basics of atomic structure, our next step is to
discuss in detail the physics of the absorption and emission of radiation from atoms
(and, later, from molecules).



• We start by defining a quantity known as the specific intensity (or sometimes as the
radiative intensity) of a radiation field. The specific intensity in a direction ~n is the
radiative energy flowing in that direction per unit time, per unit area and per unit
solid angle. It is written as I(~n) and has units of W m−2 sr−1 (SI) or erg s−1 cm−2 sr−1

(cgs).

• When considering the emission or absorption of radiation by atoms or molecules, it
is generally more convenient to work in terms of the monochromatic version of the
specific intensity, Iν(ν;~n). This is defined such that Iνdν is the specific intensity of
photons with frequencies in the range ν to ν + dν. Hence,

I(~n) =
∫ ∞

0
Iν(ν;~n)dν. (3)

The monochromatic version of the specific intensity has units W m−2 Hz−1 sr−1 (SI) or
erg s−1 cm−2 Hz−1 sr−1 (cgs).

• Let us now consider two quantum states of an atom, an initial state |i〉 and a final
state |f〉, where Ei < Ef . The transition rate3 between these two states (i.e. the rate
of change of the probability of finding the atom in the final state) can be written as

Wif = BifIν(νif ), (5)

where hνif = Ef −Ei, and where Bif is a quantity known as the Einstein coefficient
of stimulated absorption.

• Radiation can also cause a transition in the opposite direction, from |f〉 to |i〉, resulting
in the emission of a photon. This process is known as stimulated emission, and the
rate at which it occurs can be written as

Wfi = BfiIν(νif ), (6)

where Bfi is the Einstein coefficient of stimulated emission.

• If |i〉 and |f〉 are non-degenerate – i.e. if there is only one energy level corresponding
to each state – then Bif = Bfi. In the more general case in which one or both states
are degenerate, the relationship is instead given by

giBif = gfBfi, (7)

where gi is the statistical weight of state |i〉 and gf is the statistical weight of state |f〉.
3Note: the reason that it is useful to work in terms of the transition rate is that when we’re dealing with

a large number of atoms – which is often the case in astrophysics – the rate per unit volume at which the
transition occurs is simply

Rif = Wifni, (4)

where ni is the number density of atoms in state |i〉. In other words, provided we’re averaging over a large
enough ensemble, it allows us to forget that we’re dealing with the probabilities of discrete events and treat
the transition rate as a continuous quantity.



• Now suppose we have an ensemble consisting of a large number of atoms, with Ni in
state |i〉 and Nf in state |f〉. Let us further assume that the atoms in this ensemble
are in thermal equilibrium both with each other and with the radiation field. We know
from statistical mechanics that the ratio of Ni and Nf in this case is given by the
Boltzmann distribution:

Nf

Ni

=
gf
gi
e−Eif/kT , (8)

where Eif = Ef − Ei, k is Boltzmann’s constant and T is the temperature of the
system.

• If stimulated emission and stimulated absorption were the only processes operating to
change the state of each atom from |i〉 to |f〉 or vice versa, then in thermal equilibrium,
the two rates would be equal, i.e.

NiWif = NfWfi. (9)

This implies that
NiBifIν(νif ) = NfBfiIν(νfi), (10)

and hence that
Nf

Ni

=
Bif

Bfi

. (11)

However, from Equation 7, we see that this would imply that

Nf

Ni

=
gf
gi
, (12)

which is incompatible with Equation 8! Clearly, something has gone wrong with our
argument.

• Einstein resolved this conflict by postulating that in addition to stimulated emission
and stimulated absorption, there was a third process acting, which he termed spon-
taneous emission.4 This is a radiative transition from |f〉 to |i〉 that is independent
of the strength of the radiation field. It is quantified by Afi, the Einstein coefficient
of spontaneous emission.

• The transition rate from |f〉 to |i〉 due to spontaneous emission is given by

W spon
fi = Afi, (13)

and so in thermal equilibrium

NiWif = Nf

(
Wfi +W spon

fi

)
. (14)

4Note that the conservation of energy does not allow spontaneous absorption.



Therefore,

Nf

Ni

=
Wif

Wfi +W spon
fi

, (15)

=
BifIν(νif )

BfiIν(νif ) + Afi
, (16)

=
(gf/gi)Iν(νif )

Iν(νif ) + Afi/Bfi

, (17)

=
gf
gi

1

1 + Afi/ (BfiIν(νif ))
. (18)

This is consistent with the Boltzmann distribution, provided that

Afi = Iν

[
exp

(
Eif
kT

)
− 1

]
Bfi. (19)

In thermal equilibrium, the specific intensity of the radiation field is given by the
Planck function: Iν = Bν(T ), where

Bν(T ) =
2hν3

if/c
2

exp
(
Eif
kT

)
− 1

. (20)

Hence, we find that

Afi =
2hν3

if

c2
Bfi. (21)

• Important note: our discussion of the Einstein coefficients above uses the conven-
tion that the Bif and Bfi coefficients are the constants of proportionality relating the
specific intensity of the radiation field to the transition rates for absorption and
for stimulated emission. However, some books and papers use a different convention,
where they relate the transition rates to the energy density of the radiation field. In
this other convention, we have

Wif = Bifuν(νif ), (22)

Wfi = Afi +Bfiuν(νif ), (23)

where

uν(νif ) =
4π

c
Iν(νif ). (24)

Therefore, when using this convention, our values for Bif and Bfi are a factor of c/4π
larger than when we use the convention based on specific intensities. Consequently,
the relationship between Afi and Bfi is different (since the value of Afi can’t depend
on whether we use Iν or uν to quantify the radiation field), and is given by

Afi =
8πhν3

if

c2
Bfi. (25)



• Further points to note regarding the Einstein coefficients:

– If we have two states |u〉 and |l〉, with Eu > El, then the characteristic lifetime of
state |u〉 is is give approximately by t ∼ A−1

ul . If there are multiple lower energy
states that state |u〉 can reach via radiative decay, then the lifetime is given
approximately by t ∼ (

∑
lAul)

−1, where we sum over all accessible lower-energy
states.

– The importance of absorption and stimulated emission depend on the strength of
the radiation field. In particular, if the strength of the field at the frequency of
the transition is much smaller than the Planck function at that frequency, then
the effects of stimulated emission are generally negligible.

– The spontaneous transition rate depends on the transition dipole moment (through
Bfi), but also on ν3. High frequency transitions – those between widely separated
energy levels – therefore occur much more rapidly than low frequency transitions.

– Fine structure transitions are therefore slow for two reasons – they are forbidden,
and hence have small probabilities of occurring, but they are also low frequency
transitions.

– As an example, let us compare the dipole 2p → 1s transition in hydrogen (the
Lyman-α line) with the ground-state fine structure transition in C+. The Lyman-
α transition is a permitted transition with an energy of 10.2 eV, and an Einstein
coefficient A21 = 6.3×108 s−1. On the other hand, the C+ fine-structure transition
is a magnetic dipole transition, between two states separated by roughly 0.008 eV.
Magnetic dipole transitions are typically a factor of α2 ∼ 5 × 10−5 less probable
than electronic dipole transitions, and hence we expect the transition rate for the
C+ line to be

Afs ∼ 5× 10−5 ×
(

0.008

10.2

)3

× 6.3× 108 s−1 (26)

∼ 5× 10−5 × 5× 10−10 × 6.3× 108 s−1 (27)

∼ 10−5 s−1. (28)

For reference, the actual value is 2.3× 10−6 s−1.

– Similar considerations indicate that the spontaneous transition rate for the 21 cm
line of hydrogen must be very small, since the energy difference is so small. In
fact, the rate is ∼ 3× 10−15 s−1.

1.3 Radiative transfer basics

1.3.1 Absorption and emission coefficients

• Another way in which to describe the interaction of radiation with matter is in terms
of an absorption coefficient.



• Consider a cylindrical region with length ds, cross-sectional area dA and volume dV =
ds×dA. Assume that this region contains identical atoms with number density n, and
that these atoms have an absorption cross-section at frequency ν given by σν .

• Now illuminate the cylinder with a radiation field with specific intensity Iν . Provided
that our volume is sufficiently small, we can take the value of Iν to be the same at
both ends, and can hence write down the rate at which energy in the frequency range
ν → ν + dν and the direction Ω absorbed by a single atom:

deν = Iν(Ω)σν(Ω)dν dΩ. (29)

The total amount of energy removed in the direction Ω is thus given by

dEν = [nIν(Ω)σν(Ω)ds] dA dt dν dΩ. (30)

We can also write this as

dEν = αν(Ω)Iν(Ω)dV dt dν dΩ. (31)

where
αν(Ω) = nσν(Ω) (32)

is a quantity known as the absorption coefficient.

• The quantity in square brackets in Equation 30 is simply the change in Iν from one
end of the cylinder to the other, which can be written as

dIν = αν(Ω)Iν(Ω)ds. (33)

• In the absence of emission, we can therefore write down the following transfer equation
for Iν :

dIν
ds

= −ανIν . (34)

If we introduce the optical depth element

dτν = ανds, (35)

and the total optical depth

τν =
∫ L

0
αν(s)ds, (36)

then we can easily write down the formal solution for the attenuation of radiation
within an absorbing medium in the absence of emission:

Iν(τν) = Iν,0e
−τν . (37)

Here, Iν,0 is the intensity of the radiation field incident on the medium (i.e. our τ = 0
boundary condition).



• It is sometimes convenient to work in terms of the opacity, κν , which is defined in
terms of the absorption coefficient as

κν =
αν
ρ
. (38)

This quantity has the advantage that it does not directly depend on the density of the
medium. In terms of the opacity, the optical depth becomes:

τν =
∫ ∞

0
ρκνds. (39)

In the simple case in which κν is independent of position, this becomes

τν = κν

∫ ∞
0

ρds = κνΣ, (40)

where Σ is the column density of the absorbing medium.

• Our next step is to determine how to express σν and αν as functions of our Einstein
coefficients. We know that for a single atom, the rate at which photons are absorbed
in some transition l→ u can be written as

Wlu = BluJν(νlu), (41)

where νlu is the frequency corresponding to this transition, and where Jν is the mean
specific intensity,

Jν =
1

4π

∫
Iν(Ω)dΩ. (42)

(In other words, Jν is just the angle-averaged version of Iν).

• So far, we have assumed that only photons with energies that are exactly hνlu can
cause this transition to occur. In fact, this is an oversimplification, for reasons that we
will come to shortly. We therefore write the absorption rate in the more general form

Wlu =
∫ ∞

0
BluJνφνdν, (43)

where φν is the line profile function, normalized such that
∫∞

0 φν = 1.

• The rate at which energy is absorbed for photons in the frequency range ν → ν + dν
can therefore be written as:

Plu = BluJνhνφνdν. (44)

• The total amount of energy absorbed within our cylinder in a time element dt and
within a solid angle element dΩ is therefore

dEν =
1

4π
nlBluIν(Ω)hνφν dν dV dt dΩ, (45)

where we have used the fact that

dJν
dΩ

=
Iν(Ω)

4π
. (46)



If we now compare equations 31 and 45, we see that

αν =
hν

4π
nlBluφν . (47)

• Up to this point, we have only considered absorption. However, in real systems we also
need to account for the effects of spontaneous and stimulated emission.

• Stimulated emission is typically accounted for by modifying our definition of the ab-
sorption coefficient, and treating stimulated emission as negative absorption. In
place of Equation 47, we have:

αν =
hν

4π
(nlBlu − nuBul)φν . (48)

The corresponding absorption cross-section is given by

σν =
hν

4π
(flBlu − fuBul)φν , (49)

where fl ≡ nl/n and fu ≡ nu/n are the fractional populations of the lower and upper
levels, respectively.

• The stimulated emission term is unimportant when nu � nl, but becomes important
once the upper and lower levels have comparable populations. If nu > nl – a situation
known as a population inversion – then the absorption coefficient can become nega-
tive. In this case, Equation 37 shows us that we will get exponential amplification
of our incident radiation. This is the principle behind the laser, and can also occur in
astrophysical systems in the form of naturally occurring masers.

• To account for spontaneous emission, we define an emission coefficient jν , such that the
radiative energy emitted in a time dt in a direction Ω with a frequency in the interval
ν → ν + dν from the particles within our cylindrical volume dV is given by

dEν,emiss(Ω) = jν(Ω) dν dV dt dΩ. (50)

With this definition, the change in the specific intensity over a distance ds due solely to
spontaneous emission is given by dIν = jνds. Therefore, the general transfer equation
that accounts for both emission and absorption is written as

dIν
ds

= jν − ανIν . (51)

• We can write the emission coefficient in terms of the Einstein coefficient Aul as

jν = nuAul
hν

4π
φν , (52)

where φν is the line profile function. Note that we have assumed that we can use the
same line profile function for emission and absorption; this is a reasonable assumption
at the level of detail that we’ll be dealing with in these lectures.



• This transfer equation has the formal solution:

Iν(L) = Iν,0e
−τν,L +

∫ L

0
jνe
−τν(s) ds, (53)

where
τν,s =

∫ s

0
αν(s

′) ds′, (54)

and where τν,L is simply this quantity computed for s = L.

1.3.2 Kirchhoff’s law

• Within a region that is in thermal equilibrium, the specific intensity of the radiation
field is given everywhere by the Planck function

Bν(T ) =
2hν3/c2

exp
(
hν
kT

)
− 1

. (55)

Because Iν does not vary spatially within this region, dIν/ds = 0 and hence Equation 51
becomes

jν − ανBν(T ) = 0. (56)

From this we see that in thermal equilibrium,

jν
αν

= Bν(T ). (57)

This relationship is known as Kirchhoff’s law.

• We have derived Kirchhoff’s law under the restrictive condition that the medium is in
thermal equilibrium. However, the resulting law concerns a ratio of quantities that are
determined solely by the level populations of our atoms and their Einstein coefficients,
which do not depend (directly) on the radiation field. We therefore find that Kirchhoff’s
law holds whenever our atoms have the level populations that they would do if they were
in full thermal equilibrium, a condition known as local thermodynamic equilibrium
(LTE).

• If our medium is in LTE, we can therefore write the radiative transfer equation in the
form

dIν
ds

= αν(s) [Bν(T (s))− Iν(s)] , (58)

where the temperature T (s) can vary along the ray. We therefore see that the effect of
absorption and emission is to drive Iν towards the local value of the Planck function.



1.3.3 The source function

• The result derived at the end of the last section suggests a useful formulation of the
radiative transfer equation. We first define a quantity known as the source function:

Sν ≡
jν
αν
. (59)

When our medium is in LTE, Sν = Bν(T ), but our definition above is valid even if we
are not in LTE.

• We can use our previous results for αν and jν to write Sν in terms of the Einstein
coefficients and level populations:

Sν =
nuAul

nlBlu − nuBul

. (60)

• If we rewrite the radiative transfer equation in terms of the source function, we find
that

dIν
ds

= αν(s) [Sν(s)− Iν(s)] . (61)

In other words, in the general case, the effect of absorptions and emissions within the
gas is to drive Iν towards the source function.

• One important consequence of this is that if the medium is optically thick, with τν � 1,
and if the absorption and emission coefficients vary only slowly within the gas, then to
a good approximation, Iν(s) ' Sν(s).

1.3.4 Line profiles

• Spectral lines have a finite width for two important reasons. First, atomic energy
levels are not infinitely sharp. Second, if we are dealing with absorption by a group of
atoms, then their motions relative to each other mean that they will absorb at slightly
different frequencies.

• During our discussion so far, we have behaved as though atomic energy levels are
infinitely sharp, with every transition having a well-defined energy.

• In reality, this is an oversimplification. Any excited state has a finite lifetime, which
we can write as ∆t = A−1

ul in the simple case of a two-level atom. This finite lifetime
then implies that there is a limit to how accurately we can determine the level energy,
set by the Uncertainty principle:

∆E∆t ≥ h̄. (62)

In terms of the spontaneous transition rate, this gives us

∆E = Aulh̄, (63)



which translates to an uncertainty in the frequency given by

∆ν =
Aul
2π

. (64)

The broadening in the spectral line that results from this fundamental uncertainty is
known as natural broadening.

• If there is more than one lower level that can be reached by a radiative transition from
our upper level, then the parameter that determines the energy uncertainty associated
with the upper level is the sum of the spontaneous radiative transition rates from the
upper level to all accessible lower levels, i.e.

Γ =
∑
l<u

Aul. (65)

• If we are interested in a transition between two excited states, then both will have an
energy uncertainty associated with them. In this case, the appropriate value of Γ is
the sum of the value for the two levels.

• Once we know Γ, we can write down the expression for the naturally broadened line
profile as5

φν =
Γ/ (4π2)

(ν − ν0)2 + [Γ/(4π)]2
, (66)

where ν0 is the frequency at line-centre (i.e. the frequency that corresponds to the
energy of the transition of interest).

• This profile is also known as a Lorentzian profile. It is sharply peaked around ν = ν0,
and falls off as φν ∝ ∆ν−2 for ∆ν � Γ/4π, where ∆ν ≡ |ν − ν0|.

• Absorption and emission lines produced by a collection of atoms are also broadened
because of the motion of the atoms with respect to each other, in an process known as
Doppler broadening.

• Consider a small fluid element, consisting of enough atoms to allow us to treat emission
and absorption as continuous rather than discrete processes, but small enough that we
can ignore any velocity gradients across the fluid element.

• If we choose a frame of reference that is at rest with respect to the centre of mass of
this fluid element, then we will see no bulk motion, but will still see the atoms moving
with respect to us because of their thermal motions

• Suppose that in our rest frame, the frequency at the centre of a specified emission line
is given by ν0. An atom moving relative to us with a line-of-sight velocity component
vr will emit instead at a frequency ν0(1− vr/c), due to the Doppler effect.

5Proof of this requires the tools of time-dependent perturbation theory, and is beyond the scope of this
course.



• If we temporarily ignore the effects of natural broadening and treat the emission line
produced by a single atom as a δ-function, then we can write down the following
expression for the line profile function produced by the motion of the atoms:

φν =
∫ ∞
−∞

f(v)δ
(
ν − ν0

{
1− v

c

})
dv, (67)

where f(v) is the velocity distribution function.

• If, as is usually the case, the atoms have a Maxwell-Boltzmann velocity distribution,
then the line profile function becomes

φν =
1√
π∆νD

e−(∆ν/∆νD)2 , (68)

where ∆νD = b(ν0/c) is the Doppler width of the line and b2 = 2kT/m, where m is
the mass of the atom.

• This expression assumes that the motion of the atoms is purely thermal, but it can
be extended to handle the case of “microturbulence” (i.e. turbulent motions with a
coherence length much shorter than the size of our absorbing system) by adopting a
value for b given by b2 = 2kT/m+2σ2

mt, where σ2
mt is the variance of the microturbulent

velocity distribution.

• Equations 66 and 68 represent two limiting cases for the line profile function. If the
natural line width, ∆νN ≡ Γ/4π, is much larger than the Doppler width, then the line
will have a Lorentzian profile; on the other hand, if ∆νD � ∆νN, then the line will
have a Doppler profile.

• Let’s quantify this for a strong emission line, e.g. Lyman-α. In this case, we have
Γ = 6.3 × 108 s−1, and hence ∆νN ' 5 × 107 Hz. If we have ∆νD = ∆νN, then this
implies that b ' 5×107c/ν0, and since ν0 ' 2.47×1015 Hz, we find that b ' 2×10−8c '
6× 10−3 km s−1. This is much smaller than the typical thermal velocity of a hydrogen
atom in the ISM, and we therefore see that Doppler broadening generally dominates,
at least for frequencies close to the line centre.

• Note, however, that the Doppler profile falls off exponentially with increasing ∆ν, un-
like the Lorentzian profile, which falls off as φν ∝ ∆ν−2. This means that at frequencies
far from line center, the profile looks much more like a Lorentzian profile than like a
Doppler profile. This gives rise to features known as the damping wings of the line.

• For reference, in the most general case in which both Doppler broadening and natural
broadening are important, the line profile is given by the convolution of the two profiles,
yielding a combined function known as the Voigt profile.



1.4 Collisional processes – a brief introduction

• So far, our atoms have interacted only with the radiation field, and not with each
other. We now relax this assumption and consider the effect of collisions. These may
be collisions between two atoms, or between an atom an elementary particle (proton,
electron, etc.) or a molecule or ion.

• These collisions may change the quantum state of the atom; i.e. in the aftermath of
the collision, it may be in a completely different quantum state compared to its state
before the collision (provided that all applicable conservation laws are obeyed).

• We can describe collisions in a fully QM fashion using what is known as scattering
theory. This is described in detail in references such as Atkins & Friedmann.

• However, this approach is highly mathematical and we don’t really have time for it in
this course. Instead, for the time being we will parameterize collision rates in terms of
collisional cross-sections that we suppose we know how to calculate somehow. Later,
we will see how we can use a quasi-classical approach to estimate these cross-sections.

• Let us start by considering the collisional rate coefficient qcij. If the number density of
atoms in some state |i〉 is ni, then the rate per unit volume with which these atoms
undergo collisional transitions to some other state j owing to collisions with collisional
partner c can be written as

Cc
ijni = qcijncni. (69)

• The total rate at which transitions between |i〉 and |j〉 occur due to collisions is then
simply given by a sum over all possible collision partners:

Cij =
∑
c

Cc
ij. (70)

Often, collisions with a single type of partner dominate this sum. For example, within
the gas making up a giant molecular cloud, collisions with H2 typically dominate, and
Cij ' CH2

ij .

• The collisional rate coefficient qcij can be written in terms of a collision cross-section
σcij. As this cross-section is often a function of the velocity, it is necessary to integrate
over the distribution of relative velocities, f(v), and hence:

qcij =
∫ ∞

0
σcij(v)vf(v) dv. (71)

This velocity averaging is also sometimes indicated by the use of angular brackets, i.e.
we write the integral above as 〈σcijv〉.

• Given a collisional rate coefficient qcij for a transition from |i〉 to |j〉, we can obtain
the rate coefficient for the inverse process, a transition from |j〉 to |i〉, by using the
principle of detailed balance. This states that in thermal equilibrium, the rate
at which collisions cause transitions from |i〉 to |j〉 must be the same as the rate



at which they cause transitions from |j〉 to |i〉. It is a consequence of microscopic
reversibility, i.e. the idea that the microscopic dynamics of particles and fields are
time-reversible, because the governing equations are time-symmetric.

• In thermal equilibrium, we know that the ratio of atoms in state |j〉 to those in state
|i〉 is simply given by the Boltzmann distribution:

nj
ni

=
gj
gi
e−Eij/kT , (72)

where gi and gj are the statistical weights of the two states and Eij is the difference in
their energies.

• The principle of detailed balance tells us that for any collisional transition, the following
equation holds in thermal equilibrium:

qcijninc = qcjinjnc. (73)

Rearranging this, we find that

qcij = qcji
nj
ni

(74)

= qcji
gj
gi
e−Eij/kT . (75)

Alternatively, we can write qcji in terms of qcij as:

qcji =
gi
gj
qcije

+Eij/kT . (76)

• Although we have assume thermal equilibrium in order to derive this relationship, the
final result is independent of the number of atoms in each state and hence holds even
when the system is not in thermal equilibrium.

1.5 Radiative cooling – optically thin limit

• Consider a simple two-level atomic system, with lower level l and upper level u, sep-
arated by an energy Eul. If the specific intensity of the radiation field at a frequency
νul = Eul/h is negligible, then we can write the rates of change of the level populations
as:

dnu
dt

= Clunl − Culnu − Aulnu (77)

dnl
dt

= −Clunl + Culnu + Aulnu (78)

• Provided that the radiative and/or collisional transitions are rapid compared to any
other timescales of interest in our problem, we can assume that the level populations
will reach statistical equilibrium, in which case:

Clunl = (Cul + Aul)nu. (79)



• From our discussion of detailed balance above, we know that

Clu
Cul

=
gu
gl
e−Eul/kT . (80)

We can therefore write the ratio of the level populations as

nu
nl

=
(gu/gl)e

−Eul/kT

1 + Aul/Cul
. (81)

In the limit that Cul � Aul, we see that we recover the Boltzmann distribution. On
the other hand, in the limit that Cul � Aul, we find that

nu
nl
' Cul
Aul

gu
gl
e−Eul/kT , (82)

or in other words that
nu
nl
' Cul
Aul

. (83)

• We see therefore that when collisions dominate over radiative decays, the level popu-
lations approach their LTE values, while in the other limit, collisional excitations are
balanced by radiative de-excitations, and collisional de-excitations are unimportant.

• In the simple case in which collisions with a single species dominate Cul, we can write
the collisional de-excitation rate as Cul = qculn

c, where nc is the number density of the
dominant collision partner. Since the key parameter that determines whether collisions
or radiative decays dominate is the ratio Aul/Cul, we can define a critical density for
our collision partner, such that this ratio is one:

nccr ≡
Aul
qcul

. (84)

When nc � nccr, collisions dominate and the level populations tend to their LTE values.
On the other hand, when nc � nccr, radiative decay dominates and most atoms are in
their ground states.

• In the more general case in which collisions with several different species make com-
parably large contributions to Cul, we can define the critical density in a more general
fashion. If we take n to be some reference number density (e.g. the number density of
H nuclei, which has the benefit that it is invariant to changes in the ratio of atomic to
molecular hydrogen), then we can define a critical density with the following expression:

Aul
Cul
≡ ncr

n
. (85)

Here, ncr is the critical value of our reference density, rather than that of a specific
collision partner. In terms of the individual fractional abundances and collisional de-
excitation rates, we have:

ncr =
Aul∑
c q

c
ulx

c
, (86)



where xc ≡ nc/n. Alternatively, if we divide through by Aul, we can easily show that

ncr =

[∑
c

xc

nccr

]−1

, (87)

where the critical densities for the individual colliders are given by Equation 84 above.

• Using our general definition of the critical density, we can write the ratio of the level
populations of our two level atom as

nu
nl

=
(gu/gl)e

−Eul/kT

1 + ncr/n
. (88)

• We can now use the fact that for a two-level system, nl + nu = nX, the total number
density of our atoms, to rewrite this equation as

nu
nX − nu

=
(gu/gl)e

−Eul/kT

1 + ncr/n
. (89)

• We can rearrange this to give

nu
nX

=
(gu/gl)e

−Eul/kT

1 + ncr/n+ (gu/gl)e−Eul/kT
. (90)

In the limit that n� ncr, we see immediately that we recover the Boltzmann distribu-
tion. On the other hand, in the limit that n� ncr, the ncr/n term in the denominator
dominates and Equation 90 reduces to

nu
nX

' gu
gl
e−Eul/kT

n

ncr

. (91)

We can then use the fact that for any collider,

qlu
qul

=
gu
gl
e−Eul/kT , (92)

to write Equation 91 as
nu
nX

'
∑
c q

c
lux

c

Aul
n. (93)

• The power radiated by our collection of atoms can be written as

Λul = AulEulnu. (94)

Physically, what is going on her is that we are converting energy from the thermal
motion of the atoms and their collision partners into radiative energy (i.e. photons).
The expression above therefore represents a radiative cooling rate.



• We can use Equation 90 to write this cooling rate in terms of our total number density
of atoms, nX. We find that

Λul = AulEulnX
(gu/gl)e

−Eul/kT

1 + ncr/n+ (gu/gl)e−Eul/kT
. (95)

• In the limit n� ncr, which we will henceforth refer to as the LTE limit, we see that

Λul = AulEulnX
(gu/gl)e

−Eul/kT

1 + (gu/gl)e−Eul/kT
, (96)

= AulEulnX
(gu/gl)e

−Eul/kT

Z(T )
, (97)

where in the second line, we have made use of the partition function for the atom.
For a general multilevel system, this is defined as

Z(T ) =
∑
i

gi
g0

e−Ei0/kT , (98)

where g0 is the statistical weight of the ground state, gi is the statistical weight of
excited state i, Ei0 is the energy difference between state i and the ground state, and
where we sum over all possible excited states.

• Points to note about the LTE cooling rate:

– In the LTE limit, the cooling rate scales with the density as Λul ∝ nX. In this
limit, the mean cooling rate per atom depends solely on the temperature (and
the properties of the atom itself), and the density dependence of the cooling rate
therefore simply reflects how many atoms we have.

– The cooling rate is also directly dependent on the size of the Einstein coefficient,
Λul ∝ Aul. Therefore, stronger transitions provide much more cooling than weaker
transitions.

– If we define a cooling time,

tcool =
1

γ−1
ntotkT

Λul

, (99)

where γ is the adiabatic index of the gas, then in the LTE limit, this is indpendent
of density.

• In the limit where n � ncr (the low-density limit, or n → 0 limit), the cooling rate
becomes

Λul = Eul

(∑
c

qclun
c

)
nX. (100)

• Points to note about the low density cooling rate:



– At low densities, the cooling rate is independent of the value of Aul: we get the
same amount of cooling from either strong or weak transitions (provided that in
both cases we have n� ncr).

– On the other hand, the cooling rate depends directly on the collisional excitation
rate and hence on the number densities of the various colliders.

– This behaviour is easy to interpret: it occurs because in this limit, every collisional
excitation is followed by radiative de-excitation and hence by the loss of a photon’s
worth of energy from the gas. Therefore, the factor controlling the cooling rate
is how frequently the upper state can be excited, not how rapidly it decays once
excited.

– This means that the overall density dependence of the low-density cooling rate is:
Λul ∝ n2. Consequently, the cooling time scales as tcool ∝ n−1.

1.6 Radiative cooling – optical depth effects

• So far, we have completely ignored the effects of absorption. This is a reasonable
assumption if any ambient radiation fields are very weak and the optical depth in the
line is very small, but it does not hold in every case.

• Therefore, we now generalise our analysis to handle absorption and stimulated emission.
Consider our two-level atom, with level populations that are in statistical equilibrium.
In this case, we have:

(Clu +BluJlu)nl = (Aul +BulJlu + Cul)nu, (101)

where Jlu is the mean specific intensity.

• In general, to solve this equation throughout our medium, we need to know Jlu at every
point, and since Jlu depends on the level populations, we end up with a nasty coupled
problem that requires a numerical treatment to solve.

• However, there is an interesting limiting case which we can study here that is often
applicable and that can help to illuminate the physics of the situation.

• We start by assuming that any incident radiation field is negligible, and hence that the
only important contribution to Jlu comes from the emission of the atoms themselves.
We also assume that photons that are emitted by the atoms either are absorbed locally
(i.e. within a small volume around the emission site, within which we can assume that
physical conditions such as density and temperature do not appreciably vary) or escape
from the gas completely.

• The probability that a photon that is emitted at some point within a distribution of gas
can escape from the gas without re-absorption – the so-called escape probability, β
– will in general depend upon the mean optical depth at that point, τ̄ul, i.e. β = β(τ̄ul).



• We can use β to simplify Equation 101 by noting that the net number of absorptions
(i.e. the number of photons absorbed minus the number produced by stimulated emis-
sion) must equal the number of photons emitted that do not escape from the gas,
i.e.

(nlBlu − nuBul)Jlu = nu(1− β(τ̄lu))Aul. (102)

Using this, we can rewrite our equation for the statistical equilibrium level populations
as

Clunl = (Cul + β(τ̄ul)Aul)nu. (103)

• In other words, in this approximation, the effect of the local absorptions is to reduce
the effective size of the radiative de-excitation rate: we go from Aul in the optically
thin case to A′ul = β(τ̄ul)Aul in the optically thick case. Therefore, all of our previously
derived results still hold provided that we make the substitution Aul → A′ul.

• One important consequence of this is that the critical density decreases: since ncr ∝ Aul,
we see that when the gas is optically thick, ncr ∝ β(τ̄ul). This means that the effect of
local absorption (also known as photon trapping) is to lower the density at which
LTE is reached. The higher the optical depth, the more pronounced this effect becomes.

• The relationship between β and τul depends on the geometry and velocity structure of
the gas, and for a completely general gas distribution may be difficult to determine.
However, simple closed-form approximations exist for a number of simple geometries:
for instance,

β(τul) '
1− e−3τul

3τul
(104)

for a plane-parallel slab.

1.7 Temperatures

• Before concluding our discussion of atomic level populations and related issues, it is
useful to take a little time to discuss the different temperatures that one may encounter.

• The most familiar is the kinetic temperature, often referred to simply as ‘the tem-
perature’, without a qualifier. For a gas with a thermal (i.e. Maxwell-Boltzmann)
small-scale velocity distribution, the kinetic temperature is the parameter T appearing
in the Maxwell-Boltzmann distribution function, and is thus a measure of the thermal
velocity of the atoms.

• However, there are two other important measures of temperature that are commonly
encountered in the study of the ISM: the excitation temperature and the bright-
ness temperature.



1.7.1 Excitation temperature

• When our atoms are not in LTE, a convenient way to describe how close they are to
LTE is the excitation temperature. For our model two-level atom, this is defined
as:

Tex ≡
Eul
k

[
ln

(
nlgu
nugl

)]−1

. (105)

• Re-arrangement of this expression yields

nu
nl

=
gu
gl
e−Eul/kTex . (106)

In other words, the excitation temperature is the temperature for which the Boltzmann
distribution would yield the specified ratio of nu to nl.

• Clearly, when our atoms are in LTE, Tex ≡ T – in other words, the excitation temper-
ature is the same as the kinetic temperature of the gas.

• More generally, we can show that

T

Tex

− 1 =
kT

Eul
ln
(

1 +
ncr

n

)
, (107)

demonstrating that when n� ncr, we have Tex � T .

• We can also write the cooling function for our two-level atom in terms of the excitation
temperature. We know that

Λul = AulEulnu, (108)

and from the definition of the excitation temperature, we also know that

nu =
gu
gl
e−Eul/kTexnl. (109)

Also, we know that nl = nX − nu, where nX is our atomic number density. Therefore,

nu =
(gu/gl)e

−Eul/kTex

Z(Tex)
nX, (110)

where Z(T ) is the partition function. The cooling rate is therefore simply given by

Λul = AulEulnX
(gu/gl)e

−Eul/kTex

Z(Tex)
. (111)

Comparing this with Equation 97, we see that Λul(n, T ) ≡ Λul,LTE(n, Tex); in other
words, the cooling rate is the same as it would be if the gas were in LTE with a
temperature Tex.



1.7.2 Brightness temperature

• The brightness temperature of a radiation field is the temperature that a Planck
function would have to have in order to produce the same specific intensity Iν as the
radiation field in question. In other words,

Iν =
2hν3/c2

ehν/kTb − 1
, (112)

where Tb is the brightness temperature.

• Rearrangement of this equation yields the following expression for Tb:

T−1
b =

k

hν
ln

[
1 +

2hν3

c2Iν

]
. (113)

• At long wavelengths, in the regime where hν � kT , we can approximate the Planck
function as

Bν(T ) ' 2kTν2

c2
. (114)

(This is known as the Rayleigh-Jeans limit). In this regime, the brightness temper-
ature is directly proportional to Iν :

Tb =
c2

2kν2
Iν . (115)

• This formulation of Tb is a very good approximation for something like 21 cm radiation,
where the energy of the transition corresponds to a temperature of order 0.07 K. It’s
use becomes increasingly questionable as we move to shorter wavelengths, however,
and so we typically use this approximation only for lines with wavelengths λ > 1 mm.

• Suppose we’re interested in the brightness temperature of some particular emission
line produced by a cloud of gas. If the optical depth of the line is large, then we know
that the emergent specific intensity is simply given by the source function, Sν . If the
excitation temperature of the cloud is reasonably uniform, then Sν ' Bν(Tex), and
hence Tb ' Tex.

• If we add the additional assumption that the atoms are in LTE, then we know that
Tex ' T , and hence Tb ' T . In other words, the brightness temperature of a line is a
good diagnostic of the gas temperature provided that

– The line is optically thick, τ � 1.

– The level populations producing this particular line are in LTE (i.e. n� β(τ)ncrit).


