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Abstract

Stars are born from dense cores of gas within molecular clouds. The exact nature of the

connection between these gas cores and the stars they form is an important issue in the field

of star formation. In this thesis I use numerical simulations of molecular clouds to trace the

evolution of cores into stars.

The CLUMPFIND method, commonly used to identify gas structures is tested. I find that

the core boundaries it yields are unreliable, but in spite of this, the same profile is universally

found for the mass function. To facilitate a more robust definition of a core, a modified clump-

find algorithm which uses gravitational potential instead of density is introduced. This allows

the earliest fragmentation in a simulated molecular cloud to be identified. The first bound

cores have a mass function that closely resembles the stellar IMF, but there is a poor corre-

spondence between individual core masses and the stellar masses formed from them. From

this, it is postulated that environmental factors play a significant part in a core’s evolution.

This is particularly true for massive stars, as massive cores are prone to further fragmenta-

tion. In these simulations, massive stars are formed simultaneously with stellar clusters, and

thus the evolution of one can affect the other. In particular, the global collapse of the forming

cluster aids accretion by the precursors of the massive stars. By tracing the evolution of the

massive stars, I find that most of the material accreted by them comes from diffuse gas, rather

than from a well-defined stellar core.
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1
Introduction

Since no energy source is inexhaustible, stars cannot exist forever. Instead they are born in

dense nebulae and die in either spectacular supernovae explosions or have a more lingering

death as a planetary nebulae. This thesis will concentrate on the earliest stages of the birth of

stars: their condensation from their parent nebulae.

Considerable work has gone into understanding star formation since the pioneering work

of Jeans (1902), who first derived the criteria for a region of gas to become unstable and

collapse to form a star. We now understand that stars are formed in dense nebulae, known

as molecular clouds. The gas in the region collapses when it becomes gravitationally unstable

and forms a hydrostatic core surrounded by an accretion disk, within which planets may be

formed. The material from this disk is accreted by the actual star, which powers energetic jets.

However, there are many facets of this process as which are as yet unknown. The distribu-

tion of stars formed has a characteristic profile common to all regions of star formation. There

are several explanations proposed which invoke physics such as turbulence, gravity and ther-
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modynamics, but a definitive answer has not yet been reached. Moreover, the nature of the

link between the dense cores of gas within molecular clouds and the stars which form from

them is still unclear. An additional challenge is understanding massive star formation, since

the typical fragmentation mass within molecular clouds is an order of magnitude smaller than

the largest stars, and feedback from the star could prevent very high masses being reached.

At the level of individual stars the mechanism for transferring angular momentum from the

disk into the jet is still uncertain.

This thesis seeks to address the connection between the earliest self-gravitating fragments

in molecular clouds, and the stars which form from them. Particular emphasis will be placed

on the role of gravity in a clustered environment. In this introduction to the topic I will first

describe the environment of molecular clouds and how they are observed in Section 1.1. Then

in Section 1.2 the major processes in star formation will be outlined. Finally, in Section 1.3

the dense cores which are the progenitors of stars are described, and the similarities between

the clump mass function and the stellar initial mass function discussed.

1.1 The Properties of Molecular Clouds

1.1.1 Observations

Since the first observations by Bok of dark nebulae or ‘Molecular Clouds’, they have been

recognised as the birth places of stars (Bok & Reilly, 1947). Due to the very low densities

of space (typically less than one atom per cubic centimeter), the self-gravity of gas is largely

negligible. It is only in the clouds of gas where large density enhancements are seen that

gravity can become a significant enough force to induce collapse. Molecular clouds are pre-

dominately situated in the spiral arms of our galaxy, and get their name from the molecular

hydrogen which is their chief constituent, although they also contain dust and traces of other

molecular species.

Since the discovery of molecular clouds (MC’s) considerable effort has gone into deter-

mining their properties. This process is complicated by the fact that the main constituent of

MC’s, (molecular hydrogen) is effectively unobservable at low temperatures, due to its lack of

dipole moment. However, several observational methods have been developed which cleverly

get around this obstacle. A fruitful approach is to observe dust within MC’s rather than the

gas, and then convert this using an assumed dust to gas ratio (e.g. Lilley, 1955). Generally
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Table 1.1: Typical properties of clouds, clumps and cores (adapted from Bergin & Tafalla 2007.)

Cloud Clump Core
Size (pc) 2− 15 0.3− 3 0.03− 0.2
Mass (M�) 103− 104 50− 500 0.5− 5
Mean density (cm−3) 50− 500 103− 104 104− 105

Velocity Extent (kms−1) 2− 5 0.3− 3 0.1− 0.3
Gas Temperature (K) ∼ 10 10− 20 8− 12

the mean observed value of 100 is used as the gas to dust ratio, however Lilley (1955) found

a range of values between 35 to 250, therefore this assumption is likely to introduce at least

some error. The peak in thermal emission from dust particles is situated in the sub-mm regime

allowing the dust continuum to be mapped using mm bolometer arrays such as SCUBA and

MAMBO (e.g. Motte et al., 1998; Johnstone et al., 2000; Enoch et al., 2006). Another method

which uses the dust component is extinction mapping. This takes advantage of the fact that

the dust absorbs optical and near-IR light from the background stars. By measuring the colour

excess of the background the extinction can be deduced, since short wavelengths will be pref-

erentially absorbed. This is known as the Near Infrared Colour Excess (NICE) method (Lada

et al., 1994), and also comes in an improved NICER (NICE Revisited) variant (Lombardi &

Alves, 2001).

Alternatively, line emission from one of many trace molecular species can be used to trace

the gas. Carbon monoxide and its isotopologues are commonly used tracers of the more

diffuse gas (Pineda et al., 2008) but as CO freezes out onto dust grains above densities of

3× 104 g cm−3, nitrogen bearing molecules such as NH3 are used to trace the dense regions.

1.1.2 Structure and Velocity Distribution

Molecular Cloud structure appears clumpy and filamentary (Williams et al., 2000), and in

many ways its hierarchical structure appears scale free, which has lead some authors to use

fractal models to describe it (e.g. Elmegreen, 2002). However, it is more common observa-

tionally to split the structure up into ‘clouds’, ‘clumps’ and ‘cores’, which can be defined as

shown in Table 7.1 by Williams et al. (2000). These approaches are not incompatible: ef-

fectively clumps and cores are equivalent to the high density peaks of a fractal distribution.

Unfortunately making these divisions can often be quite arbitrary.

Most of the mass in molecular clouds actually resides at low densities, for example Lom-

bardi et al. (2006) find that only about∼ 1% of the mass measured from dust extinction in the
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Pipe Nebula has Ak > 10. Similarly, in continuum emission from Ophiuchus, Johnstone et al.

(2004) found that sub-millimetre objects represented only 2.5% of the cloud mass. Indeed,

Table 7.1 shows that the range of gas densities seen in Molecular Clouds is extremely wide.

Gas densities are well described by a lognormal distribution (e.g. Ridge et al., 2006), which

is a characteristic of structure formed by turbulence in an adiabatic gas (Vazquez-Semadeni,

1994; Scalo et al., 1998).

Supersonic linewidths observed from Molecular Clouds have long been interpreted as ev-

idence for said turbulence. These were described by Larson (1981) who related the velocity

dispersion σ(v) of a cloud to its size L as shown in Equation 1.1

σ(v)∝ Lβ (1.1)

where a value of β ≈ 0.4 ± 0.1 is typically observed. Larson (1981) developed this rela-

tion by analogy to classical subsonic Kolmogorov turbulence, but turbulence in MC’s actually

has a closer resemblance to Burgers turbulence (Brunt & Mac Low, 2004). Burgers turbu-

lence is supersonic, compressible and most of its energy is dissipated by shocks, which causes

large density enhancements. In an isothermal gas the density across a shock increases as the

square of the Mach number, and therefore as Mach numbers of up to 10 are observed, den-

sity enhancements of at least two orders of magnitude are obtainable. This mechanism could

produce the cores discussed above. However, as Ballesteros-Paredes (2004) point out, the

majority of structures produced by turbulence should be transient.

Turbulence can also influence the lifetime of molecular clouds. The kinetic energy in tur-

bulence is observed to be roughly equal to the cloud’s self-gravity, and so turbulence could

provide a supporting force against collapse. However, Mac Low (1999) showed that turbu-

lence decays in about a crossing time in all cases. Therefore, if turbulence is the dominant

support in clouds, they must either have a short lifetime, or the turbulence must be contin-

uously driven. At small scales, turbulence cannot entirely prevent collapse, as it becomes

subsonic, which increases the likelihood of gravity becoming the dominant force (Goodman

et al., 1998).

Thermal motions are rarely a dominant contribution to the energy balance of molecular

clouds, due to their extremely low temperatures. The dust and gas temperatures are set by the

balance between heating and cooling. The dust is heated by the interstellar radiation field,
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and cooled by the emission of thermal energy from the dust grains (Mathis et al., 1983). As the

densities of molecular clouds are high, cooling is efficient and temperatures are low (15−20 K

in the cloud and 10−12 K in cores, Ward-Thompson et al. 2002). The gas is heated by cosmic

rays and cooled by molecular line emission, particularly from CO (McKee et al., 1982). At

high densities, such as those seen in cores, CO freezes onto dust grains. However, at these

densities the dust and the gas become well thermally coupled due to collisions, which allow

the gas to be efficiently cooled by the dust (Larson, 1973b). This allows molecular clouds to

maintain a temperature of around 10 K across a wide range of densities (Goldsmith & Langer,

1978). This isothermal behaviour continues until the cloud becomes optically thick to dust

emission at n(H2)> 1010 cm−3 (Tohline, 1982).

1.1.3 Cloud Lifetimes & Magnetic Support

It is important to know the lifetimes of molecular clouds when studying star formation as this

determines whether star formation is a quick or slow process. Two useful timescales in MC’s

are the free fall time and the sound crossing time.

t f f =
�

3π

32Gρ

�1/2

(1.2)

tcr = L/cs (1.3)

The free fall time is defined as the time a uniform gas sphere will take to collapse from rest to

an infinite density in the absence of pressure gradients. Typical free fall times for molecular

clouds are of the order of 105 -106 yrs. The sound crossing time is simply the time a sound

wave travelling at the sound speed cs will take to cross the distance, L, across the cloud.

There is considerable debate as to the dynamic state of molecular clouds. Some propose

that MC’s are long lived equilibrium structures which evolve quasi-statically to form stars

(Blitz & Shu, 1980; Tan et al., 2006). Others hold the view that MC’s are short lived dynamic

structures (Ballesteros-Paredes et al., 1999a; Elmegreen, 2000).

The quasistatic view was originally motivated by the low star formation rate observed in

the Galaxy: for example McKee & Williams (1997) find a value of only 4 M� /y r. This lead to

the conclusion that star formation must be an inefficient process which takes place over long

time scales. Zuckerman & Evans (1974) used the low galactic star formation rate to show that
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only a few percent of the mass in MC’s was converted to stars. Molecular clouds, therefore,

would need to be supported against gravitational collapse throughout their lifetimes(about 10

Myr). Turbulence decays over a crossing time (Mac Low et al., 1998) so there would need to

be some mechanism adding energy to sustain it. Magnetic fields could also stabilise molecular

clouds due to conservation of magnetic flux. In a magnetically supported long-lived MC it is

proposed that stars would condense slowly out of the surrounding medium (Shu, 1977).

Zeeman splitting can be used to measure the magnitude of the magnetic field, although

this requires very high signal-to-noise observations. Using this method Crutcher et al. (1993)

found the typical cloud total field strength was 16µG. In a later survey they determined

that static fields alone were not sufficient to balance gravity (Crutcher, 1999). However, if a

contribution from MHD turbulence was included this could be enough to support the cloud

(although as mentioned previously, the turbulence would soon decay). Recently Crutcher

et al. (2009) measured the ratio of the mass-to-magnetic flux between four molecular cloud

cores and their envelopes. The ratio was less than 1 in all cases. This was too low for them to

have formed by magnetic ambipolar diffusion. Observations by Bourke et al. (2001) confirm

that observed magnetic fields would be insufficient to support spherical clouds, although they

may be able to support flattened sheets. Therefore at present, it is unclear whether magnetic

fields are a dominant force in MC’s.

In the alternative dynamic scenario, clouds are not in virial equilibrium but simply a rough

energy equipartition. Molecular clouds can be thought of as transient features of the turbulent

flow in the ISM, with lifetimes of between 3− 5 Myrs (Ballesteros-Paredes et al., 1999a). No

additional support is needed, as it is not necessary for the cloud to achieve virial equilibrium.

Moreover, if the proposal of Elmegreen (2000) that all star formation occurs within a single

crossing time is true, then turbulence need not be driven. Despite this rapid star formation,

overall star formation rates remain low in agreement with observations, since only a small

fraction of the total GMC mass is actively involved in star formation. Effectively, the short MC

lifetimes halt star-formation at low efficiencies.
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1.2 Major Processes in Star Formation

1.2.1 Fragmentation & Collapse

The idea of star formation occurring through the gravitational fragmentation of Molecular

Cloud structure is an old one. In 1902, Jeans showed that gravity can amplify small perturba-

tions in a uniform medium. Short wavelength perturbations are pressure-dominated and will

re-expand due to their internal thermal energy. However beyond some critical wavelength,

λJ , gravity dominates and the density perturbation will grow exponentially. For a uniform

isothermal region the Jeans Length is expressed as

λJ = π
1/2cs(Gρ)

−1/2. (1.4)

where ρ is the density and the isothermal sound speed, cs, is given by the expression c =

(kT/m)1/2 where m is the average particle mass. The Jeans Mass is

MJ =
�

5kT

2Gµ

�3/2�4πρ

3

�−1/2

, (1.5)

where k is the Boltzman constant, T is temperature, and µ is the mean atomic mass. For a

typical molecular cloud with an average density around 10−19 g cm−3, the Jeans Mass is of the

order of one solar mass. At this point it should be noted that Jeans analysis is in some respects

flawed, as he did not take into account the effects of the background material in which the

perturbation resides (Binney & Tremaine, 1987). Nonetheless, the Jeans mass remains a valid

approximation regardless of geometry (Larson, 2003).

The idealised case of a pressure bounded spherical perturbation in a self-gravitating isother-

mal medium was independently derived by Bonnor (1956) and Ebert (1955) who found that

it would collapse if its mass exceeded,

MBE = 2.1
�

T

20 K

�2� P/k

106 Kcm−3

�−1/2

M� (1.6)

where T is the internal temperature and P the boundary pressure, but otherwise it would

remain in equilibrium. Bonnor-Ebert spheres are often used as models for the initial core

stage of star formation (eg. Johnstone et al., 2000). They have a flat inner density core with

density ρc , and a decreasing outer density profile which falls as r−2. The size of the inner
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core can be expressed in terms ρc as

rc =

�

4πGρc

c2
s

�1/2

, (1.7)

and this core length can be used as a normalisation length for the entire core, ξe = re/rc ,

where re is the outer radius of the Bonnor-Ebert sphere. The outer radius, re of the sphere

is determined from the balance of internal and external pressure. For example, an increase

in external pressure will cause the core to shrink and increase the importance of self gravity.

However, there exist no equilibrium models above ξe = 6.3, so all Bonnor-Ebert spheres which

exceed this value are unstable and will collapse.

The collapse of isothermal density spheres has been extensively studied by Larson (1969)

and Penston (1969), who showed that during the collapse there is runaway growth of a central

peak, which leads to the density profile approaching that of an isolated isothermal sphere,

ρ ∝ r−2. As the sphere begins to collapse, there is initially no net pressure support, since the

interior and exterior pressures are balanced, and so collapse can proceed freely. However, as

the inner densities increase and the outer densities decrease, an outward pressure gradient is

generated, which impedes collapse in the outer regions of the sphere. Additionally, as the free

fall time increases with density, inner dense radii collapse more rapidly than the less dense

radii outside them, which causes the central collapse to accelerate. The centre of the core

reaches the densities where a protostar can be formed in advance of the rest of the envelope,

so this must be subsequently accreted.

In the Larson-Penston self similarity solution describing the collapse of an isothermal

sphere, in-fall velocities are supersonic and initially approach a value of −3.3cs before the

central proto-star is formed. Hunter (1977) extended this model past the formation of the

proto-star, and found that it would have a constant accretion rate of 46.9c3/G. However,

when Hunter (1977) compared the predicted collapse to that shown from numerical simula-

tions, he found that a self-similarity solution was only approached in a small central region,

and that the accretion rate would actually decrease rapidly with time. A similar result was

found by Foster & Chevalier (1993). Moreover, if the initial density profile of the sphere is

flattened at the centre and then decreases outward (as in the case of Bonnor-Ebert spheres

or Plummer spheres) this also leads to an initially high accretion rate while the central core

is accreted, which then falls as the lower density envelope is accreted (Whitworth & Ward-
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Thompson, 2001)

1.2.2 The Phases of Star Formation

The stages of star formation between cores and stars are now very briefly detailed (for a full

treatment see Shu et al. 1987 or Andre et al. 2000). In the prestellar stage of star forma-

tion a core collapses under gravity until its centre becomes optically thick (Tohline, 1982). A

hydrostatic core develops when all the molecules within it have dissociated. This core is the

protostar. In the Class 0 phase the protostar accretes mass from the original core envelope,

partly through direct in-fall, but mainly through a disk formed by the higher angular momen-

tum material. In addition to accreting gas, the protostar also launches outflows. In the Class

I phase, these outflows clear out the envelope along the rotational axis and accretion contin-

ues. When the class II phase is reached, the envelope has dispersed and accretion is almost

negligible, although a tenuous disk remains. The protostar will now start contracting towards

the main sequence. Objects in this phase are called T Tauri stars. In the Class III stage, the

protostar has almost reached the main sequence and all that remains is a debris disk (and

possibly some planets). In the subsequent simulations presented in this thesis, star formation

can only be followed down to the resolution scale, which is typically a few thousand AU (see

Section 2).

1.2.3 The Initial Mass Function

The initial mass function (IMF) of stars in our galaxy was first measured by Salpeter (1955)

who showed that the number of stars ξ(m)dm which have masses between m and m+ dm

can be approximately represented by the power law,

ξ(m)dm≈ m−αdm (1.8)

where α ≈ 2.35 for stars with mass 0.4 ≤ m ≤ 10 M�. However this approach is slightly

simplistic, and a lognormal form has been found to be a more accurate representation (Miller

& Scalo, 1979; Chabrier, 2002). The most common approach when modelling the IMF empir-

ically is to use a three component power law, as shown below (Kroupa, 2002).
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Figure 1.1: The IMF found by Chabrier (2002).

ξ(m) =











0.26m−0.3 0.01≤ m< 0.08

0.035m−1.3 0.08≤ m< 0.5

0.019m−2.3 0.5≤ m<∞

(1.9)

The basic shape of the IMF is shown in Figure 1.1 in a log scale (note, that in this form the

exponents of Eq. 1.9 become 0.3, -0.3 and -1.3 respectively.) The IMF appears to be common

to all regions of star-formation, and therefore its shape must be explained by any theory

involving the statistics of star formation.

1.3 The Clump Mass Function

So far in this Introduction we have considered the physics of molecular clouds and star forma-

tion. The dense cores of gas seen in molecular clouds are the link between these two topics.

Cores represent the densest peaks of the hierarchical density distribution within molecular

clouds, and it is within them that stars are formed. Further, observations of the core mass

function have shown it strongly resembles the IMF (Motte et al., 1998), leading many to pro-

pose a direct link between them (eg. Alves et al., 2007). Firstly let us consider the properties

of the cores:-

1.3.1 Observations of Cores

As the sites of star formation, cores have been studied in great detail; recent surveys include

Motte et al. (1998); Johnstone et al. (2000, 2006); Ikeda et al. (2007); Alves et al. (2007);
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1.3. The Clump Mass Function

Nutter & Ward-Thompson (2007); Ward-Thompson et al. (2007); Enoch et al. (2008). From

these an understanding of the key features of cores is beginning to develop.

Cores are generally sub-classified into two types. Cores containing stars already have an

infrared source at their centre, meaning they are actively forming proto-stars, and so are

often referred to as proto-stellar cores. Star-less cores show no evidence of a proto-star at

their centre and are usually referred to as pre-stellar cores.

As regards the structure of cores, Ward-Thompson et al. (1994) found that while the

densities of the outer regions of cores can be well fit by the power law ρ ∝ r−2, the profile is

flattened at the centre. This resembles the density profile of a Bonor-Ebert sphere which was

discussed in Section 1.2.1. Observations of pre-stellar cores are generally well fit by this model

(e.g. Johnstone et al., 2000). Bonnor-Ebert spheres are hydrostatic and pressure confined, so

does this mean that cores also share these properties?

Lada et al. (2008) make the case that the core population of the Pipe Nebula could be

pressure confined. However this may not always be the case, as Tafalla et al. (2004) have

observed cores within which the thermal pressure is insufficient to balance self-gravity. More

worryingly, Ballesteros-Paredes et al. (2003) have shown that dynamically collapsing cores

can be well fit by stable Bonnor-Ebert spheres, therefore the usefulness of this method in

determining the evolutionary state of cores is as yet uncertain. Moreover, even the simple

assumption of sphericity is not entirely valid. Myers et al. (1991) found cores to be elongated

structures better represented as prolate or oblate spheroids, as a consequence of which their

internal energy equilibrium must be imperfect.

Pre-stellar cores have temperatures of around 10K, similar to their parent molecular clouds.

Temperatures will only rise above this if the core becomes unstable and begins to collapse.

When densities become so high that the gas is opaque to its own cooling radiation the core

will be heated. Larson (2005) proposed a simple polytropic heating and cooling law to model

gas temperatures during the early stages of star formation. This will be discussed further in

Chapter 2.

Unlike the velocities of the larger cloud, core velocities are generally close to thermal

(Myers, 1983; Goodman et al., 1998). These largely sonic motions seem chiefly due to tur-

bulence, as the contribution from rotation seems small (Goodman et al., 1993). Additionally

in-fall motions are often observed; for instance Lee et al. (1999) found an overabundance of
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inward velocities of 0.05− 0.1 kms−1 in a sample of 220 starless cores. At least some cores,

therefore, must be in a state of dynamic collapse.

1.3.2 The Core Mass Function

Since the seminal observations of Motte et al. (1998) a clear resemblance has been recognised

between the core (and clump) mass functions and the stellar initial mass function (IMF).

Motte et al. (1998) have shown that the core mass function (CMF) in ρ Oph can be described

by a similar power-law fit as the IMF. Above ∼ 0.5 M� they find dn/dm ∝ m−α is well-fitted

by an exponent value of α= 2.5, while at lower masses they see a turn-over that can be fitted

with α = 1.5. These values for α are broadly consistent with the usual fits to the (Kroupa,

2002) IMF shown in Section 1.2. Similar results have been confirmed by a number of authors

for a variety of nearby star-forming regions, although the range of core masses found and

the break mass of the power law fit can vary (Johnstone et al., 2000, 2006; Nutter & Ward-

Thompson, 2007; Alves et al., 2007; Testi & Sargent, 1998). Clumps and cores appear to

have slightly different mass functions. Larger clump measurements using CO tend to find

a shallower value of the exponent α = 1.4 − 1.8 (Blitz, 1993; Kramer et al., 1998). This

is perhaps due to gravity steepening the slope on smaller scales where structures are more

bound. A more detailed account of the clump/core mass distribution can be found in Ward-

Thompson et al. (2007).

There are various theories as to how a power-law CMF could be formed. Gravity, causing

successive fragmentation in a collapsing gas cloud will naturally lead to a power law dis-

tribution (Larson, 1973a; Elmegreen & Mathieu, 1983). Alternatively, as discussed earlier,

supersonic turbulence produces a clumpy, hierarchical density structure, the density peaks of

which are cores. Padoan & Nordlund (2002) have argued that a CMF with a power law resem-

bling that of the IMF is a natural consequence of turbulence with a power spectrum consistent

with the Larson velocity dispersion law. Recently, Hennebelle & Chabrier (2008) proposed

that the CMF is a combination of a power law caused by turbulence, and a lognormal cutoff

centered around the characteristic mass of gravitational mass for gravitational collapse. The

Jeans mass (Jeans, 1902) at the point of fragmentation has been shown to be only weakly de-

pendent on temperature, density, metallicity and radiation field in the environments in which

stars form (Larson, 2005; Elmegreen et al., 2008), which means that the characteristic mass

of a Jeans unstable fragment should be similar in all molecular clouds.
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The similarity of the CMF and IMF naturally leads to the conclusion that they are linked.

However, it is unclear how best to get to the IMF from the clump mass function. Many assume

a direct 1− 1 link between the masses (Motte et al., 1998; Padoan & Nordlund, 2002), while

others include the effects of multiplicity (Goodwin et al., 2008). Alves et al. (2007) find

that an efficiency of one third is needed for there to be a direct correspondence between

core masses and stellar system masses in the Pipe nebula. Simpson et al. (2008) find that

an efficiency factor of 0.2 would be needed in Ophiuchus to obtain the IMF from the CMF if

every core formed a single star. However, when they used the multiplicity model of Goodwin

et al. (2008) an efficiency of 0.4 was required.

It is worth noting that there are many complicating factors during core collapse, such

as feedback from winds and outflows (Shu et al., 1988; Silk, 1995; Myers, 2008; Dale &

Bonnell, 2008), supporting magnetic fields (Heitsch et al., 2001; Tilley & Pudritz, 2007) and

competitive accretion (Zinnecker, 1982; Bonnell et al., 1997, 2001). All of these processes

may be involved in the collapse of a fragment to a star, and all could vary locally. Additionally,

Swift & Williams (2008) have shown that when a core mass function is evolved into a stellar

IMF, a Salpeter like distribution was found regardless of whether the core-to-star efficiency

was constant, variable or included multiplicity. Clark et al. (2007) have argued that since

lower mass cores should have higher densities, they will collapse more rapidly, and hence if

there was an exact correspondence between cores and stars, a steeper IMF would be produced

than that observed. Hatchell & Fuller (2008) on the other hand, have shown that the fraction

of proto-stellar cores increases with mass. They suggest this can be explained if massive cores

actually have short evolutionary time-scales and there is continuing accretion onto the core

during the evolution.

Moreover, under the competitive accretion theory of star formation there is no need for a

direct correlation between core masses and stellar masses at all, since the cores can be thought

of as ‘seeds’ from which accretion will build up the future IMF (Clark & Bonnell, 2005). The

evolution of a core mass function into a stellar population will be a major topic of this thesis.

1.4 Outline of Thesis

In Chapter 2 I will review the SPH method which is used to simulate the MC’s, and in Chapter

3 I discuss how decaying turbulence has been implemented. Clump-finding algorithms are
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discussed in Chapter 4, and a new method of using gravitational potential to find cores is

introduced. Chapter 5 investigates the reliability of clump-finding algorithms, and finds evi-

dence that the core-mass function profile is universal. In Chapter 6 the first bound structures

in a simulated molecular cloud are identified using the potential clump-finding routine, and

their properties compared to observations. Following this, the cores are linked to the stellar

mass formed from them in order to probe the connection between the core mass function

and the IMF. Penultimately, in Chapter 7 the effect of the wider environment upon subsequent

accretion is investigated, with particular reference to massive stars. Chapter 8 outlines my

conclusions.
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2
Smoothed Particle Hydrodynamics

This begins the first of three chapters on methodology. This chapter will focus on the Smoothed

Particle Hydrodynamics (SPH) Method. Chapter 3 will outline the implementation of Turbu-

lence into the simulations and finally Chapter 4 focuses on the Clumpfinding Method.

SPH is a Lagrangian hydrodynamics code. It is particle based and therefore requires no

grids. This proves to be both the main advantage and disadvantage of the method. Unlike

many grid codes, which must specify in advance where high resolution will be required, SPH

will automatically vary its spatial resolution so that high density regions are resolved, as this

is where the particles concentrate. This makes the method extremely flexible. Moreover, the

simplicity of the algorithm means it is easier to implement than grid codes and generally

requires less computational resources. For the work presented in this thesis the Lagrangian

nature of SPH is particularly useful, as it allows the gas involved in star-formation to be

directly traced.

However, the particle nature of the method can cause difficulties at fluid boundaries,
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such as shocks, as will be discussed in this chapter. Also Agertz et al. (2007) showed that

some dynamical instabilities such as the Kelvin-Helmholtz and Rayleigh-Taylor instabilities

are poorly represented in SPH, although recently Price (2008) has presented a method of

correcting this for the Kelvin-Helmholtz case.

The SPH method was first proposed by Lucy (1977) and has been utilised in many appli-

cations since. Notable contributions to its development include Gingold & Monaghan (1977);

Larson (1978); Bate et al. (1995) The code used in this work was originally created by Benz

(1990) but has since been considerably updated since (Bate & Bonnell, 2005). In recent years

magnetic fields and radiative transfer have begun to be implemented into SPH codes (Sta-

matellos et al., 2007; Price & Bate, 2008; Bate, 2009), but these are outside the scope of this

work.

2.1 The SPH Method

The basic concept of Smoothed Particle Hydrodynamics is that each particle represents a

smoothed distribution of density which allows the fluid equations to be applied in a discre-

tised form. A function, f (r), defined over a space, V (r), is smoothed via a kernel ,W (r, h), as

shown below.

< f (r)>=

∫

V

f (r′)W (r− r′, h)dr′ (2.1)

where the kernel is parameterised by the smoothing length h and satisfies

∫

V

W (r, h)dr′ = 1 and (2.2)

W (r− r′, h)→ δ(r− r′) as h→ 0. (2.3)

Typically a sharply peaked function such as a Gaussian is used as the kernel. In this version

of the code a spline kernel is used (Monaghan & Lattanzio, 1985), Eq. 2.4. This kernel has

several advantages. Firstly, it is spherically symmetric, which is necessary for calculating the

gravitational and pressure forces. Secondly, it is continuous up to its second derivative which

allows the gradient of the fluid properties to be calculated. Finally, the kernel is zero when
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r/h> 2 which limits the number of particles which contribute to local properties.

W (r, h) =
σ

hν

�

1−
3

2
q2+

3

4
q3
�

if 0≤ q = r/h≤ 1 (2.4)

=
σ

hν

�

1

4
(2− q)3

�

if 1≤ q = r/h≤ 2 (2.5)

= 0 otherwise. (2.6)

As the kernel is strongly peaked and spherical, the function f (r) can be Taylor expanded

to show that

< f (r)>= f (r) + c(∇2 f )h2+O(h3) (2.7)

which means that < f (r)> can be replaced with f (r) with the same accuracy as the smooth-

ing length. This means the identity below must be true.

�

A(r)
B(r)

�

=
< A(r)>
< B(r)>

+O(h2) (2.8)

The function f (r) is only known at N discrete points which are distributed as

n(r) =
N
∑

j=1

δ(r− rj). (2.9)

Equation 2.1 can then be multiplied by n(r′)/ < n(r′)> using Eq. 2.8, and then integrated to

derive

< f (r)>=
N
∑

j=1

f (r j)

< n(r′)>
W (r− rj, h). (2.10)

By noting that the number density is

< n(rj)>=
ρ(rj)

m j
(2.11)

where ρ(r j) is the density of the j’th particle and m j is its mass, equation 2.10 becomes

< f (r)>=
N
∑

j=1

m j

< ρ(r′)>
f (rj)W (r− rj, h). (2.12)

The above equation is the key concept of the SPH method, as the function f (r) can be replaced

with any variable which varies smoothly over space. For instance, the smoothed density will
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be

< ρ(r)>=
N
∑

j=1

m jW (r− rj, h). (2.13)

This is the mathematical expression of the basic concept of SPH discussed earlier. It also

satisfies the hydrodynamic continuity equation, provided the particle mass remains constant.

The gradient of a quantity can also be formulated in a smoothed manner by differentiating

Eq. 2.1 by parts and neglecting surface terms to give

<∇ f (r)>=

∫

f (r′)∇W (r− r′, h)dr ′ (2.14)

which, when discretised becomes

<∇ f (r)>=
N
∑

j=1

m j

ρ(r′)
f (rj)∇W (r− rj, h). (2.15)

Equation 2.15 has the advantage that for any given quantity, it is only the kernel which ever

needs to be differentiated, and so these values can be tabulated to save computer time.

2.2 The Fluid Equations

In the SPH method the mass distribution is treated as a fluid, and each SPH particle represents

a fluid element within the flow. Therefore the fluid equations form the basis of the SPH

equations. The fluid equations can be formulated in two ways. In the Eulerian form the fluid

properties are expressed at a fixed position, whereas in the Lagrangian form the position can

vary. In effect the Eulerian form details the conditions at a spatial position and the Lagrangian

form gives the conditions within an individual fluid element. Hydrodynamic grid codes are

Eulerian but SPH is Lagrangian. To convert between these two formulations the relationship

below can be used.
dQ

dt
=
∂Q

∂ t
+ u.∇Q (2.16)

The first fluid equation in Eulerian form is conservation of mass.

∂ ρ

∂ t
+∇(ρu) = 0 (2.17)
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This is automatically included in the SPH formalism as shown in Eq. 2.13. It is easy to satisfy

this condition within SPH as each particle represents a fixed amount of mass, and as long as

no particles are added or removed from the simulation mass is conserved. The momentum

equation is
∂ v

∂ t
+ (v.∇)v=−

∇P

ρ
(2.18)

and the energy equation for an adiabatic equation of state is

∂ u

∂ t
+ (v.∇)u=−

P

ρ
∇.v. (2.19)

2.3 The SPH Equations

2.3.1 Momentum Equation

The expression for conservation of mass has been derived in Eq. 2.13, and so the momentum

will be found next. The momentum equation can be found by applying Eq. 2.1 to the Eule-

rian momentum equation and then placing the result into a discrete form, as shown in Benz

(1990), to get
dvi

d t
=−

N
∑

j=1

m j

 

Pi

ρ2
i

+
Pj

ρ2
j

+Πi j

!

∇iWri jhi j
(2.20)

for a particle pair i and j, where P is the pressure andΠ is the artificial viscosity . The equation

is formulated in this symmetrical manner so that the momentum is explicitly conserved for

every pair of particles.

2.3.2 Equation of State

The equation of state used here is occasionally the simple isothermal equation

P = c2
s ρ (2.21)

where cs is the sound speed of the gas, but more commonly a more complex barotropic equa-

tion is used to mimic the behaviour of gas in a molecular cloud (Larson, 2005). This equation

of state ensures that the Jeans mass at the point of fragmentation in a molecular cloud matches

the characteristic stellar mass.

P = kργ (2.22)
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where k is a constant set by the entropy of the gas and γ is given by

γ= 0.75 : ρ ≤ ρ1 line cooling

γ= 1.0 : ρ1 ≤ ρ ≤ ρ2 dust cooling

γ= 1.4 : ρ2 ≤ ρ ≤ ρ3 optically thick to IR

γ= 1.0 : ρ ≥ ρ3 allow sink formation

(2.23)

where ρ1 = 5.5× 10−19 gcm−3, ρ2 = 5.5× 10−15 gcm−3 and ρ3 = 2× 10−13 gcm−3.

This equation of state mimics the effects of line cooling (Larson, 2005; Jappsen et al.,

2005) and then dust cooling when the dust is coupled to the gas (Masunaga & Inutsuka,

2000). When the gas becomes optically thick to IR radiation the gas will heat again. This

heating is invoked at a somewhat earlier stage in the collapse than is typically the case to

ensure the Jeans mass of a fragment is always resolved.

2.3.3 Artificial Viscosity

The treatment of shocks is one of the major challenges in SPH. In the SPH equations no dis-

sipative term to model the conversion of kinetic energy to thermal energy in shocks has been

included. This allows particle penetration, which occurs when streams of colliding particles

are unable to dissipate their energy quickly enough, leading to an excess of kinetic energy

allowing them to continue through each other. Additionally, as shocks are abrupt discontinu-

ities, they are generally smaller than a smoothing length, and hence not resolved. To avoid

this an artificial viscosity term is introduced which acts like a pressure term, and smoothes the

shock over 3h, allowing the shock to be resolved and the energy dissipated. The two artificial

viscosity terms are

Pα = Παρ
2 =−αρlcs∇.v, (2.24)

and

Pβ = Πβρ
2 = βρl2(∇.v)2, (2.25)

where l represents the typical length scale over which the shock is spread and α and β control

the strengths of the shocks. Eq. 2.24 is a bulk velocity term for the subsonic regime and Eq.

2.25 is a second-order von Neumann-Richtmyer viscosity for the supersonic case. The free

parameters α and β typically have values of 1 and 2 respectively (Monaghan & Gingold,
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Figure 2.1: An illustration of the binary tree. SPH particles are combined hierarchically into nodes
which can be substituted for their constituent particles within the gravitational force calculation.

1983). The artificial viscosity, Πi j , is a combination of the above,

Πi j = (−αcsµi j + βµ
2
i j)/ρi j if vij.rij ≤ 0, (2.26)

= 0 if vij.rij ≥ 0 (2.27)

where

µi j =
hvij.rij

rij
2+η2 (2.28)

given that vij = vi − vj, ρi j = (ρi + ρ j)/2 and η2 = 0.01h2 to avoid divergence at small

separations. Shock tube tests showing the effects of artificial viscosity and particle penetration

can be found in Dobbs (2006).

2.3.4 Self Gravity

Gravity is included simply by reformulating the Poisson equation. Benz (1990) showed that

the total gravitational force felt on a particle i is given by

−∇φi =−G
N
∑

j=1

M(ri j)

r2
i j

rij

ri j
. (2.29)

This term is added to the momentum equation, Eq. 2.20 to represent the self-gravity of

the gas. Unfortunately this calculation scales as N2/2 when summed over all the particles.

To speed up the calculation an inverted hierarchical tree is used to form ‘nodes’ of several

particles, which allows the force calculation to scale as NlogN . A graphical representation of

the binary tree is shown in Figure 2.1.

Nodes are formed from two SPH particles or existing nodes and located at their centre of
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mass. The quadrupole moment of the new node is calculated from its constituents and a node

radius is calculated within which all its constituents are found. The smoothing length of the

new node is set as the maximum value of its constituents smoothing lengths. Nodes distant

from the point whose gravitational force is being calculated can be used directly instead of

their constituent particles, by using their position and quadrupole moment. When computing

the force on a particle a distance R from a particle with radius r, the node need only be

expanded to its constituent particles if
R

r
< θ (2.30)

where θ is the opening angle. The wider the opening angle, the more nodes must be opened;

for example when θ = 0 all the nodes are opened. Bate (1995) found that a value of θ = 0.5

gives good efficiency with negligible errors.

2.3.5 The Energy Equation

For an isothermal equation of state the SPH energy equation can be found in a similar manner

to the momentum equation by applying by applying Eq. 2.1 to the Lagrangian energy equation

in terms of internal energy per unit mass to get

dui

d t
=

Pi

ρ2
i

N
∑

j=1

m jvij∇iW (ri jhi j) +
1

2

N
∑

j=1

m jΠi jvij∇iW (ri jhi j) (2.31)

For the barotropic equation of state it is assumed that energy is conserved when including the

heating and cooling within the equation of state.

2.4 Sink Particles

In order to represent star formation Bate et al. (1995) introduced non-gaseous, accreting

particles, known as sink particles, into the code. Sink particles interact with gas particles

only through gravity, and will accrete any bound particles which come within its accretion

radius. They represent regions of star formation and prevent the simulation from slowing

to a standstill, as the number of time-steps required to evolve the simulation increases with

density. When an SPH particle reaches a critical density, it will be transformed into a sink

along with its surrounding neighbours if it meets all the criteria below.

• the particle’s density is above critical threshold, ρcri t
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• the particle’s smoothing length is less than half the accretion radius of the sink which

will replace it.

• the particle and its neighbours are bound

• the particle and its neighbours are collapsing

• there is no existing sink particle within the smoothing length of the new sink

To ensure the last of the above tests can be carried out, only one sink can be created at a

time. If all these tests are satisfied, the densest particle will then be converted into a sink by

combining its properties with its neighbours and then moving it to their centre of mass.

Particles are accreted by the sink particle if all of the following are true :

• the particle is bound to the sink

• the particle is within a specified outer accretion radius, racc

• the particle’s specific angular momentum is lower than that needed to form a circular

orbit

• the particle is more bound to the sink than any other sinks in the locality.

However, there also exists an inner accretion radius, usually set to be ten times smaller than

the outer one, within which particles are accreted regardless of whether they satisfy the above.

This is done to prevent sph particles being artificially accelerated by a close encounter with a

sink particle. When the particle is accreted its mass, momentum and angular momentum are

added to the sink, and the sink is moved to their joint centre of mass.

2.5 Evolution and Smoothing Lengths

The code is evolved using a leapfrog integrator and with individual time-steps. The time step

will be either the Courant condition or the force resolution condition, whichever is smaller.

The Courant condition is given by,

δtC = Ccour min

�

h

vsi g

�

(2.32)
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where Ccour = 0.4 is the Courant number and vsi g is the maximum signal velocity between

the particle pair, a b, given by

vsi g = 1/2(va + vb + β |vab.j|) (2.33)

with β = 1 when vab.j > 0. The force resolution condition was derived in Monaghan (1992)

to be

δt f = 0.3

r

h

|F |
. (2.34)

The time-step is then rounded to an integer multiple of two of a specified minimum time-step

so that the particle evolutions are synchronised at a set synchronisation time. At this point

all the particles are updated and generally printed to a data dump. Particles can have their

time-step moved to a lower level at any point in the simulation as required. Time-steps can

only be increased if this still allows them to be evaluated at the synchronisation time. Variable

time-steps allow the simulation to be evolved without wasting computer time by integrating

particles to a greater accuracy than needed.

The smoothing lengths are allowed to vary to maintain a roughly constant number of

neighbours ( usually 50, but it can be as much as 70 or as little as 30 ) when computing forces,

and thereby improve the efficiency of the code. The new smoothing length of a particle should

be,

h= h0

�

ρ0

ρ

�1/3

. (2.35)

where h0 and ρ0 are the original smoothing length and density of the particle. However, the

smoothing length is itself needed to calculate the density. Benz (1990) showed that this can

be avoided by using the derivative of Eq. 2.35,

dh

d t
=

1

3

h

ρ

dρ

d t
(2.36)

which by applying the continuity equation becomes,

dhi

d t
=

1

3
h∇.vi. (2.37)

This quantity is then integrated along with the other SPH equations to give each particles

smoothing length at any time.
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This means that the smoothing length is lowest at high densities. Therefore high density

regions are the most resolved. This is a real strength of using the SPH method for star forma-

tion because most computer time is automatically spent on the regions where the stars will

form. In order to keep the forces on a particle balanced and ensure momentum is conserved,

the smoothing length is generally symmetrised as

h= hi j =
hi + h j

2
. (2.38)
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3
Initialising Decaying Turbulence

Chapter 3 continues to discuss methodology, in this case the implementation of turbulent

velocities into an SPH simulation.

A key feature of the Molecular Clouds within which stars form is wide line-widths indicat-

ing supersonic turbulence. As discussed in Chapter 1, turbulence supports the cloud globally,

but the high ram pressure gradients that are a feature of a turbulent flow create strong density

enhancements. The high density of these regions lowers the Jeans Mass, allowing the over-

densities to collapse, and potentially form stars. It has been suggested by several authors (e.g.

Padoan & Nordlund, 2002; Klessen, 2001) that as these density perturbations are formed from

turbulence their Salpeter like mass function is likewise a direct consequence of turbulence. It

is therefore essential that turbulence is modelled correctly for an accurate depiction of proto-

stellar cores. In this chapter I outline the properties of supersonic turbulence, describe how it

is initialized in the SPH simulations and test its implementation.
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3.1 Turbulent Fragmentation

3.1.1 Subsonic Incompressible Turbulence

The most studied form of turbulence is the subsonic incompressible turbulence found on

Earth. Turbulence was defined by Hinze (1975) as

Turbulent fluid motion is an irregular condition of flow in which the various

quantities show a random variation with time and space co-ordinates, so that

statistically distinct average values can be discerned.

In addition to this, turbulence also spans a wide range of scales.

The wavelengths at which there is turbulence range from a minimum value set by viscous

dissipation at the molecular level, up to the length scale of the turbulent region. Kinetic energy

cascades down the scales due to vortex stretching. Turbulence can be thought of as a series of

eddies, each eddy being a local swirling motion where there is intense vorticity. A vortex will

be stretched if it is aligned in such a way that mean velocity gradients will amplify it. Most of

the turbulent energy is contained in the large scale eddies, but most of the vorticity is in the

small eddies. Note that eddies overlap in space with small eddies being carried within larger

ones.

Turbulence is a dissipative process; it will decay and as it does so the energy transfers from

larger eddies to smaller energies. Finally, on the smallest scales, energy will be dissipated as

heat due to molecular viscosity. An introduction to turbulence is found at the beginning of

Wilcox (1998).

Kolmogorov was one of the trail breakers in the field of turbulence, and was among the

first to analyse turbulence in terms of its spectral distribution of energy. A spectral repre-

sentation is a Fourier decomposition into wavenumbers κ. Here the wavenumber physically

represents the reciprocal of the eddy size. Kolmolgorov concluded that there is a range of

wave-numbers intermediate between the largest and smallest scales where energy is trans-

ferred only by inertial effects and the energy spectral density, E(κ), can be represented as the

power law

E(κ) = CKε
2/3κ−5/3 1/l << κ << 1/η (3.1)
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3.1. Turbulent Fragmentation

Figure 3.1: The energy spectrum for a turbulent flow in log-log scales, adapted from a graph from
Wilcox (1998)

where CK is the Kolmogorov constant, ε is the rate at which larger eddies supply energy, l

is the length scale of the region and η is the Kolmogorov length scale. Figure 3.1 shows the

typical energy of a turbulent flow.

3.1.2 Turbulence in Molecular Clouds

While the turbulence in molecular clouds differs from the conventional case as it is supersonic

and in a compressible self-gravitating medium, nonetheless there are many similarities. The

picture of a cascade of energy transferred by eddy motions is still basically correct. However,

in addition to eddies, there are also shocks which mean that densities can increase more

rapidly than the subsonic case. Across an isothermal shock the jump condition is

ρ1

ρ0
≈ M2, (3.2)

where ρ0 and ρ1 are the gas densities before and after the shock, and M is the Mach number,

M = vrms/cs. Extremely large density enhancements can be generated by shocks as typical

Mach numbers in MC’s are of the order M ≈ 10.

Turbulence in a molecular cloud can also be described by a power spectrum:

E(κ)∝ κ−n. (3.3)
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The most commonly used value for the exponent is n = 2. This is the Burgers spectrum

for pressureless turbulence (Gotoh & Kraichnan, 1993). This value is expected for shock

dominated flows, as the Fourier transform of a velocity jump has a −2 energy power law

(Passot et al., 1988). The connection between the n and the exponent in the Larson velocity

dispersion relationship (σ(v)∝ Lβ) is;

β =−(n+ 1)/2 (3.4)

This means that a value of β = 0.5 follows naturally from a series of turbulent shocks. There-

fore the Larson relation may have nothing to do with virial equilibrium.

The decay of turbulence in molecular clouds can be characterised by;

Ek ∝ t−η (3.5)

where Ek is kinetic energy and t is time. The exponent η typically takes values around unity,

Mac Low et al. (1998). It was originally thought that supersonic turbulence would decay more

rapidly than the subsonic case, but they are now known to decay at similar rates. Magnetic

fields were once thought to slow the decay of turbulence by transforming dissipative shocks

into non-dissipative Alfven waves. However, Stone et al. (1998) showed that these Alven

waves generate a spectrum of magneto-hydrodynamic waves that dissipate energy in a similar

manner to the hydrodynamic case. All turbulence decays in a crossing time.

There are several mechanisms which could generate turbulence; many of which also create

the molecular cloud in the first place, explaining why turbulence is a ubiquitous phenomenon.

Gas density can be enhanced due to gravitational instability. In our galaxy this would equate

to gas being compressed as it passes through the spiral arms. Here shocks will both further

increase the density and generate the turbulence, (eg Roberts, 1969; Dobbs & Bonnell, 2007).

Alternatively, the ram pressure from supersonic flows from supernovae could compress the gas

and generate the turbulence (eg Mac Low et al., 2005). Silk (1985) propose that turbulence

is generated by stellar winds and outflows.

30



3.2. Generating a Turbulent Velocity Field

3.2 Generating a Turbulent Velocity Field

In order to include turbulence in the SPH simulations, a turbulent velocity field must first be

generated. Turbulent velocities are generated from a Gaussian random field using the power

spectrum, shown in Figure 3.1. The program VELFIELD is used to generate the initial turbu-

lent velocity distribution. VELFIELD follows the scheme outlined in Dubinski et al. (1995),

is based on a code by Volker Bromm for the Zeldovich shift, and was written in its current

form by Mathew Bate. This algorithm expresses the velocity field in terms of a vector poten-

tial, A, such that v = ∇× A by making the assumption that the flow is divergence free. The

components of A are randomly sampled in the Fourier plane and their amplitudes are taken

from a Rayleigh distribution which has a dispersion given by the power spectrum, and phases

uniformly sampled between [−π : π]. Components are sampled over a cubic grid and the

Fourier transform of the curl of A is then taken to arrive at the velocity field. VELFIELD gener-

ates velocity grids in each of the x, y and z directions, with each being independent. As this is

a random process, different realisations (using different seeds) of the velocity field look very

different.

One potential problem with this method is that the velocity dispersion relation obtained

from a realisation of a power law that is constant is different from that in which the realisation

is always changing. Myers & Gammie (1999) showed that when the velocity field realisation

is constant with time a power law exponent of n = −3.5 is more appropriate in Eq. 3.3

in order to give the desired velocity dispersion relationship. This value and a more or less

constant realisation will be used for the majority of this chapter. This allows the observed

velocity dispersion relation to be generated in a minimum amount of computer time, and has

the additional advantage that the velocity field will not jump discontinuously between one

value and another. Another method of generating the correct power spectrum while avoiding

unphysical jumps in the velocity field would be to take the average field from a large number

of realisations (Klessen & Burkert, 2000). However since the work outlined here uses high

resolution velocity grids of size 1283 which take at least a day to generate, this was thought

impractical.
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3.2.1 Simulation Properties

The above method for generating turbulence is now applied to an SPH simulation to investi-

gate its effectiveness. Although several simulations are presented here they are all generated

from the same initial SPH setup. The initial model of the molecular cloud consists of 5 million

particles distributed randomly in a box 2 pc wide, which is a typical size scale for a large

clump of star formation in an molecular cloud. The optimum SPH setup from this Chapter

will be used in Chapter 5.

The simulated box has a mass of 118.2 M� which corresponds to a density of 10−21

g cm−3, which is at the lower end of the density range within which molecular hydrogen can

exist. The mass resolution of the simulation is 1.18×10−3 M� ( about a Jupiter mass), which

allows the entire brown dwarf regime to be resolved. The mass resolution here is equivalent

to the mass of 100 SPH particles. The Jeans mass is 5.7 M� which results in a Jean number

of 20.6. The Jeans number, J , is the ratio of gravitational energy to thermal energy. It is a

useful quantity to know since the number of Jeans masses within in a cloud is equal to J3/2.

The simulated MC has a free fall time of 2.1× 106 yrs and a sound speed of 0.18 kms−1.

Some preliminary runs at lower resolution were tested before the modifications to the SPH

code were applied to the high resolution molecular cloud simulation. Runs were carried out

on either the SUPA altix computer at St-Andrews or on the UKAFF computer (UK Astrophysical

Fluids Facility) at Leicester University, depending on which was available at the time.

In order to impose the velocity field onto the SPH particles, the velocity field grid is scaled

to match the size of the 2 pc box being simulated. The velocity of the SPH particle in each

dimension is interpolated from the surrounding grid points. The magnitude of the velocity

field is normalised to ensure that the kinetic energy of the region is equal to its potential

energy, which in this case corresponds to a Mach number of 4.25.

The velocity dispersion with increasing radius from the centre of the box is shown in Figure

3.2. The velocity dispersion satisfies the Larson dispersion relation in the range 0.1< R< 0.5

pc. Below this the gradient is steeper, as there is a finite length between grid points, below

which the turbulence cannot be applied. Above this range the gradient flattens, which is

inevitable when the volume over which the dispersion is calculated nears the driving scale of

the turbulence. In reality the driving scale of the turbulence would be much larger than the
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3.2. Generating a Turbulent Velocity Field

Figure 3.2: The velocity dispersion from the centre of the SPH distribution once the velocity field has
been applied. The dotted line shows the gradient of the velocity dispersion when β = 0.5 in equation
1.1. In the range 0.1< R< 0.5 pc the Larson relation is satisfied.

box, but computational limitations mean that the width of the box is the largest scale at which

turbulence can be driven. In observational studies, the Larson relation is generally found by

plotting the velocity dispersion of individual clumps and MC’s, and would not be found by

sampling from an individual object. However the principle is the same, and Figure 3.2 shows

that the generated velocity field is consistent with the observed velocity dispersion relation.

The total velocity dispersion of the region measured from the centre is about 10 kms−1.

3.2.2 Periodic Boundaries

To generate the structure from turbulence the simulation is initially evolved without self grav-

ity. However, the high velocities and pressure from the turbulence will cause the region to

expand, and a significant proportion of the original gas will be lost. One method of avoiding

this is to confine the mass to the box via pressure from external ghost particles. Ghost particles

are virtual SPH particles which exist outside the boundary of the simulation and interact with

the particles near the boundary. They act as a confining force on the material being simulated.

If an SPH particle does manage to cross over the boundary it should be put back inside the box

so that mass, energy and momentum are conserved. The SPH subroutine Periodic Boundaries

was first parallelised to increase speed and then used for this purpose. If a particle exits the

box on one side, it will be put back on the opposite side, but with its velocity still oriented
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Chapter 3. Initialising Decaying Turbulence

Figure 3.3: The positions of a test particle, originally situated at the co-ordinates [0.89 : −0.32] in a
uniform flow from left to right with time.

in the original direction. This is not too physically unrealistic as in reality mass would flow

both in and out of a dynamical region, and additionally the velocity field is generated in such

a way that it joins smoothly on to the other side of the field at the edges.

Since the velocities being considered here are supersonic, it is likely that at least some of

the particles will manage to escape the boundaries, therefore this feature of the code is now

tested. An SPH particle distribution of 104 particles is set up in a 2 pc wide cubic box in a

cubic lattice distribution with a mass of 100M�. The particles are given a velocity equal to

the sound speed in the positive x-direction and the region left to evolve for twenty timesteps.

Figure 3.3 shows the position of a test particle in the SPH distribution at each timestep. It

can be seen that as the particles reach the boundary at the right hand side they successfully

re-enter on the left hand side with their original velocity.

3.2.3 Re-applying the Velocity Field

To generate the initial conditions for Chapter 5 the SPH particles are left to develop structure

by moving under the influence of the velocity field without self-gravity. The resulting structure

is due purely to hydrodynamics. However, by the time the density distribution is consistent

with observations the turbulence will have decayed. If star formation is simulated from these

conditions then power may have been lost from the turbulent energy spectrum. Figure 3.4

shows the decay of energy in the absence of driven turbulence in a simulation with the same

34



3.2. Generating a Turbulent Velocity Field

Figure 3.4: The decay of turbulent kinetic energy (in units of initial kinetic energy) in the absence of
driving and self-gravity.

physical properties as earlier discussed, but with a lower resolution (106 particles).

After half a free fall time, the kinetic energy in turbulence is 0.4 times its original value,

and by 2.5 free fall times it has decayed below an order of magnitude of its original value and

is still decaying. Dissipation of energy is primarily through shocks as there is no self-gravity.

Figure 3.5 shows a projection of the column density of the region after the turbulence has

decayed for 1 t f f . The structure is filamentary and has clear shock fronts. The probability

density function (PDF) of the model at 1 t f f is shown in Figure 3.6. The PDF resembles a

lognormal, which is characteristic of structure resulting from turbulence in an isothermal gas

(Scalo et al., 1998). Therefore the generated structure resembles molecular cloud conditions.

However, although the structure generated is a good representation of a molecular cloud,

some of the energy from shocks will have been dissipated, particularly from small scales. In

an effort to avoid this, the turbulence shall now be ‘driven’ throughout the evolution without

self-gravity. To drive the turbulence, the turbulent velocity field is re-imposed at intervals

throughout the evolution. To do this, the SPH code was altered so that after a synchronisation

time the velocities of all the particles were replaced by the velocity obtained by interpolating

from the velocity field grid. Once again the kinetic energy in turbulence was kept equal to the

potential energy of the region, which corresponds to a Mach number of 4.25.

The cloud was left to evolve for a free fall time until the PDF shown in Figure 3.7 had
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Figure 3.5: The column density after the turbulence has decayed for 1 t f f . The colour scale denotes
column densities in the range, 0.001 g cm−2 (dark red) to 0.1 g cm−2 (yellow/white).

Figure 3.6: The PDF of the gas after the turbulence has decayed for 1 t f f . The PDF resembles a
lognormal as is expected from turbulence in an isothermal gas.
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3.2. Generating a Turbulent Velocity Field

Figure 3.7: The PDF of the gas after 1 t f f when the turbulence was continuously re-imposed through-
out its evolution (solid line). When compared to the PDF from decaying turbulence (dotted line) less
dense gas had been created.

developed. The PDF is not as close to lognormal as in the decaying case. While the low

density side and the peak of the distribution (at just over 10−21 gcm−3) are in the same places

as Figure 3.6, less high density gas has been generated. Figure 3.8 shows the column density

projection at the end of the evolution with the same scale as Figure 3.5. It is immediately clear

that the density has been less enhanced, and less large-scale structure has been formed. The

new initial conditions, therefore, are not as good a representation of structure in molecular

clouds as the case without driving. However, the velocity field has not decayed in any way, and

the density field is necessarily consistent with it since it evolved from the velocity field. The

densities were probably less enhanced because the velocities were set back to their original

values, allowing high density regions to re-expand.

3.2.4 A More Realistic Driving Scheme

The previous attempt at driving turbulence suffered from the fact that the same velocity field

was re-applied every time, meaning that there were no real bulk motions in the gas. The ve-

locity field will now be altered over time by generating two realisations (A & B) from different

seeds and interpolating between them so that at t = 0 velocity field A is applied, at t = 1 field

B is applied and a mixture of the two between times. The velocity field V(t) was given by Eq.
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Figure 3.8: The column density after 1 t f f when the turbulence was continuously re-imposed through-
out the evolution. The colour scale denotes column densities in the range, 0.001 g cm−2 (dark red) to
0.1 g cm−2 (yellow/white).

3.6 where t is in units of the free fall time.

V (t) = A(1− t) + Bt 0≤ t < 1 (3.6)

An additional realisation, C, was generated so that if the time is greater than one free fall time

the velocity is

V (t) = B(2− t) + C(t − 1) 1≤ t < 2 (3.7)

and so on.

In Section 3.2.3 no knowledge of the previous velocities of the gas particles is retained, as

the particles velocity is overwritten each time the velocity field is re-imposed. This is perhaps

unrealistic, so to correct this the relationships in Eqs. 3.8 & 3.9 are used.

δv = ζ(Vi − ui) (3.8)

vi = ui +δv (3.9)

where ui is the old velocity of the particle, vi the new velocity and Vi the value of the velocity

field at that point. The parameter ζ is a constant that can be adjusted so that the energy

injected by turbulence is constant with time. It was found through trial and error that a value
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Figure 3.9: The column density after 1 t f f when the turbulence was driven with the new scheme.
The colour scale denotes column densities in the range, 0.001 g cm−2 (dark red) to 0.1 g cm−2 (yel-
low/white). The density distribution is clumpy and has large scale structure.

of ζ= 0.5 roughly achieves this.

With these modifications the initial conditions were once again simulated by evolving the

gas for 1 t f f without self-gravity. Figure 3.9 shows the resulting column density, and Figure

3.10 the density PDF. The column density projection shows that the new driving method

has been more efficient at generating clumpy, filamentary structure, and is more reminiscent

of actual molecular cloud structure than Figure 3.8. The PDF of the region is not a perfect

lognormal, as one side is definitely longer than the other, but a wider range of densities are

produced than in the decaying case. Again, by definition, this density distribution is consis-

tent with the turbulent velocity field, so when combined with the improvement in physical

structure, it is safe to say that these initial conditions are better than the previous case.

3.3 Decaying Turbulence

In the subsequent simulations the turbulence will be driven without self gravity to create the

initial conditions, but once self-gravity is turned on to allow star formation, the turbulence

will no longer be driven. If the turbulence was continued to be driven when self-gravity

was switched on, the gas would have a succession of unphysical velocities applied to it as

it collapsed through the velocity field. Some authors avoid this problem by using a periodic

gravity scheme, which replicates the effect of the simulated region being surrounded on all
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Figure 3.10: The PDF of the gas after 1 t f f when the turbulence was driven with the new scheme
(solid line). When compared to the PDF from decaying turbulence (dotted line) a greater range of
densities have been produced. Note, that N is higher in the driven case merely because this simulation
was carried out at higher resolution.

sides by an infinite gas cloud, and so there is no net collapse and hence the gas can continue

to be driven.

However, by applying arbitrary velocity kicks, structures may be destroyed simply due to

their location relative to the velocity field. The actual mechanism for driving turbulence in

molecular clouds is as yet unproven, so this may or may-not be a valid approach. In this thesis

the assumption is that the turbulence was created as a by-product of forming the molecular

cloud (Heitsch et al., 2006; Dobbs & Bonnell, 2007) and after this point it decays.

However, the process of gravitational collapse does itself release kinetic energy as the

gravitational potential deepens, which produces velocities which resemble turbulence. If the

mass distribution was purely symmetric then these would all be directed radially inward, but

since the distribution is asymmetric with originally disordered velocities, conservation of an-

gular momentum will ensure that transverse velocities are also generated. Figure 3.11 shows

the decaying kinetic energy of the gas as the cloud collapses compared to decay without self-

gravity. At 1 t f f the kinetic energy begins to rise again when the onset of star formation

randomises the central velocities. Figure 3.12 shows the velocity dispersion from the centre

of the molecular cloud as it collapses. As the collapse proceeds, the velocity dispersion be-

comes steeper than the Larson case at radii larger than 0.1 pc. This appears to be due to
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Figure 3.11: The decay of turbulent kinetic energy (in units of the initial kinetic energy) in a collapsing
system (solid line). The energy begins to rise again at 1 t f f compared to the case without self-gravity
(dotted line when the onset of star formation randomises the velocities.

the additional contribution to the velocity dispersion from in-fall motions. Below 0.1 pc the

dispersions are in reasonable agreement with the Larson relationship. This is due to gas previ-

ously at larger radii collapsing to the centre and carrying the velocity field with it. Finally, the

velocity dispersion becomes increasingly flattened in the outer regions of the box, where there

is no longer much gas. Importantly, the velocity dispersion is still significantly supersonic at

all points.

The initial driving of the structure has had a significant effect on the final PDF of the gas.

Figure 3.13 shows that at 1 t f f when the driven simulation has collapsed and will shortly form

stars, the gas densities span 14 orders of magnitude, and reach a maximum value of 10−10

g cm−3. If the decaying simulation is left to collapse similarly under self-gravity it is only able

to reach densities of 10−17 g cm−3. This difference is most likely due to the driven simulation

having achieved greater density enhancements before its collapse, and therefore reaching

higher densities more quickly. Therefore more of the substructure is due to turbulence than

in previous cases.

3.4 Final Remarks

The final driving scheme discussed here has turbulent energies at small scales and high den-

sity enhancements. This scheme will be used to drive the turbulence in order to create the
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Figure 3.12: The velocity dispersion from the centre of the molecular cloud as it collapses. The
dispersions are shown at 0.25 t f f red, 0.5 t f f green,0.75 t f f blue and 1 t f f black. The dotted line
shows the gradient of the velocity dispersion when β = 0.5 in equation 1.1. The velocity dispersion
becomes steeper at larger radii due to collapse motions.

Figure 3.13: The PDF of the gas after it has collapsed for 1 t f f . The solid line show the simulation
which was initially driven, and the dotted line the simulation which has been allowed to decay.
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initial conditions in Chapter 5, where the small scale structures created by a combination of

turbulence and gravity will be identified.
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4
Clump Finding

This Chapter describes the clump finding algorithms used in this work. Following this in

Chapter 5 the application of clump finding to molecular clouds will be investigated. In Chapter

6 a new version of the clump finding algorithm using gravitational potential will be used to

link pre-stellar cores to subsequent star formation.

The CLUMPFIND algorithm was introduced by Williams et al. (1994) as a method of de-

tecting clumpy structures in observations of molecular clouds. This followed work by Stutzki

& Guesten (1990) which identified clumps by fitting tri-axial gaussians to the observed emis-

sion. The CLUMPFIND algorithm had the advantages that it closely mimicked what was al-

ready being done by eye and it required no assumptions to be made regarding the clump

geometry.

In Chapter 1 a clump was defined as being a region 0.3 − 3 pc across which contained

50− 500 M�. However the CLUMPFIND routine merely finds peaks in emission or density,

so there is no intrinsic requirement for its outputs to be of a particular size. The structures
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Figure 4.1: An illustration of the CLUMPFIND algorithm. Four clumps are assigned and they contain
material down to the lowest contour.

identified from clump finding routines can therefore either be clumps or cores. This can

cause considerable confusion. For the purposes of this and the following chapter, which both

discuss the general clump-finding method, the term ‘clump’ shall be simply be used to denote

any structure identified from a clump-finding routine.

4.1 The Clump Finding Technique

The algorithm introduced by Williams et al. (1994) works by contouring the emission in

multiples of the rms noise ,Trms and then searching for peaks in emission, T . Figure 4.1

shows a one dimensional illustration of how CLUMPFIND works. Starting with the highest

contour, pixels are connected if they are within one grid cell of each other, either along the

faces of the grid cell or along the vertices. Once all the pixels at a contour level are assigned,

the analysis progresses to the next level down. If the pixels have neighbours at a higher level,

they are assigned to the same clump, but if they are isolated then a new clump is formed.

Contours which surround more than the one peak are assigned to the clump to which most of

their neighbours belong using a ‘friends-of-friends’ algorithm. A neighbour is defined as being

a pixel within a resolution element along two axes. This continues all the way down to the

level of the background noise. Williams et al. (1994) showed that the contours are optimally

spaced at 4T/Trms = 2 to avoid identifying noise spikes as clumps.

Basically in CLUMPFIND the number of density peaks will correspond to the number of
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clumps, which as shall be discussed later, can cause some problems when interpreting the

results. However, when applied to an observational data-set, the clumps are considered com-

plete above the level where there will be more than one pixel with T > 24T . In practice this

will equate to at least 4 resolution elements.

4.2 2D Clump Finding

The above method was developed for observational data, but in this thesis simulated SPH

data will be used instead. In order to do a fair comparison between the two, a version of the

CLUMPFIND algorithm has been developed by Paul Clark which identifies clumps in SPH data

as if the simulated data was from a two dimensional observation of column density.

There are two types data which can be obtained observationally: position-position (PP)

and position-position-velocity (PPV) data. The column density projected along the line of

sight is used to perform the clump-find in the PP case. In the PPV case, the column density

per velocity channel is used. We generate these data-sets by interpolating the SPH particles

to a grid of given resolution. Rather than interpolating to a full PPP grid and then integrating

along the required line of sight, it is more efficient to integrate the spherically symmetric

SPH smoothing kernel along the line of sight, and use the resulting 2D kernel to perform the

interpolation.

Density contour levels are assigned to decide which density structures are significant.

Classically a contour separation of two times the noise level is used, but as we have no noise

in the simulated data we have to arbitrarily assign contours. After examining this repeatedly,

a logarithmic contour separation of 5 contours per magnitude increase was generally used.

Each grid cell is assigned an integer corresponding to its closest contour level. This is the

quantity which will be used for the subsequent clump find. Upper and lower density values

can be set at this point by defining an upper and lower contour level. As Pineda et al. (2009)

have shown, clump-finding routines are very sensitive to the positions and number of contour

levels. In this study the contour levels were kept static when other variables were considered.

The clumpfind itself is carried out in a similar manner to that of Williams et al. (1994).

Grid cells are sorted in descending density order. Working down the list, if one of the cell’s

neighbours has been assigned to a clump then the cell is assigned to the same clump. If the

cells neighbours are assigned to more than one clump, then the clump to which the greatest
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Figure 4.2: The use of contours to merge and destroy clumps.

number of its neighbours belong shall be used. If there is a tie, the clump with the highest

density neighbour is used. If none of the neighbours have been assigned then the cell is the

head of a new clump.

Contours are also used to make sure that spurious clumps are not identified as shown in

Figure 4.2. If the head cells of two neighbouring clumps and the cells at the clump intersection

are all on the same density contour the clumps are merged. In the case of two neighbouring
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clumps if either clump’s head cell is on the same contour as the intersection but the other’s

head cell is on a higher contour, then the smaller clump is destroyed. If a clump is within a

contour from intersection to head and has a neighbour which was part of a deleted clump,

then the clump is destroyed. After the spurious clumps have been deleted, the particles which

used to belong to them are checked to see if they should be reassigned to a neighbouring

clump. A similar technique has been used by other authors (e.g. Klessen & Burkert 2000)

There is one further subtlety. It is common for observational data to have its background

subtracted before the CLUMPFIND is carried out. This is in an effort to prevent emission from

along the line of sight contaminating the clump and artificially inflating the mass assigned to

it. To mimic background subtraction we can apply a ‘lowest common contour’ definition when

assigning the boundaries. Instead of assigning material to a clump down to the minimum

contour level, material is only assigned down to the level of the highest density boundary cell

(where the clumps intersect). If there are no clumps bounding the clump, material will be

assigned to the minimum contour as before.

Clumps are deleted if they contain less than the sph resolution requirement of 100 particles

to resolve gravitational collapse (Bate & Burkert, 1997). After the clumps have been merged

and destroyed they are re-labeled.

The properties of the assigned clumps can then be calculated using only quantities avail-

able to an observer, such as column density, radial velocity and projected size. For example

the masses of the clumps are calculated by multiplying the area of the assigned grid cells by

their column density, rather than using the sum of the assigned SPH particles.

4.3 3D Clump Finding

For the 3D method we use the SPH particles directly as laid out in the appendix of Klessen

& Burkert (2000). Since in SPH a neighbour list is maintained to calculate the density and

forces acting on a particle, there is no need to assign particles to a grid. Particles are assigned

integer contour levels as before. Since we are now dealing with intrinsic density as opposed

to column density, there is a larger dynamic range and so in total more contours are used.

Apart from these distinctions the method is the same as above.
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Figure 4.3: A cartoon of the potential clump finding process in 1D. For the potential and contours
shown, the blue regions contain material which would be assigned to p-cores.

4.4 Potential Clump Finding

The modification of the previous clumpfind method to work on gravitational potential rather

than density represents one of the major innovations of this thesis. This resolves many of the

difficulties previously encountered. Unlike the density distribution, which has a lot of vari-

ation, the distribution of gravitational potential is much smoother, which removes the need

to remove spurious clumps. Additionally, as it is the gravitational potential which actually

determines how the mass will move, the clumps have a clearer physical interpretation. They

are gravitational potential wells, and if the energy of the gas within them is insufficient to

balance gravity they will collapse. The objects identified by this algorithm are typically small

scale potential wells, with a mass in the core regime. Therefore, to distinguish them from the

outputs of the density clump-finds, they shall be referred to as ‘p-cores’. Note that there is no

intrinsic requirement that a p-core is bound, as it may have sufficient internal energy (both

thermal and kinetic) to prevent collapse.

I have modified the previously described algorithm to use gravitational potential to iden-

tify clumps rather than emission or density. In this case the SPH particle with the deepest

gravitational potential forms the head of a clump, then the particle with the next deepest

potential is either assigned to the same clump if it is a neighbour, or forms a new clump if

not, and so on. The lowest common contour definition is always used for the boundaries so
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the clumps are defined down to either a maximum potential, or the lowest contour which

it shares with a neighbouring clump. Unlike the traditional CLUMPFIND algorithm, we use

contour levels primarily to define the level at which potential clumps join, rather than to dis-

tinguish clumps from noise, and so our contours are numerous and finely spaced. Typically at

least a thousand contours are used per magnitude in each clumpfind.

As the p-cores are only defined down to a shared contour level, the background potential

is removed. This is necessary as gravity is a long range force, and so is affected by both

the mass inside and surrounding the p-core. Hence when calculating an individual p-core’s

gravitational potential, the contribution from the larger structure that it is embedded within

must be removed. This ensures that if all supporting forces are removed, all the gas in a p-core

will collapse to the same point.

P-cores, therefore, represent the local potential minimums below the surrounding back-

ground. Figure 4.3 shows a simple 1D cartoon of the potential clump finding algorithm where

three potential clumps have been identified. The depth of the potential well is taken as the

difference between the highest and lowest potential assigned to the clump. This gravitational

potential energy can be used with the kinetic and thermal energy of the particles to calculate

how bound the clump is. One potential caveat is that when the binding of a p-core is calcu-

lated, as shall be discussed further in later chapters, surface terms are not considered. This

means that factors such as the pressure balance at the core boundary have not been included

in the analysis. However, in practice it is found that all bound p-cores in this work do collapse,

so this simple definition of binding is considered sufficient.

In the next chapter the density clumpfind algorithms will be tested in a simulated molec-

ular cloud to see how consistent their results are. In Chapter 6 the potential clump-find

algorithm will be used to identify the earliest bound structures in a simulated Giant Molecular

Cloud.
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5
The Universality of the Clump Mass Function

It is unclear whether the current observations of the clump mass function can unambigu-

ously support the cloud fragmentation picture. Typically, the observations must rely on two-

dimensional column density maps (PP), which are limited by resolution and sensitivity, and

the observed features in the column density may be contaminated by integrated emission

along the line-of-sight. Three-dimensional information is only available by obtaining position-

position-velocity (PPV) cubes of the emission from a particular molecular tracer. Converting

between emission and column density relies on many assumptions (Pineda et al., 2008) and

accounting for the properties of dust is itself challenging (Schnee et al., 2006). Further, the

observed emission is itself dependent on the entangled effects of density, temperature, molec-

ular tracer properties, and the observational technique (di Francesco et al., 2007)

In this chapter, I investigate how the differences in the form of the data – whether it be PP,

PPV or full three-dimensional PPP – affects the resulting CMF. In particular how the resolution

of the data and orientation of the cloud affect the mass function’s profile is explored. To

allow a comparison of observational style clump-finds to full three dimensional clump-finds,
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the data must necessarily be synthetic. As such the results from a high-resolution smoothed

particle hydrodynamics (SPH) simulation of driven turbulence are used. A full description

of this simulation is presented in Section 6.2. To produce the PP and PPV style clump-finds

the SPH data is interpolated to a grid, while for the PPP data the clump-find is done directly

on the SPH data. The method used to extract the clumps has been described in the previous

chapter.

5.1 The Clump Mass Function

Recent observations (Motte et al., 1998; Johnstone et al., 2000, 2006; Nutter & Ward-Thompson,

2007; Alves et al., 2007; Ward-Thompson et al., 2007) of dense gas cores in molecular clouds

have shown that their distribution resembles the stellar initial mass function (IMF). It is hoped

that by studying these dense cores the earliest stages of star formation can be probed and the

origins of the IMF revealed.

As discussed in the Chapter 1, Motte et al. (1998) have shown that the clump mass func-

tion (CMF) in ρ Oph can be described by a similar power-law fit as the IMF. Similar results

have been confirmed by a number of authors, although the range of core masses found and

the break mass of the power law fit can vary (Johnstone et al., 2000, 2006; Nutter & Ward-

Thompson, 2007; Alves et al., 2007; Testi & Sargent, 1998).

One interpretation of the similarity between the CMF and IMF is that the masses of stars

are controlled solely by the fragmentation of the cloud. Myers (2008) propose that for cores

with a high density contrast to their surroundings, the resulting protostellar mass will be the

gas mass whose free-fall time equals the core dispersal time due to outflows. Additionally

Swift & Williams (2008) take a slightly different approach and argue that the resulting shape

of an IMF formed from a Saltpeter-like CMF is robust against different core evolution scenar-

ios. This chapter shall show that the shape of clump mass function seems to be a ubiquitous

feature of molecular clouds, but the identified clumps and their masses are sensitive to the

method used to find them.

Molecular cloud (MC) structure as a whole is complex, filamentary and extends through

all observable scales (Williams et al. 2000). It can also be thought of as hierarchical: small

dense cores are part of small clumps of gas which are themselves part of larger gas clumps.

This continues over the full spatial range of observations (Bergin & Tafalla, 2007). MCs also
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5.2. The Simulation

Table 5.1: All the clump-finding presented in this paper were performed on a single SPH simulation.
The initial conditions of the simulation are given here. The mass resolution is the minimum mass
gravitational forces can be resolved for and is calculated via Mres ∼ 100Mtotal/Npar t . The Jeans mass,
free-fall time and sound speed are calculated from the average density of the simulation before collapse
using the formulae MJ = (4πρ/3)−1/2(5kT/(2Gµ))3/2, t f f = (3π/(32Gρ))1/2.

Size 2 pc cube
Mass 118.2 M�
Particles 5000211
Mass resolution 2.36× 10−3 M�
Jeans mass 5.7 M�
Free-fall time 2.1× 106 yrs
Sound speed 0.18 kms−1

exhibit supersonic turbulence. Larson (1981) showed that the internal velocity dispersion

σ(v) of a cloud is related to its size L by the relation σ(v) ∝ L−0.38. Such a scale-free

relation is a natural outcome of a turbulent cascade, and Brunt & Mac Low (2004) propose

that compressible shock dominated Burgers turbulence is highly consistent with observations.

As supersonic flows compress the gas in the molecular cloud they create a complex fila-

mentary density field, suggesting that the observed structure in MCs is a direct consequence

of turbulent motions (Klessen & Burkert, 2000; Klessen, 2001). At the smallest scales of the

hierarchy, the transonic dense cores formed by the turbulent cascade may be the precursors

of star formation (Goodman et al. 1998, Ward-Thompson et al. 2007). Indeed Padoan &

Nordlund (2002) have predicted that mass distribution of Jeans unstable clumps created by

super-Alvenic turbulence will resemble the IMF, a prediction that is supported by the observa-

tions of the CMFs discussed above.

5.2 The Simulation

The initial conditions of the SPH simulation used in this chapter are shown in Table 5.1. The

molecular cloud has a mass of 118.2 M�, roughly comparable to the masses of the ‘cores’ in ρ

Oph (Motte et al., 1998). The cloud is modelled with ∼ 5 million SPH particles, which gives

a mass resolution of 2.36× 10−3 M� (Bate & Burkert, 1997). As such, clumps with masses in

the brown dwarf regime can be resolved. The simulation was run on the SUPA Altix computer

at the University of St Andrews.

Velocity and density fields of the simulation are ensured to be self-consistent by the follow-

ing method. A turbulent velocity grid, consistent with a Larson velocity dispersion of σ ∝ r0.5,

is generated according to Dubinski et al. (1995) and Myers & Gammie (1999) as discussed
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in Chapter 3. After half a free fall time of driving the probability distribution function of the

gas has a lognormal shape as is expected for an isothermal gas without self-gravity, (Klessen &

Burkert, 2000), and the turbulence has power on all scales. The turbulence has a r.m.s velocity

of Mach 4.25 which corresponds to the simulated gas cloud being just kinetically supported

(Ek=|Ep|).

The self-gravity is then switched on and the turbulent driving switched off, which allows

the turbulence to decay. Mac Low et al. (1998) have shown that turbulence typically decays on

a crossing time, however, the turbulence in the simulation remains supersonic throughout due

to the conversion of potential energy to kinetic energy as the cloud contracts. Star formation,

as modelled by the formation of the first sink particle, occurs after one free-fall time (2.1×

106 yrs). At this point the molecular cloud has the filamentary structure typically seen in

observations (e.g. Bergin & Tafalla 2007). The evolution of the cloud is not followed beyond

the formation of the first sink (that is, the runaway collapse of the first core). Instead a

snapshot of the cloud structure immediately before the formation of the first sink is used as the

input data for the clump-finding comparison. Figure 6.1 shows a column density projection

of the cloud at this point in the evolution.

A polytropic equation of state is used to mimic the evolution between the optically thin

and optically thick regimes. Below densities of 10−13 gcm−3 the value of the exponent gamma

is initially set to γ = 1 to mimic dust cooling. At gas densities of 10−13 gcm−3 it changes to

γ = 7/5 where the gas becomes optically thick. Finally at densities greater than 10−7 gcm−3

it is set back to γ = 1 to model the dissociation of H2. It is during this last isothermal regime

that sinks are allowed to form.

5.3 Two-dimensional (PP) Clumpfinding

As discussed in Chapter 1, there have been a number of attempts to connect the structure

of the gas in dense star-forming regions to the IMF. The majority of the work to date has

produced results based on 2D maps of these regions, either using dust continuum emission

(e.g Johnstone et al. 2006) or extinction mapping (e.g Lada et al. 2008) to obtain the column

density distribution in the plane of the sky. As such, the clump-finding analysis shall first be

carried out on position-position column density maps of the simulated molecular cloud. As

shown by Pineda et al. (2009), clump-finding routines are very sensitive to the positions and
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5.3. Two-dimensional (PP) Clumpfinding

Figure 5.1: The column density of the data file used for the clumpfinding comparison. The density
scale is logarithmic and runs from 0.005 gcm−2 (black) to 1 gcm−2 (white). The region shown is 1 pc
by 1 pc large and contains 79.5 M�.
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Figure 5.2: The standard PP clump-find projected in the xy plane, crosses denote the centre of the
clumps. This clump-find used data from a 200 × 200 grid. The scale is shown in parsecs and the
colours represent column densities in the range 0.02 gcm−2 (blue) to 1 gcm−2 (yellow) at logarithmic
intervals.

number of contour levels so contour levels were kept static and a lower density sensitivity of

0.02 gcm−2 was set. The effect of varying the minimum density is considered in Section 5.4.

Figure 5.2 shows the PP clumpfind adopted as the standard to which comparisons will be

made. The density is shown as a column density projection of the clumps after they have been

background subtracted, the same scale is used as in Figure 6.1 for ease of comparison and to

allow the clumps to be seen clearly, although no clump has a density lower than the minimum

value of 0.02 gcm−2. In the regions where no clump has been assigned the lowest colour

on the density scale is used. Table 5.2 shows the parameters used to obtain the PP standard

clumpfind.

5.3.1 Orientation

One of the key difficulties in interpreting the results of PP clump-finding is that a three di-

mensional structure has been arbitrarily projected into two dimensions, hence, it is unclear

whether a clump is one object, or a superposition of several objects along the line of sight
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Table 5.2: The parameters used to find the standard PP clumpfind shown in Figure 5.2. The resolutions
grid cells correspond to a physical length of 1,031 AU.

Minimum Density 0.02 gcm−2

Projection xy plane
Resolution 200× 200 grid cells
Spatial Resolution 1, 031 AU
Density Countours 5 per magnitude

(Ballesteros-Paredes & Mac Low 2002). Figure 5.3 shows position along the line of sight and

the real 3D density of the material contributing to a typical dense clump in the standard PP

clump-find. The material is too widely distributed to be a single core. Moreover, some of this

gas lies at densities (3D) which actually sufficiently preclude it belonging to any dense core.

Figure 5.4 shows that line of sight blending causes different clumps to be found if the three

dimensional data set is projected along a different axes. In the x-y plane, which I consider

in the next sub-section, 28 clumps are found, but in the x-z plane there are only 10. Table

5.3 shows that different orientations result in different clump properties. This is in agreement

with previous work by Ostriker et al. (2001). The clumps found in each of my orthogonal

projections are essentially independent of each other.

5.3.2 Resolution

The analysis of the PP clump-finding procedure next examines a fundamental difficulty in

interpreting the observed clump properties: would the results differ if the observed cloud was

further away? This problem is addressed by changing the resolution of the grid onto which

the SPH data is interpolated. Perhaps unsurprisingly, it is found that the number of clumps

identified in the data varies with the resolution of the grid. When the same physical region

of the SPH data is interpolated to a grid with smaller elements, the clump-finding procedure

yields more clumps. Figure 5.5 shows the clumps extracted in the x-y plane by the algorithm

from four data grids of the following sizes, 50×50, 100×100, 200×200 and 400×400 grid

cells . Table 5.4 shows the number of clumps found in each case and the spatial resolutions

in physical units. Note that these resolutions are comparable to current observational surveys

of nearby star-forming regions. Figure 5.6 shows the clump mass functions. To improve

the statistics in Figure 5.6 clumps were found in each orthogonal projection at the relevant

resolution and the data combined into one clump-mass function (this is only valid since in

Section 5.3.1 it was found that the clumps in each projection were independent of each other).
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Figure 5.3: The intrinsic 3D density profile along the z axes of the material belonging to a typical
clump in the standard PP clump-find. About half the material assigned to the clump is truly at high 3D
densities but the rest is contamination from material along the line of sight.

Table 5.3: The properties of the clumps found in different orientations. The starred case corresponds
to the standard PP clump-find.

Projection No. Clumps Total Mass (M�)
xy * 28 16.35
xz 10 27.33
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Figure 5.4: A clump-find with identical parameters to the standard PP clump-find carried out on the
simulated data projected into the xz plane instead of the xy plane. The scale is shown in parsecs
and the grayscale represent column densities in the range 0.02 gcm−2 (grey) to 1 gcm−2 (black) at
logarithmic intervals. Crosses show the centre of the clumps
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Table 5.4: The recovered clumps at different resolutions for clump-find on PP data in the x-y plane.
The * denotes the fiducial case and the resolution is given in grid cells.

Resolution Spatial Resolution No. Clumps Total Mass
50× 50 4,125 AU 12 26.04 M�
100× 100 2,063 AU 17 18.62 M�
200× 200 * 1,031 AU 28 16.35 M�
400× 400 516 AU 31 15.71 M�

As the resolution of the clump-finding input increases, more intermediate-mass are found

as the biggest objects are broken into smaller units. This decreases the maximum mass in

the CMF. Additionally, the break position between the two regimes decreases as the resolution

increases due to the average mass of the clumps decreasing . The slope of the low and high

mass ends do not appear to change significantly.

The amount of mass found in clumps decreases as the number of clumps and the resolution

increases. There are two reasons for this. First, the higher resolution cases allows peaks in the

structure that are blended at lower resolution to be resolved. Secondly, clumps are defined

down to the lowest contour that is shared with a neighbour. As such, two newly resolved

smaller clumps that were previously one larger clump, will have less mass than their larger

counterpart. Note that in the standard CLUMPFIND algorithm, the total mass would be the

same, since the clumps fill the entire surface/volume of the data grid. However a similar

analysis performed with CLUMPFIND on observational data may still yield a similar result

to that found here, since the background is usually subtracted before the clump-finding is

applied.

5.3.3 Density Cut

The result of a clump-find is also dependent on the density range of the data-set. Figure 5.7

shows clump mass functions obtained from a basic PP data-set in the x-y plane with three

different lower-density sensitivities. As the minimum density is lowered, eleven more clumps

can be defined and a greater fraction of the structure is probed. With a restricted density

range only the high mass end of the CMF is found. Then when the sensitivity is lowered

further the CMF resembles two power laws.

If the PP data spans a narrower density range the resulting clumps are more distinct.

Due to their decreased size, they contain less mass, in other words only the dense centers of

the clumps are now included. The second panel of Figure 5.8 shows what the standard PP

62



5.3. Two-dimensional (PP) Clumpfinding

Figure 5.5: Four clumpfinds carried out on the central region where star formation will occur with
varying resolution levels. Top left A 50× 50 grid with a cell width of 4,125 AU, top right a 100× 100
grid with a cell width of 2, 063 AU, bottom left a 200× 200 grid with a cell width of 1,031 AU and
bottom right a 400 × 400 grid with a cell width of 516 AU. The scale is shown in parsecs and the
grayscale represent column densities in the range 0.02 gcm−2 (grey) to 1 gcm−2 (black) at logarithmic
intervals. Crosses show the centre of the clumps. Note that in some cases a clump will disapear at
higher resolution, this is primarily due to the shifting contours meaning that some clumps no longer
meet the resolution criteria.
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Figure 5.6: The variation of the cumulative number clump mass function with resolution. The clump-
finds shown are from the red 50× 50 grid with a cell width of 4, 125 AU, green 100× 100 grid with a
cell width of 2,063 AU, the black 200×200 grid with a cell width of 1,031 AU and the blue 400×400
grid with a cell width of 516 AU. Error bars depict the uncertainty from Poisson noise. Clumps from
each orthogonal projection were included to improve the statistics.
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Figure 5.7: The cumulative number clump mass functions found from PP data with three different
lower column density limits; solid line 0.01 gcm−2, dashed line 0.05 gcm−2 and dotted line 0.1 gcm−2.
Error bars depict the uncertainty from Poisson noise.
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Figure 5.8: Clumpfinds using various data-sets.Top left the standard PP clump-find. Top right applied
to a data set above an intrinsic 3D density of 104 cm−3. Bottom left using the PPV data-set with 16
velocity bins, corresponding to a velocity resolution of 0.33 kms−1. Bottom right the 3D clumpfind on
the raw SPH data. The scale is shown in parsecs and the grayscale represent column densities in the
range 0.02 gcm−2 (grey) to 1 gcm−2 (black) at logarithmic intervals. Crosses show the centre of the
clumps.

clump-find becomes if applied to gas with a number density above 104 cm2.

5.4 Position-Position-Velocity (PPV) clumpfinding

The second type of data set considered in this analysis is position-position column density

maps with the radial velocity used as an additional dimension. This data set should suffer less
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Table 5.5: The properties of the clumps using the PPV data-set compared to the standard PP clump-
find. The 16 velocity bins have a width of 0.33 kms−1 and the 40 velocity bins a width of 0.13 kms−1

Velocity Bins Resolution No. Clumps Total Mass
0∗ − 30 16.37 M�
16 0.33 kms−1 37 8.90 M�
40 0.13 kms−1 33 4.50 M�

from line of sight blending as it is likely that different clumps will be travelling at different

velocities. The width of the velocity channels used determine the velocity resolution of the

clumpfind, 16 velocity bins are assigned along the z-axes of the data cube which corresponds

to a resolution of 0.33 kms−1. These values are arbitrarily chosen to probe the effect of

increased velocity resolution. Due to the increased number of grid cells a PPV clumpfind uses,

it has an intrinsically higher resolution than a PP clumpfind. Panel three of Figure 5.8 shows

the PPV clumpfind, and Table 5.5 compares its properties to the standard PP case and to an

additional PPV case with 40 velocity bins.

In the PPV case, clump masses are reduced as material previously included is rejected due

to its velocity. The positions and extent of the clumps also change relative to the PP clumpfind.

Changing the size of the velocity bins also changes the mass and number of clumps found. In

the case shown here, when the bin size is decreased and hence the resolution is increased,

there is less mass assigned to the clumps. A side effect of this process is that some of the

clumps masses decrease to the point that they no longer meet the resolution requirement and

are therefore not included in the analysis.

As regards blending, for the clumps found using the PP method shown in Figure 5.3, Fig-

ure 5.9 shows that more of the mass is now contained in a smaller region. However, the

density profile suggests that the clump found still contains spurious material that happens to

be moving towards the centre of the region with a similar velocity. Nonetheless, the contribu-

tion from material at low density along the line of sight has been reduced.

It should be noted that the analysis presented here for the PPV method is a ‘best case sce-

nario’ as no molecular tracer can actually probe the entire line of sight from the low density

outer layers to the dense core centre. This means that the velocity information is likely to be

incomplete. Further, temperature gradients in the core centres will also affect the line profiles.

An additional caveat of the PPV method is that if the clump is undergoing collapse or expan-

sion then it could be split into two objects depending on the velocity resolution. However this

is still a useful observational technique, particularly when using multiple molecular tracers
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Figure 5.9: A projection of the real 3D density profile of the clump shown in Fig 5.3 when found using
PPV data with 16 velocity bins instead of just PP data.

(e.g. André et al. 2007).

5.5 Three-dimensional (PPP/SPH) clumpfinding

The final data set considered is that of the full simulated three-dimensional structure. While

this is impossible from observations, it is still a useful comparison as the true structure of star

forming regions is, of course, three-dimensional. The same basic method is used to find the

clumps as before but it has been modified as shown in Chapter 4.

However, unlike the PP and PPV clump-finds the resolution is no longer simply the size a

grid. As Chapter 2 described, in SPH the mass resolution varies spatially, high density regions

are better resolved than low ones, therefore the three dimensional clumpfind also shares

this property. This effectively results in the SPH run having the highest resolution of all the

clumpfinding methods.

The bottom right panel of Fig. 5.8 shows the result of the clump-find on the 3D SPH data.

The number of clumps has increased, and the total mass decreased relative to the previous

results. There are two reasons for this. First, due to the improved resolution the number
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Table 5.6: A comparison of the clump-find results.

Method No. Clumps Total Mass (M�)
PP 28 16.35
PP high density 19 10.51
PPV 16 bins 37 8.90
sph 72 4.50

of clumps increases as shown in Section 5.3.2. Secondly the use of 3D data eliminates the

blending along the line of sight previously encountered in Section 5.3.1 so more clumps are

found with smaller masses. Effectively a finer level of structure than in the previous data-sets

is now being detected, namely the very dense core centers.

5.6 Discussion of Global Properties

5.6.1 The Clumps

Table 5.6 compares the properties of the clump-finds. Although the general outline of the

dense region where the clumps are identified remains constant, the number, masses and as-

signed boundaries of the clumps varies with extraction method. Generally the number of

clumps increases and the total mass found in clumps decreases with the precision of the

method.

Applying a density cut to a data-set produces more distinct clumps, but is of course com-

pletely arbitrary. The PPV clump distribution is a better match to the high-resolution 3D

clumpfind than the PP clumps. The peak positions identified as the heads of clumps from

the PPV data correlates well with the highest density structures seen in the sph case. The

overall mass distribution and the clump properties, however, differ. Each data-set appears to

highlight a different scale of the structure within the simulation.

Defining the clump boundaries is further complicated by arbitrary decisions that have to

be made in the clumpfinding process. Is there a minimum density required for a clump?

How many density contour levels need to be set? Should some minimum contrast to the

background be required? All these issues add to the difficulties presented here in comparing

clumps found from different data-sets. These challenges should be kept in mind when com-

paring the properties of cores recorded in the literature, particularly when contrasting masses

and sizes.
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Figure 5.10: The cumulative number clump mass functions from the previous clumpfinds. Top left the
standard PP clump-find, top right high density PP data, bottom left the PPV clump-find and bottom right
the PPP (SPH) method. The dashed lines are power law fits whose gradients are shown in Table 5.7.

5.6.2 The Clump Mass Function

Despite the differences in the clump properties, the clump mass functions have similarities

in their shapes, although their absolute values and breakpoints differ. Figure 5.10 shows the

cumulative clump mass functions derived from the PP, PP with density cut, PPV and PPP (SPH)

clump-finds and Table 5.7 shows the gradients of the power laws which best fit them.

As the clump properties differ each of the CMF’s has a different magnitude, size range

and break point but the overall shape is always broadly consistent with the stellar initial mass
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Table 5.7: The best fit power law gradients for the cumulative CMF’s shown in Figure 5.10.

Method Break Point Low Mass Gradient High Mass Gradient
PP 0.3 M� −0.37 −1.15
PP high density 0.3 M� −0.16 −1.35
PPV 16 bins 0.09 M� −0.39 −1.10
sph 0.06 M� −0.45 −1.99

function (Kroupa, 2002). When plotted logarithmically this corresponds to a Saltpeter slope

of Γ =−1.3 with a break to second power law of Γ =−0.3 at lower masses.

At the low mass end, with the exception of the PP high density case, all the gradients

are within 0.15 of the Kroupa value and within 0.08 of each other. The PP case where the

density range was restricted to high values resulted in incomplete sampling of the low-mass

end, which leads to a flattening of the low-mass gradient. At the high mass end the two-

dimensional methods have gradients within 0.25 of each other, Poisson noise makes these

fits more uncertain but the agreement is still good. The best fit to the high mass end of the

SPH cumulative clumps mass function, however, is steeper than the two dimensional cases. It

is unclear whether this is a genuine consequence of the 3D data set or due to the increasing

resolution of the SPH method with density preferentially identifying smaller denser structures.

Further evidence that the CMF may have a universal shape can be seen in the earlier

discussions of resolution (Figure 5.6) and density range (Figure 5.7). Once again, although

the properties of the clumps are changing, the profile of the CMF remains broadly consistent

with the stellar IMF.

These results suggest that the shape of the CMF found in this simulation resulted natu-

rally from breaking up the underlying structure of a molecular cloud in an automated manner.

Therefore, the emergence of a rational CMF from a data set is no guarantee that the identi-

fied clumps are unique objects. The structure could have been divided up using a differing,

perfectly justifiable, method which results in different clump positions and sizes but yields a

similar CMF profile. This is reminiscent of the observations discussed in the introduction, all

have similar CMFs but the characteristic masses of clumps differ. Indeed, due to difficulties

like those discussed here, Rosolowsky et al. (2008) has proposed that dendrograms might

ultimately prove a better way to identify structure than the traditional clumps. Still, many of

the issues raised here are likely to be relevant using dendrograms or any other clump finding

algorithm.
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5.6.3 Universality of the CMF

Despite variations in clump properties, the slope of the clump mass function is similar in all the

cases investigated here, with the possible exception of the high mass end in the SPH clump

mass function. The CMF retains this shape when extracted using different clump-finding

methods and parameters.

As many studies have shown (e.g. Vazquez-Semadeni & Gazol 1995; Ballesteros-Paredes

et al. 1999b; Klessen 2001), turbulence generates the characteristic multi-scalar structure of

molecular clouds. Elmegreen (2002) goes so far as to describe the structure of the interstellar

medium as a continuous fractal distribution. Observationally, Padoan et al. (2003) show that

the structure of the Taurus and Perseus molecular clouds is hierarchical at scales of 0.3−3 pc.

Given the universality of turbulence (Heyer & Brunt, 2004), it is perhaps unsurprising that the

observed CMFs exhibit similarities between different star forming regions, and there exists in

the literature a number of models for describing how these clumps can form (Fleck, 1982;

Elmegreen, 1993; Padoan, 1995; Padoan, Nordlund, & Jones, 1997; Myers, 2000; Klessen,

2001; Padoan & Nordlund, 2002). The similarities between the CMF and the IMF then nat-

urally leads to the suggestion that the two are related (Motte, Andre, & Neri, 1998; Lada,

Muench, Rathborne, Alves, & Lombardi, 2008; Myers, 2008).

However, these findings suggest that the mapping between the CMF and IMF is not

straightforward. Analysing fractal-like structure with any clump-finding algorithm will gen-

erate a clump mass function. The details of the clump properties, especially the mass, will

depend on the type of algorithm and the parameters chosen. Further, the clumps are not

uniquely defined. This has also been found observationally. Johnstone et al. (2000) and Motte

et al. (1998) both surveyed the ρ Ophiuchi and derived clump mass functions which were in

agreement with each other. However, as Johnstone et al. (2000) comment, the masses, num-

bers and positions of the clumps found do not correspond between the surveys. Due to the

variance of clump properties with identification method, it is unclear how best to link star-less

cores to protostars in a quantitative manner.

5.7 Conclusions

It has been shown that when a CLUMPFIND style algorithm is applied to different types of

data-sets from the same underlying simulation, clump characteristics vary. This is due to a
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number of factors. Details of the observational maps or the simulation obviously play their

part, particularly parameters such as resolution, orientation and density range. The more

levels of structure resolved within a data-set the greater the number of clumps that can be

found. Blending of structure along the line of sight decreases the number of clumps found

in 2D clumpfinds and increases clumps masses. A significant amount of material which is

in reality not connected to a high density core can be artificially included. Applying a high

density cut to PP data yields more distinct objects but can bias the resulting mass function.

Using velocity as a third dimension improves accuracy and provides a closer match to the

true 3D structure than just using PP data. The clump boundaries, however, still differ and less

mass is assigned to clumps.

Qualitatively the profile of the clump mass function always resembles the Stellar IMF,

regardless of the data-set used. However, the quantitative values of the CMF are dependent

on the extraction method, and therefore causal comparisons to the IMF should be made with

caution.
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6
The Earliest Fragmentation in Molecular Clouds

In the previous chapter clump properties were found to be unreliable. This makes it difficult

to investigate the link between the dense cores of gas and the stars which form from them. In

this chapter the potential clumpfinding algorithm introduced in Chapter 4 is used to identify

bound pre-stellar cores. These ‘p-cores’ represent the first bound fragments in molecular

clouds, and by tracing their evolution, the link between the core mass function and the stellar

IMF can be probed directly. For the rest of this work, the term ‘core’ represents a small scale

object, and the term ‘clump’ represents a larger scale object, as introduced in Chapter 1

6.1 Fragmentation and the IMF

As outlined in Chapter 1, the origin of the stellar initial mass function (IMF) has been a major

question in star formation since it was first measured by Salpeter (1955). The similarities

between the IMF and the mass function of clumpy structure in molecular clouds (MC’s), has

led many to propose a link between the two (e.g. Motte et al., 1998). In this scenario, stars

are formed directly from the dense cores of gas observed in molecular clouds (e.g. Johnstone
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et al., 2000; Testi & Sargent, 1998; Johnstone et al., 2006; Nutter & Ward-Thompson, 2007;

Enoch et al., 2008). A direct link between the core mass and the resulting stellar systems mass

is often assumed. For example Alves et al. (2007) propose an efficiency of one third between

core mass and stellar system mass.

This fits into the the long-standing idea that fragmentation of molecular cloud structure

forms the IMF. This could be simply due to gravity (Larson, 1973a; Elmegreen & Mathieu,

1983), causing successive fragmentation of a larger body as it collapses. Alternatively, it has

been shown that the supersonic turbulence observed in MC’s produces a hierarchical density

structure, the dense peaks of which have a mass distribution similar to the IMF (Henriksen,

1986; Larson, 1992; Elmegreen, 1997; Klessen, 2001; Padoan & Nordlund, 2002; Hennebelle

& Chabrier, 2008) .

However, it is unclear how to get to the IMF from the clump mass function. Many assume

a direct 1− 1 link between the masses (Motte et al., 1998; Padoan & Nordlund, 2002; Alves

et al., 2007), while others include the effects of multiplicity (Goodwin et al., 2008). However,

there are many complicating factors in this story of collapse, such as feedback from winds

and outflows (Shu et al., 1988; Silk, 1995; Myers, 2008), supporting magnetic fields (Heitsch

et al., 2001; Tilley & Pudritz, 2007) and competitive accretion (Zinnecker, 1982; Bonnell &

Bate, 2006). All of these processes are involved in the collapse of a fragment to a star and all

could vary locally. In fact, Swift & Williams (2008) have shown that when a core mass function

is evolved into a stellar IMF, a Salpeter like distribution was found regardless of whether

the core-to-star efficiency was constant, variable or included multiplicity. Moreover, under

the competitive accretion theory of star formation there is no need for a direct correlation

between core masses and stellar masses at all, as the cores can be thought of as ‘seeds’ from

which accretion will build up the future IMF (Clark & Bonnell, 2005).

Resolving the issue of core evolution is further complicated as their lifetimes are not well

known. In the classical Shu (1977) picture a quasi-static core supported by its magnetic field

will slowly collapse to form a star. However, in the more dynamical view, usually proposed in

gravoturbulent fragmentation, cores can collapse quickly when they become unstable, making

the process hard to observe. Further, the variation of core free-fall time with density means

that the clump mass function observed at a snap shot in time might actually evolve into a

steeper IMF (Clark et al., 2007).
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Massive star formation poses another question for the evolution of cores. Any core which

is large enough to form a massive star directly is likely to fragment without some additional

heating mechanism. McKee & Tan (2003) theorize that massive cores could be supported by

their internal turbulent energy, although simulations have shown that some fragmentation is

unavoidable (Krumholz et al., 2007; Dobbs et al., 2005). Alternatively competitive accretion

predicts that there will be no massive cores that do not fragment into smaller structures. It

would be one of these smaller cores which would preferentially accrete from its environment

to become a massive star (Bonnell et al., 2004). In this case, the link between core mass and

stellar mass is destroyed by accretion.

Observationally it is hard to be sure which structures will gravitationally decouple from

their environment and are hence ‘pre-stellar’ in nature (i.e. will form stars in their future).

Observations of molecular tracers such as CO produce a core mass function resembling the

IMF ( e.g. Ikeda et al., 2007). However, these tracers are insensitive to the densest gas.

As Lada (1992) has shown, star formation generally takes place above a density of n > 104

cm−3. Observations of CO cores are typically more massive and on larger scales ( e.g. Tachi-

hara et al., 2002) than mm-continuum cores which trace denser gas, ( e.g. Motte et al., 1998;

Johnstone et al., 2000). Moreover, it is often difficult to define a ‘core’ from the data, without

invoking a somewhat arbitrary boundary (e.g. Padoan et al., 2006; Pineda et al., 2008; Schnee

et al., 2008). In the previous chapter it was demonstrated that core properties are extremely

sensitive to the core boundaries, which in turn depend on the resolution, density range and

dimensionality of the dataset. High resolution observations of dense gas in nearby molecu-

lar clouds are the most likely to find pre-stellar objects, for example those identified from a

synthesis and re-analysis of the literature in Ophiuchus by Simpson et al. (2008). However,

these observations still suffer from a lack of completeness, and of course all observations are

necessarily at a snap-shot in time and identify cores in a variety of evolutionary states with no

guarantee that they will form stars.

In this chapter I seek to determine the relation between the properties of the cores formed

through the fragmentation of molecular clouds and the ‘stars’ which form from them. In a

SPH simulation of a molecular cloud bound pre-stellar cores are identified with well defined

boundaries from a complete data-set without time effects. The cores evolution are traced

from when first bound through to their early evolution towards stars. Section 6.2 outlines

the initial conditions of the simulation, and Section 6.3 discusses how the cores are defined
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Table 6.1: Given below are the initial conditions of the simulation analysed in this paper. The mass
resolution is the minimum mass gravitational forces can be resolved for and is calculated via Mres ∼
100Mtotal/Npar t .

Size 3× 3× 10 pc
Mass 104 M�
Particles 5.5× 106

Mass resolution 0.18 M�
Dynamical time 4.74× 105 yrs

using the potential clumpfinding algorithm introduced in Chapter 4. In Section 6.4 the p-core

properties are calculated and compared to observations. The core mass function is also found.

In Section 6.5 the p-core masses when they are first bound are linked to the mass which will

be accreted by the stars (sink particles). Finally in Section 6.6 the results are discussed.

6.2 The Simulation

The initial conditions of the simulation used for this Chapter, consisted of a cylinder containing

104 M� concentrated at one end so the top was over-bound and the bottom under-bound. A

turbulent velocity grid, consistent with a Larson velocity dispersion of σ ∝ r0.5, was generated

according to Dubinski et al. (1995) and Myers & Gammie (1999) and interpolated onto the

SPH particles. The magnitude of the turbulent velocities is chosen such that globally the

cloud is initially supported by turbulence, which equates to a r.m.s. velocity of 4.7 kms−1.

The turbulence is not driven but additional kinetic energy is released by the gravitational

collapse of the MC; when the simulation was terminated the r.m.s. velocity had decayed to

3.65 kms−1.

Table 6.1 shows the properties of the simulation. The cloud is modelled with 5.5×106 SPH

particles, which gives a mass resolution of 0.18 M� (Bate & Burkert, 1997). The simulation

was run on the SUPA Altix computer at the University of St Andrews.

The barotropic equation of state introduced in Chapter 2 is used for basic heating and

cooling to ensure that the Jeans mass at the point of fragmentation matches the characteristic

stellar mass. This equation of state becomes isothermal again at ρ3 = 2× 10−13 gcm−3, to

allow sink particles to form, as it is required that the fragments from which they form are

both bound and collapsing. Therefore in this simulation, sink particles are not created until at

least a density of ρ3 = 2× 10−13 gcm−3 has been reached. Sink particles will accrete bound

material within a radius of 200 AU, and have their mutual gravitational interactions smoothed
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Figure 6.1: The simulated Giant Molecular Cloud at one dynamical time. The colours represent
column densities in the range 0.001gcm−2 (red) to 10 gcm−2 (white). Sink particles are shown as
white dots and the cloud is viewed along its long axis.

to 40 AU.

The simulation evolves with self gravity until just after a dynamical time it is as shown

in Figure 6.1. The simulation is terminated at 1.4 td yn, at which point there are 949 sink

particles which have a combined mass of 1249 M�. This equates to a star formation efficiency

of 12.5%.

6.3 Clump Finding using Potential

As previously shown in Chapter 5 (Smith et al., 2008), clump mass functions always retain a

common shape, but the sizes, masses and positions of cores vary with the method of extrac-

tion. This behaviour is also seen in observations. Motte et al. (1998) and Johnstone et al.

(2000) in their observations of ρ Ophiuchus find similar clump mass functions but the po-
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sitions of their clumps and their masses do not correspond with each other. As the density

distribution of molecular clouds is hierarchical with structure on all scales it is unclear which

scale is the most relevant for star formation.

In this Chapter, I take a different approach, since I am interested in establishing the con-

nection between the mass of the fragment as it first becomes bound and the final mass of

the sink particle that forms from it. Rather than breaking the cloud up into structures de-

fined by density, gravitational potential wells are found instead. There are two advantages

to such a method. First, the gravitational potential distribution in the cloud is considerably

smoother than the density distribution, since density fluctuations that do not carry sufficient

mass cannot significantly contribute to potential field. Second, the strength of the gravi-

tational potential determines whether a clump will collapse and how mass will flow. In a

density distribution it is unclear which scale of the structure is important, whereas with po-

tential the scale at which structures are bound is a clear physical quantity. Naturally, there is a

disadvantage to this process: it becomes difficult to compare the structures to those observed

in molecular clouds. However it is expected that some properties may be comparable between

the observed objects and those which are extracted from the simulation in this study. These

are discussed in Section 6.4.

Potential cores (p-cores) are identified using the algorithm described in Chapter 4. They

represent the local potential minimum below the surrounding background and therefore ex-

plicitly include tidal effects. Figure 6.2 shows an example of the potential clumps found from

the central region of Figure 6.1. As the structures identified by the potential clump find are

typically small, they are called ‘p-cores’. Note that there is no intrinsic requirement that a p-

core is bound, as it may have sufficient internal energy (both thermal and kinetic) to prevent

collapse. Once the p-cores form sinks, only the total sink mass formed from them is traced,

because the spike in potential due to the sink particle may distort the boundaries; therefore

all the p-cores are starless.

The major aim of this chapter is to investigate the link between pre-stellar p-cores and the

stars formed from them. In order to do this two data-sets are used, the first of which is the

‘composite’ data-set. P-cores are found at 0.1 dynamical time (td yn = 4.7× 105 yrs) intervals

between 0.6 td yn when star formation had just begun and 1.4 td yn when the simulation was

terminated. Snapshots from each time are combined into one data-set, which removes any
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time dependent effects and increases the number of objects within the data-set. The cores in

the composite data-set have an average dynamical time of 7.4× 104 yrs meaning that a few

long lived, non-transient cores will be included twice, but at different evolutionary states. In

total there are 573 p-cores which should be enough for good statistics. The composite data-set

represents the view of cores in a molecular cloud at single points in time. It contains p-cores

at different evolutionary states, with different levels of binding, many of which are transient.

The second data-set is the ‘bound’ data-set, which contains the details of the p-cores at the

point they first became bound. The p-cores are traced throughout the lifetime of the simula-

tion, and if more than 80% of the mass belonging to a p-core remains grouped together in the

next simulation snapshot, the p-core is said to survive. The binding is traced throughout the

p-core lifetime, and at the point where Erat > 1 for the first time its properties are recorded.

Erat is defined as:

Erat =
|Ep|

Etherm+ Ek
(6.1)

where Ek is the kinetic energy calculated with respect to the center of velocity of the clump,

Etherm is the thermal energy of the clump and Ep is the potential energy of the clump calcu-

lated using the relative depth of the potential well once the background has been subtracted.

Hence the clumps identified here are bound with respect to the environment in which they

are formed, not merely when considered in isolation. This means that tidal forces from sur-

rounding cores are taken into account when determining whether the p-core is bound. As the

bound p-cores are identified throughout the simulation this data-set is also time independent.

Due to this data-set being a synthesis over time and the p-cores being identified using a quan-

tity impossible to observe, these objects could not be found observationally. Despite this, the

analysis is worthwhile as the bound data-set allows us to identify the fragmentation scale of

the molecular cloud. The sink particles form when these bound cores collapse. In total there

are 306 bound cores in the simulation which is less than the number in the composite data-set

but should still be enough for good statistics.

6.4 Physical Properties of the Potential Cores

Unfortunately, a potential core can only be identified when positions and velocities are known

in three dimensions, which is impossible observationally. Therefore, the properties of the p-

cores are now calculated to allow a comparison to observational data. The average properties
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are shown in Table 6.3.

6.4.1 P-core Shapes

Figure 6.2 shows a close up view of the p-cores identified at a snapshot in time in one of the

clustered regions of the molecular cloud. The p-cores are only quasi-spherical and often are

elongated due to the filaments they are formed in. Within the p-cores there is still signifi-

cant density substructure, and further fragmentation is often observed after the p-core is first

bound. Due to this substructure, a traditional clumpfinding algorithm would have split them

into smaller cores.

In order to quantify the extent of the p-cores, an effective radii, re f f is used, within which

68% of the mass is contained. As the p-cores are not relaxed, the peak in the gravitational

potential is used to define the centre rather than the centre of mass, which produces smoother

density profiles. Figure 6.3 shows the density of the sph particles assigned to a typical p-core,

plotted against their distance, r, from the central potential peak. The large dispersion shown

in the density profile is due to the substructure within the core and the effect of the cloud

being embedded in a non-uniform medium.

Nonetheless despite the scatter there is a trend towards a flattened density profile in the

central region, as has been seen in observations (e.g Ward-Thompson et al., 1994). To get an

idea of how centrally concentrated the p-cores were, a power law of the form ρ ∝ r−n was

fitted to the p-core and the best fit value of n determined. I excluded the radius within which

the first 10 % of the mass was contained from the fit due to the aforementioned flattening.

Due to the dispersion from the density substructure and the core’s non-spherical nature,

there was a large degree of uncertainty, often as large as 50%. Despite this uncertainty, when

plotted as a histogram Figure 6.4 (c), it is found that the bound cores have exponents clustered

around n= 1.36± 0.35. This is intermediate between a shallow density increase (n= 1) and

that of a free-falling envelope (n = 1.5), and is an indication that the p-cores are still being

formed when they become bound. Typically exponents of n ≈ 1.6 are expected for Class 0

and Class 1 YSO’s (Young et al., 2003) . Conversely, the profiles of the composite p-cores have

a wide range of density exponents with an average value of 1.08.
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Figure 6.2: A close up view of some of the pre-stellar pcores identified from Figure 6.1. The top panel
shows a zoom of a clustered region in column density and the bottom panel shows the pre-stellar p-
cores identified in it. Colours depict column density and the scale runs from 0.001 gcm−2 (blue) to 10
gcm−2 (yellow). The location of the potential peak of the twenty p-cores in this region are shown by
hollow circles. The p-cores are only quasi-spherical and exhibit significant substructure.
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Figure 6.3: The density of the sph particles assigned to a typical p-core plotted radially outward from
the peak of gravitational potential. There is considerable dispersion due to substructure, but there is a
clear trend showing a flattened central peak and density decreasing outwards.

Table 6.2: The average clump properties of the p-cores in the bound and composite datasets. Re f f is
the radius within which 68% of the mass is contained. The density profile is the best fit value of n for
the profile ρ ∝ r−n

Bound Composite
Mass (M�) 0.70 0.78
Re f f (AU) 2.4× 103 3.7× 103

σ3D(v) (kms−1) 0.27 0.40
Dynamical Time (yrs) 2.1× 104 7.4× 104

Density Profile (n) 1.37 1.08
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Figure 6.4: Histograms of the masses & sizes of the bound (solid line) and composite (dotted line) p-
cores. Panel (a) shows the clump mass function. Masses above 0.2 M� are resolved and the Saltpeter
slope is denoted by a dashed line. Panel (b) shows the effective radii. Panel (c) shows the best fit
values of n for the profile ρ ∝ r−n. The p-core mass function resembles the stellar IMF and the p-cores
are typically small, centrally concentrated objects.
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6.4.2 Masses and Sizes

Figure 6.4 (a) shows the clump mass function (CMF) of the bound and composite p-cores, in

which there is a clear resemblance to the IMF. The previous chapter showed that an IMF-like

mass distribution was always obtained from MC structure using the traditional CLUMPFIND

algorithm, but it was unclear whether this had any physical meaning. It has now been demon-

strated that the bound cores also follow this distribution. This shows that at some level there

is a link between molecular cloud structure, the formation of bound cores, and ultimately star

formation. The link between p-cores and stars will be examined in Section 6.5

The average p-core masses for the bound and composite data-sets are very similar; 0.70

and 0.78 M� respectively. This is broadly consistent with the characteristic stellar mass

(Chabrier, 2003). Both data-sets show this distribution, regardless the fact that members

of the composite population are often unbound and do not form stars.

The distribution of the radii of the p-cores is shown in Figure 6.4. The bound p-cores have

effective radii in the region of 2.4× 103 AU, and the composite p-cores have radii of about

3.7× 103 AU. Both distributions resemble a lognormal. Unlike the clump mass function, the

distribution of the bound and composite data-sets differs in magnitude, which is due to the

composite population containing a large number of unbound diffuse clumps.

6.4.3 Binding

The binding of the composite data-set is shown in Figure 6.5 (a), only 24% of the p-cores are

bound (Erat > 1). Moreover, for these p-cores, there is a tail which includes highly bound

objects. The composite population consists of p-cores in a wide range of evolutionary states,

a large fraction of which will not go on to form stars. Figure 6.5 (b) also shows the p-core

masses plotted against energy ratio. There is no correlation between binding and mass in the

simulation, contrary to some observations where the most massive cores are the most bound

(e.g. Lada et al. 2008). This is due to the tendency of the larger cores to be more diffuse. Due

to binding being roughly constant with p-core mass, bound cores appear to be selected with

a uniform probability from the composite p-core distribution, which explains the resemblance

between the composite and bound CMF’s.

The density profile of the mass assigned to the core radially outwards, on the other hand,

does show a correlation with binding. In Figure 6.5 (b), shallow (n < 1), intermediate
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Figure 6.5: The binding of the composite p-cores. Panel (a) shows a histogram of the energy ratio
of the cores, Erat ≥ 1 are bound, where Erat = |Ep|/Etherm + Ek. Panel (b) shows the p-core masses
plotted against energy ratio, blue circles denote cores with a steep n > 1.5 density profile, green
squares intermediate 1< n< 1.5 profiles, and red crosses shallow profiles. Panel (c) shows the density
exponent n plotted against energy ratio with error bars due to the poor fit from density substructure
and non-spherical core shapes; the straight line has a gradient of two. There is no correlation between
binding and mass, but there is a link to central concentration.
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(1 < n < 1.5) and steep (n > 1.5) density profiles are denoted by circles, squares and

crosses respectively. It is found that the steepest profiles are nearly all bound, and about

half of the intermediate profiles are bound. Figure 6.5 (c) shows the density exponents of

the p-cores plotted against their energy ratio. When the profiles are shallow, a core is almost

never bound, but when the potential well deepens and the core becomes more bound, the

density profile steepens as the p-core becomes more centrally concentrated. However, there is

a high degree of dispersion in this relation due to the difficulty of obtaining density fits from

only quasi-spherical cores which contain substructure. Nonetheless, the steeper density pro-

files and increased central condensation show the clearest indication of binding from all the

observationally visible quantities. This echoes the Bonnor-Ebert (Bonnor, 1956; Ebert, 1955)

sphere model often used to model core observations (e.g. Johnstone et al., 2000), in which

collapse begins above a critical ratio of maximum central density to mean density. However

the p-cores are not generally in equilibrium, but are dynamically evolving in a similar manner

to that shown in Ballesteros-Paredes et al. (2003).

Figure 6.6 shows the internal 1D velocity dispersions of the bound and composite p-cores.

Originally 3D velocity dispersions were calculated but these have been converted to the 1D for

easier comparison to observations. The mean 3D velocity dispersions were 0.27 and 0.4 kms−1

respectively, and when converted to a 1D velocity dispersion this becomes 0.16 and 0.23

kms−1. The sound speed of an isothermal gas at 10K is 0.2 kms−1, meaning the potential cores

are at the transition between supersonic and subsonic velocities, and are therefore coherent

objects (Goodman et al., 1998).

The mean dynamical timescale of a bound cores is calculated using the depth of the poten-

tial, rather than the standard practice of using the density, as the gravitational potential is the

more clearly defined quantity for the p-cores. The potential and kinetic energies are equated

using the virial theorem to obtain a typical velocity which is used to find the dynamical time as

shown below, where Re f f is the effective radius of the core and φ the gravitational potential.

td yn =
Re f f
p

φ
(6.2)

The average dynamical time is 2.8× 104 yrs, and for the composite data-set it is about two

times larger. This is more than ten times shorter than the dynamical time of the molecular

cloud as a whole; meaning that several generations of cores can form and evolve throughout
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Figure 6.6: The one dimensional internal velocity dispersions of the p-cores in the bound(solid line)
and composite (dotted line) datasets. The sound speed of an isothermal gas at 10K is 0.2 kms−1 which
means the p-cores are generally subsonic

the lifetime of the simulated molecular cloud.

6.4.4 The Core Mass Function with Time

Figure 6.7 shows the mass functions of the pre-stellar (without sinks) p-core snapshots before

they were merged into the composite data-set to integrate out time effects. Snapshots are

shown at 0.6 to 1.2 simulation dynamical times (td yn = 4.7 × 105 yrs) at intervals of 0.2

td yn . The high mass end of the clump mass function gets steeper with time, meaning that

more massive cores were formed at the beginning of the simulation than at the end. This is

probably due to cores at later times being more likely to form in the vicinity of an existing

potential well. This will tidally truncate the size of the core, and hence limit the mass it can

accrete. In the simulation the major regions of star formation are formed at the same time,

and hence their evolution is artificially synchronous. If this were not the case the steepening

of the mass function would not have been visible.

6.5 Clump Masses & Stellar Masses

Since the first observations of dense cores, a direct causal relation between them and stars

was proposed (e.g. Motte et al., 1998). Alves et al. (2007) go further, and find that core

masses and stellar masses are related with an efficiency of 0.3. However, this neglects the
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Figure 6.7: The cumulative mass functions from snapshots at solid 0.6 td yn, dotted 0.8 td yn,short
dashed 1 td yn and long dashed 1.2 td yn. The dot-dashed line shows the Salpeter slope. The mass
function gets steeper with time as the high mass p-cores are formed earlier.

influence of environmental factors on the core during the accretion process. Moreover, Swift

& Williams (2008) have shown that cores can have variable efficiencies or form multiple stars

and still generate the expected IMF.

I now examine the correlation between core masses and their resulting stellar masses. To

investigate how much of the p-core mass is available to form stars, the mass of the sink parti-

cles formed from them is traced with time. If a p-core forms more than one sink, their masses

are added. This means what is actually being traced is the correspondence between p-cores

and the stellar systems formed from them. Figure 6.8 shows the masses of the sink particles

formed as a function of their p-core masses evaluated at a single snapshot in time. Sink masses

are recorded at the end of the simulation and the p-cores in the snapshot population that did

not form sinks are neglected.

There is no clear relation between the p-core masses and the sink masses. The sink masses

all lie near or well above the p-core mass values showing the importance of subsequent accre-

tion. Note that as feedback is not included and all sinks that form from a core are counted, it

would be surprising if the efficiency of sink formation from cores was much less than 100%.

Instead it is more than a factor of two higher. The actual stellar mass formed would of course

be less than the sink mass, which simply represents the mass which would reach the inner

disk of an accreting proto-star. During the accretion process mass will be ejected via a jet,
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Figure 6.8: The connection between p-core masses at a snapshot in time and their sink mass when
the simulation was stopped. The solid line shows a 1-1 correspondence. There is a poor correlation
between p-core mass and the total sink mass formed from them.
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a process which is not modelled here. However, if there is no correlation between the mass

reaching the forming proto-star there is unlikely to be a correlation with the final star either.

In fact the correlation is most likely to be further worsened by this process. For instance

Matzner & McKee (2000) find a star formation efficiency of between 25%− 70% in model

cores with feedback, depending on geometry. Interestingly, they also find that the stellar IMF

formed from the cores is insensitive to core efficiency. Since all observations are necessarily at

a snapshot in time this work suggests that the final stellar mass cannot be predicted accurately

from the observed core mass even if the p-cores were directly observable.

One complication of Figure 6.8 is that the cores are all at different evolutionary states.

This can be addressed by using their properties at the point in time where each is first bound,

as this is when fragmentation and collapse begins, and when the best correlation to the p-

core mass would be expected. The total mass in sinks formed from these p-cores is recorded

at successive core dynamical times after they are first bound. In the simulation there is no

mechanism to halt accretion, but as the p-core dynamical times ( Equation 6.2) are short, the

sink masses are found before this is an issue. Figure 6.9 shows the masses of the sinks after 1,

2, 3 & 5 dynamical times.

When comparing the sink mass at equal evolutionary stages of the bound p-cores, the

correspondence is a lot tighter than that in Figure 6.8. At 1 dynamical time after the p-core is

bound the sinks are below the 1-1 correspondence line. At 2 dynamical times they are around

this level. These two stages, therefore, follow the accretion of the initial bound core, and so

it would be surprising if this correlation did not exist! However, there is considerable scatter

in this trend, with sink masses being as much as a factor of two away from the trend in either

direction. This indicates that some cores are accreting their envelope at a faster rate in these

initial stages.

As suspected, therefore, there must be a direct connection between bound cores and star

formation. This improved correlation of p-core mass and sink mass is found at a specific

point in time, when first bound. This leads us back to the original scheme of star formation

proposed by Jeans (1902), as the potential bound cores represent the local Jeans mass at the

point of collapse.

At 3 and 5 dynamical times the cores are accreting from their wider environment i.e.

material which became bound to the cores subsequent to when Erat > 1 for the first time. The
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6.5. Clump Masses & Stellar Masses

Figure 6.9: The connection between clump mass and sink mass at successive dynamical times. Panel
(a) td yn = 1, (b) td yn = 2, (c) td yn = 3, (d) td yn = 5. The solid line shows a 1-1 correspondence. There
is now a clear connection between p-core mass and sink mass, but it still shows significant dispersion.
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Figure 6.10: The CMF of the p-cores with mass bins denoted by different colours.

correlation between core masses and sink masses becomes increasingly dispersed in log-space

as accretion wipes out the direct correspondence and increases the offset as the sink-masses

grow with time. Cores surrounded by a plentiful reservoir of gas on all sides will be more

successful at these stages than those in a narrow filament for example.

Despite the poor correlation between core mass and sink mass, a Salpeter like mass func-

tion is always maintained. This is illustrated graphically in Figure 6.10 which shows the

cumulative clump mass function of the bound cores. Each point on the graph represents a

p-core mass when first bound (the best case scenario) and different mass ranges are denoted

with different colours. I now trace the evolution of these cores into sinks, keeping the colours

of the sink the same as its parent core. If there was a perfect 1−1 correlation, then the colour

bands would remain distinct. Figure 6.11 shows the resulting mass functions at subsequent

dynamical times. The colours are now well mixed, showing that the p-cores are evolving with

variable efficiencies. Nonetheless, the shape of the IMF is maintained throughout, due the

the effects of competitive accretion. Therefore, it could be said that for a population of cores

there is a high probability that a more massive core will form a more massive star, but for a

specific object no reliable predictions of final mass can be made.
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Figure 6.11: The initial mass functions of the sinks formed from bound cores the colours are the same
as their parent p-cores shown in Figure 6.10. The IMF’s are recorded at intervals of 1,2, 3 & 5 p-core
dynamical times. The mass bins get mixed up with time, but the shape of the mass function always
resembles the stellar mass function despite the inexact correspondence between core mass and sink
mass.
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In summary, the bound p-cores all form stars, but some are more successful at accreting

additional mass than others. This is most likely due to environmental factors, for example,

core geometry, surrounding gas reservoir, dynamical interactions or competition from neigh-

bouring proto-stars. This suggests, that in order to understand star-formation, not only the

cores of gas must be studied, but also the wider environment in which they form. The corre-

spondence between cores and stars is even more difficult to determine at a snapshot in time

when cores are at a variety of evolutionary stages.

6.6 Discussion

It has been theorised that the power law clump mass function is formed as a product of super-

sonic turbulence (Henriksen, 1986; Larson, 1992; Elmegreen, 1997; Klessen, 2001; Padoan &

Nordlund, 2002; Hennebelle & Chabrier, 2008). The core mass function has been observed by

many authors (e.g. Motte et al. 1998; Testi & Sargent 1998; Johnstone et al. 2000; Nutter &

Ward-Thompson 2007; Ikeda et al. 2007) and bears a remarkable resemblance to the stellar

IMF. It is now confirmed that this profile is also observed in the first bound fragments that

have been identified in this simulation.

However, the p-cores are not directly comparable to observed cores as they are identified

in three dimensions, and use gravitational potential instead of density. Further, it has also been

shown that the core properties obtained from applying CLUMPFIND to 2D observations are

unreliable (Kainulainen et al., 2009; Smith et al., 2008). The p-cores are more well defined as

they are found from a smooth distribution where all structures are significant. Comparisons

between observed core properties and p-core properties must therefore be made cautiously.

Nonetheless it is useful to contrast the typical sizes of observed cores to identify which objects

are on the most similar size scales to the first bound fragments. Table 6.3 summarises observed

properties of density cores in different regions and species from a variety of authors.

P-cores are typically smaller than most density cores identified observationally, having

average masses of 0.7 M� and radii of 2.4 × 103 AU when first bound. Their internal 1D

velocity dispersions are typically just subsonic. The p-cores are most similar to high resolution

observations of cores in nearby molecular clouds (e.g. Simpson et al. 2008; Enoch et al.

2008). It is expected that the difference between most observed cores and the potential cores

is mainly due scale differences (Table 6.3. Most surveys, particularly of more distant regions
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Chapter 6. The Earliest Fragmentation in Molecular Clouds

such as Orion, would not be able to resolve cores of the size found here, and as previously

shown coarse resolution observations still produce a Salpeter like mass function, but with

systematically higher masses.

Although the clump mass function observed from density fluctuations is shown to re-

semble the stellar initial mass function, there was no requirement for this to be true for the

distribution of masses at which cores first become bound. In fact, in the competitive accretion

theory of star formation the seeds of gravitational collapse can follow any distribution and the

IMF will still be generated through subsequent accretion (Zinnecker, 1982). That the time

integrated bound fragments also follow this distribution further supports the idea that they

are sampled from a hierarchical density distribution generated by turbulence.

However, at a snapshot in time the majority (76%) of the p-cores are unbound and may be

transitory. This has implications for observational surveys which are necessarily at a snapshot

in time, as the vast majority of objects have either not reached the point of collapse or will

not form stars at all. The case for a 1-1 correlation between core mass and stellar mass

can not hold in these cases. There is also the further complication that the p-cores contain

substructure that could be further identified as individual objects if one were performing a

density decomposition (depending on the resolution of the data). Naturally, these yet smaller

objects are even less bound than their parent p-core. The high value of unbound pre-stellar

p-cores in this analysis is surprising because as they are identified using gravitational potential

this force must be significant. There is observational evidence for unbound cores. Lada et al.

(2008) find that the majority of cores found from dust extinction in the Pipe nebula are

unbound, and André et al. (2007) find 25% of their cores in Ophiuchus to be unbound.

The p-cores showed significant density sub-structure, despite being identified from a smooth

potential well. If a traditional clump finding algorithm using emission or density had been

used to identify them, they would have been split into smaller objects. The p-cores were also

only quasi-spherical, and their central peak in potential did not necessarily correspond with

their center of mass, as they were not relaxed. This suggests that using smooth symmetri-

cal models to study core collapse (such as Bonnor-Ebert spheres) can at best only be a first

approximation.

Unfortunately, the simulation does not include magnetic fields, which can act against col-

lapse on some length scales (Hennebelle & Passot, 2006). Price & Bate (2008) found that
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magnetic fields introduce voids into molecular cloud structure and reduce subsequent accre-

tion. Additionally, this simulation does not include radiative transfer. However, as cores are

being considered early in their evolution before a protostar is formed, and accretion luminos-

ity only affects scales of less than 1000 AU (Krumholz et al., 2007; Bate, 2009), this should

not be a significant issue.

Due to the similarities between the stellar IMF and the clump mass function it has been

proposed that the mass of stellar systems is directly related to the clump they formed from

(e.g. Motte et al. 1998; Alves et al. 2007). However, when I traced the total mass in sink

particles formed from the p-cores at a snapshot in time, as would be visible observationally,

the correspondence was effectively non-existent. A stronger correlation between core masses

and total sink mass was found when the p-core masses were recorded at the time when they

were first bound. Further accretion increases the dispersion in this relation and introduces an

offset.

Throughout the simulation the most massive bound core had a mass of only 6.35 M�,

whereas the most massive sink at the end of the simulation had a mass of 27.97 M�. There

was no p-core which could form a massive star simply from its own material when first bound.

All the bound cores were at best only marginally supersonic and hence were not supported by

turbulence, contrary to the massive turbulent cores predicted by McKee & Tan (2003). Note,

however, that the lack of feedback and magnetic fields in these simulations may limit the

ability to sustain turbulence in cores.

In most cases gas from outside the region initially bound was accreted by the sinks formed

from the p-core after only 6×104 yrs. This subsequent accretion means that the environment

surrounding the p-core is also important for its future evolution, for example whether it is

surrounded by a large gas reservoir or is in a narrow filament.

There is a higher probability that a more massive p-core will form a larger total sink mass,

but for an individual p-core no accurate prediction can be made. The link between core mass

and sink mass is poor because there are a number of additional environmental factors beyond

the bound mass which will affect the evolution of the core, for example the shape of the core

and the distribution of gas it is embedded within. Despite the poor correspondence between

p-core masses and sinks, the shape of the mass function obtained from the p-cores as they

evolve into sinks always resembles the stellar IMF.

99



Chapter 6. The Earliest Fragmentation in Molecular Clouds

6.7 Conclusions

The earliest fragmentation in a simulated molecular cloud has been identified using the dis-

tribution of gravitational potential rather than density. This is a smoother distribution, due to

gravity being a long range force, and it allows us to assign boundaries with clearer physical

meanings. The fragment’s evolution is traced with times. If they became bound, their masses

were identified when (Ep > Ek + Etherm) for the first time, and this is related to the mass

in sink particles formed from them. This allows the scale of the initial fragmentation to be

identified and traced as it evolves into a stellar IMF. The main conclusions are as follows:

1. The time-integrated mass function of just-bound gravitational potential ‘p-cores’ resem-

bles the stellar initial mass function in a similar manner to that of gas density cores

2. The bound p-cores are most similar to the very smallest density cores currently observ-

able ( an average of 0.7 M� with a radius of 2300 AU).

3. P-cores exhibit significant density substructure.

4. There is a poor correlation between p-core mass and the total mass in sinks formed from

them. This is particularly true when the p-cores are recorded at a snap-shot in time, but

still holds when the mass is recorded when they are first bound.

5. The sink particles formed from the p-cores accrete from beyond the region initially

bound. This means that the surrounding environment of the core also has an effect on

the star formation in the simulation.

6. Despite the poor correlation between p-core mass and sink masses the sink IMF always

resembles the stellar IMF.
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7
The Simultaneous Formation of Massive Stars

and Stellar Clusters

In the previous chapter it was found that the final mass of sink particles depended at least

in part on their environment. Of particular interest is the evolution of massive stars, as no

evidence of massive pre-stellar cores was found in the simulations used in Chapter 6. It has

already been noted by Bonnell et al. (2004) that massive stars are formed within clusters

and that the number of stars formed in the cluster correlates well with the growth of the

massive stars. In this chapter the formation of massive stars within a forming stellar cluster is

examined in more detail.

7.1 The Formation of Massive Stars

Massive stars are almost universally formed in star clusters (Lada & Lada, 2003) and so the

physical processes involved in forming clusters must be intrinsically linked to high mass star

formation. Recent observations of infra-red dark clouds (IRDC’s) (Egan et al., 1998; Carey
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Table 7.1: Typical properties of clouds, clumps and cores (adapted from Bergin & Tafalla 2007.)

Cloud Clump Core
Size (pc) 2− 15 0.3− 3 0.03− 0.2
Mass (M�) 103− 104 50− 500 0.5− 5
Mean density (cm−3) 50− 500 103− 104 104− 105

Velocity Extent (kms−1) 2− 5 0.3− 3 0.1− 0.3
Gas Temperature (K) ∼ 10 10− 20 8− 12

et al., 1998, 2000; Simon et al., 2006; Rathborne et al., 2006) and high-mass proto-stellar

objects (HMPO’s) (Beuther et al., 2002; Sridharan et al., 2002; Williams et al., 2004; Faúndez

et al., 2004) have begun to probe the earliest stages of the massive clumps from which star

clusters are formed.

So how does high mass star formation proceed within the complicated environment of of

a forming cluster? Is the mass that forms the massive star gathered before, during or after

the cluster formation? This is particularly relevant as regards the evolution and interactions

of the pre-stellar gas cores thought to be the precursors of star formation.

A reminder of the properties of clumps and cores, as defined in Chapter 1, is shown in

Table 7.1. Effectively the terms are used to simply denote different scales of structure. Clumps

are regions of enhanced density within a molecular cloud, which will typically form stellar

clusters. Cores are density condensations smaller than a clump which have a gravitational

potential distinct from their environment and do not contain any smaller scale structure which

is already bound.

Motte et al. (2007) carried out an unbiased survey of Cygnus X to identify the earliest high

mass star forming complexes. They found evidence of star formation in all their embedded

cores, and were unable to find a massive pre-stellar clump, leading to the conclusion that

these objects were either extremely short lived (< 103 years), or did not exist. Similarly,

observations of massive cores ( e.g. Rathborne et al., 2005; Pillai et al., 2006; André et al.,

2008) have always found signatures that star formation was already underway. Marseille et al.

(2008) find a possible pre-stellar massive core, but any mid-IR emission from it is confused

by a nearby source. In conclusion, true pre-stellar massive cores remain elusive.

Due to the lack of pre-stellar massive cores, Motte et al. (2007) proposed that the precur-

sors of Class 0 massive proto-stars must be the larger starless clumps which would form them

by collapsing supersonically. Dynamic collapse of HMPO’s to form stars was also proposed

by Beuther et al. (2002) to explain their observed line-widths. Further, Peretto et al. (2006,
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2007) found that the massive cluster forming clump NGC 264-C was collapsing along its axis

on its dynamical timescale, and therefore channelling mass towards the Class 0 object at its

centre.

This dynamical collapse of clumps during the star-formation process is in agreement with

the proposal of Elmegreen (2000) that star formation basically takes place in a crossing time

and that cloud lifetimes are short. Tan et al. (2006) present a contrasting view where clusters

form quasistatically, although this is partially based on a large estimate for the age of the Orion

nebula cluster. Hillenbrand (1997), however, found that the mean stellar age within the Orion

nebula was below 1 Myr albeit with a few older outliers in the range 1− 10 Myr. Hartmann

(2003) argue that these outliers are accounted for by a combination of uncertainties in the

stellar birth line where stars appear on the H-R diagram and foreground contamination.

Additionally, observations of a velocity gradient within the Orion nebula by Fűrész et al.

(2008) and Tobin et al. (2009) suggest that the cluster may currently be in a state of sub-virial

collapse, and due to the kinematic correlation between stellar and gaseous components must

be young. The focussing power of gravity to produce structures has been further highlighted

by Hartmann & Burkert (2007), who suggest that the Orion Nebula Cluster itself could have

been produced from the large scale collapse of the Orion A cloud.

There are two main theories of massive star formation; the first of which is basically a

scaled up version of low mass star formation, where massive stars form from well defined

massive cores supported by turbulence (McKee & Tan, 2003). The difficulty with this model

is that it presupposes the existence of massive prestellar cores that have somehow evaded

fragmentation during their formation stages (Dobbs et al., 2005). Krumholz (2006) suggest

that radiative feedback can limit the fragmentations but as this chapter shall show, radiative

feedback does not result in the formation of massive prestellar cores.

Alternatively, in the competitive accretion scenario (Zinnecker, 1982; Bonnell et al., 2001,

2004) cores are the ‘seeds’ of star formation, the most massive of which have a larger gravi-

tational radius, and are thus more successful at accreting additional mass, and so grow into

massive stars. There are a few common misapprehensions about this theory. Firstly, the pro-

tostars which become massive do not generally have high velocities with respect to the cloud

they inhabit. They tend to stay at the centre of gravitational potential of the forming star

cluster which they help define. Secondly, they accrete material via two mechanisms. There is
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a contribution from Bondi-Hoyle accretion, but when the velocity relative to the system is low

the accretion is mainly regulated by the tidal field. Thirdly, there is no requirement for stellar

mergers (Bonnell et al., 1998).

At later evolutionary stages, Keto (2007) has shown that accretion can continue to form

massive stars, even when they have begun to ionise their surroundings. In this model a

hypercompact HII region is formed around the massive stars as they grow by accretion. As

the star grows in mass, outflows form and their opening angle increases, however even when

the star is extremely massive, accretion still proceeds around an equatorial disk.

This chapter describes how massive stars are formed within a dynamic clump which is

forming a stellar cluster, with particular attention to the cores within it. In Section 7.2 the nu-

merical simulation is outlined and a simple approximation for radiative heating is described.

Section 7.3.1 illustrates how dynamic collapse causes a star forming clump to evolve from a

diffuse filamentary structure to a more massive concentrated structure which is brighter in

dust continuum emission. Simulated interferometry images are generated from the data and

compared to observations. The results are discussed in the context of global collapse and

accretion in Section 7.4, where it is shown that the clump potential channels mass onto its

centre, where the proto-stars with the greatest gravitational radius accrete it. This means that

the global evolution of the forming star cluster as a whole has a direct link to the massive

stars it forms. It is shown that low mass cores close to the central massive star are unaffected

by this process. Finally in Section 7.5 the conclusions are presented.

7.2 The Simulation

The smoothed particle hydrodynamics (SPH) method is used to follow the evolution of a 104

M� cloud over 1.02 free-fall times or ≈ 6.6× 105 years. The initial conditions are the same

as those used in Chapter 6 but have been re-simulated at increased resolution by Bonnell

et al. (2008). The cloud is cylindrical in form, with a length of 10 pc and a radius of 3 pc.

The cloud contains a local density gradient causing the ends of the cylinder to have initial gas

densities that are 33% higher/lower than the average density. The gas has internal turbulence

following a Larson-type P(k) ∼ k−4 power law and is normalised so that the total kinetic

energy balances the total gravitational energy in the cloud. The density gradient then results

in one end of the cloud being more than bound (still super virial) while the other end of the
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cloud is unbound.

The cloud is made up of 15.5 million SPH particles on two levels to maximise the nu-

merical resolution in regions of interest. The regions of interest are determined from the low

resolution run used in Chapter 6 which consisted of 5 million SPH particles with mass reso-

lution of 0.15 M�. Regions requiring high resolution were identified from the SPH particles

that underwent star formation and formed sink particles (see below) or were subsequently

accreted by these sink particles. These particles were replaced in the initial conditions with 9

lower-mass particles, conserving the mass and kinetic energy of the initial conditions, but now

with a mass resolution of 0.0167M�. The simulation was re-run from the initial conditions

with this higher resolution.

The simulation treats the thermal content of the cloud through the barotropic equation

of state introduced in Chapter 2. However in addition to this equation of state, radiative

feedback is approximated from the newly formed stars by way of a grid of previously com-

puted Monte Carlo radiative transfer models of young stars (Robitaille et al., 2006). A one-

dimensional temperature profile was derived from the youngest of these models as a function

of stellar mass and distance from the star by Ian Bonnell. This gives a very rough estimate

of the radiative feedback which, if anything, should overestimate the gas temperatures. Nev-

ertheless, it gives an estimate of the emission expected in regions of massive star formation.

From these models the temperature due to the radiative feedback is set as

T (r) = 100.
�

m
10�

�0.35 � r
1000AU

�−0.45
K; m< 10M�,

T (r) = 100.
�

m
10�

�1.11 � r
1000AU

�−0.5
K; m> 10M�

(7.1)

The gas temperature around the young stars is set to be the maximum of the temperature

from either the the dust/line cooling equation of state or the radiative feedback. This ensures

a maximal effect from the radiation.

7.3 Massive Clump Evolution

7.3.1 Time Evolution

Three regions of star formation are considered, each of which resembles a single clump at

some point when viewed at a low resolution. The global properties of these regions are

calculated by simply including all the material within a radius of 1 pc from the largest sink.
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Table 7.2: The massive clump properties recorded at the beginning (3.53×105 yrs) and end (5.9×105

yrs) of the analysed period. The first mass M is that found within a 1 pc radius of the central sink.
The second is that within a cylindrical column of radius 1pc centered on the same sink. The mean gas
density is denoted by ρ̄g , and max. Ms and tot. Ms represent the maximum sink mass within the clump
and the total sink mass respectively.

Clump M M2D ρ̄g max. Ms tot. Ms
[M� ] [M� ] [gcm−3] [M� ] [M� ]

beginning
Alpha 893 1528 1.1× 10−18 0.85 3.10
Beta 882 1516 4.0× 10−19 1.11 2.24
Gamma 1034 1985 7.6× 10−19 0.58 1.84
end
Alpha 987 1412 8.0× 10−18 29.2 361.4
Beta 995 1882 8.8× 10−18 11.3 189.2
Gamma 1127 1993 5.0× 10−18 12.6 243.9

Table 7.3: The binding energy of the three clumps at the beginning (3.53×105 yrs) and end (5.9×105

yrs) of the analysed period. The average radial velocity of the sph gas particles is given by v̄r , where
negative values show inward motion. The binding of the clumps is given by Erat=Ep/Ekin+Etherm,
and the absolute magnitude of the potential energy is shown by Ep. For Erat2, the kinetic energy was
calculated without including any inward velocities.

Clump v̄r Erat Erat2 Ep
[kms−1] [erg]

beginning
Alpha −0.45 3.4 18.8 1.26× 10−47

Beta −0.62 0.8 4.6 8.64× 10−46

Gamma −0.44 1.8 11.1 1.08× 10−47

end
Alpha −1.62 1.09 3.0 4.78× 10−47

Beta −1.16 0.57 3.0 2.49× 10−47

Gamma −0.19 1.61 4.5 2.64× 10−47
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Although this is a simplistic definition, it is preferred to a clump-finding approach for several

reasons. Firstly, the boundaries found from clump-finding are extremely subjective (Smith

et al., 2008; Kainulainen et al., 2009) and secondly, defining an absolute spatial scale allows

an unambiguous comparison of the physical properties of the studied regions. These ‘clumps’

are labeled, Alpha, Beta and Gamma and Table 7.2 shows their properties.

The mass in the clumps is high in all cases. This is partly due to the decision to use a large

clump radius, so that the analysis is not complicated by additional mass entering the region

at later times, but also due to the requirement that to form a large cluster you need a lot of

mass. A 2D projected measurement increases the clump masses by 50− 100% compared to

the 3D case due to contamination from along the line of sight. This highlights the problems

of determining masses from only 2D information. In every case the mean gas density in the

clumps increases with time due to collapse. The most massive sink is formed in clump Alpha

despite the fact that it is not the most massive clump. However this clump does contain the

largest total mass in sinks and has the deepest potential well.

Table 7.3 outlines the in-fall velocities and binding energies of the clumps at the beginning

and end of the simulation. All of the studied regions exhibit significant supersonic in-fall

motions, with the exception of clump Gamma at the end of the simulation, which is roughly

sonic, (c ≈ 0.2 kms−1). This is in agreement with the observation of Motte et al. (2007) that

rapid supersonic inward motions are required to enhance clump densities to the values seen in

massive proto-stellar cores. Typical in-fall here is a few times the sound speed, which equates

to lifetimes of the order of a million years.

The relative binding of the clumps provides an explanation for the location of the most

massive sinks. At the beginning of the analysis; clump Alpha is bound (it has 3.4 times more

gravitational potential energy that kinetic and thermal energy), clump Beta appears unbound,

and clump Gamma is bound (it 1.8 times more potential energy than kinetic and thermal

energy). The binding decreases at the end of the studied period due to the large increase in

kinetic energy from randomised gas motions during the collapse process, and heating from

the sinks. It is surprising that clump Beta appears unbound, yet is collapsing. This was due

to the absolute magnitude of the gas velocities being used to calculate the kinetic energy,

despite the fact that in-fall velocities are not supportive. To address this a second energy

ratio, Erat2, was calculated where the inward velocities were excluded (Vazques-Semadeni,
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private communication). Using this measure of binding all of the clumps are significantly

bound, particularly clump Alpha (which contains the largest sink) which is now 18.8 times

over-bound at the beginning of the studied period.

When the magnitude of the potential energy of the clumps is considered directly it is

seen that once again Clump Alpha has the greatest potential, followed by Gamma and then

Beta. This is the same order as the clumps which contain the most massive sinks, and for the

clumps with the greatest total mass in sinks. This suggests that the star formation process

is most efficient where the potential energy of the clump as a whole is highest, and this is

reflected both in the efficiency of forming a stellar cluster and in the efficiency of forming a

massive star. This provides a natural explanation for the link between total stellar mass and

the most massive star outlined in Bonnell et al. (2004).

In Figures 7.1, 7.2, & 7.3, the column density of gas within the clumps is shown at three

snapshots in their evolution. For clarity, sink particles denoting sites of star formation are

not shown. The central region of clump Alpha is shown in Figure 7.1 at 0.75, 1, and 1.25

dynamical times (td yn = 4.7× 105 yrs). It has a filamentary geometry and the self gravity of

the ends of the filament is strong enough for them to collapse independently. However, both

objects have inward velocities and are collapsing towards the centre. Notice how the later

structure is less filamentary and contains less substructure. Each of the large condensations

along the filament is forming at least one substantial star and could perhaps be thought of

as a proto-stellar massive star forming core, however as shall be discuss later, there are also

smaller cores within them, forming lower mass stars.

Figures 7.2 and 7.3, show the central region of clumps Beta and Gamma. These clumps

have been formed by several shock fronts intersecting to form a region of high density. Again,

over time the extended structure collapses to form a more compact object. The density peaks,

where the stars are forming, are carried along with this collapse. In effect the clump is formed

at the same time as the stars are formed. As before, the clump evolves from a diffuse filamen-

tary distribution to a more centrally condensed distribution.

To describe more quantitatively the evolution of the clumps as a whole, two quantities

are calculated from the full 3D data at each simulated time-step. Firstly, the absolute mass

contained within a parsec radius of the most massive sink particle is recorded. Secondly, the
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Figure 7.1: The evolution of the centre of clump Alpha top. The snapshots shown are at left 0.75 td yn
(3.53× 105 yrs), middle 1 td yn (∼ 4.7× 105 yrs) and right 1.25 td yn (5.9× 105 yrs) respectively. The
colour scale denotes column densities from 0.05 g cm−2 to 5 g cm−2. The structure becomes more
compact with time, and decreases in substructure.
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Figure 7.2: The evolution of the centre of clump Beta middle. The snapshots shown are at left 0.75
td yn (3.53× 105 yrs), middle 1 td yn (∼ 4.7× 105 yrs) and right 1.25 td yn (5.9× 105 yrs) respectively.
The colour scale denotes column densities from 0.05 g cm−2 to 5 g cm−2. The structure becomes more
compact with time.
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Figure 7.3: The evolution of the centre of clump Gamma bottom. The snapshots shown are at left 0.75
td yn (3.53× 105 yrs), middle 1 td yn (∼ 4.7× 105 yrs) and right 1.25 td yn (5.9× 105 yrs) respectively.
The colour scale denotes column densities from 0.05 g cm−2 to 5 g cm−2. The structure becomes more
compact with time.
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dispersion of the surrounding mass is calculated using,

σ(r)3D =

È

∑

mi(ri − r̄)2
∑

mi
(7.2)

where mi is the mass of the i’th SPH particle, and ri − r̄ is its distance from the central

sink. Both gas masses and sink masses are included in this calculation. Figure 7.4 shows

the results. The mass in the locality of the massive sinks generally increases with time. The

exception to this was clump Beta where not all of the mass entering the region was bound and

some escaped again. Moreover, the continuously decreasing dispersions show that the clump

is collapsing and therefore continually channeling mass inwards.

Krumholz & McKee (2008) found that a minimum gas column density of 1 gcm−2 was

required for there to be sufficient feedback to avoid fragmentation and form a massive star.

In Figure 7.1 all regions coloured in yellow have column densities above 1 gcm−2, and this is

where the majority of star formation is taking place. To illustrate this further, in Figure 7.5

the column density around the most massive sink in each clump is traced with time.

The column density around the central sink is calculated within a 0.15 pc box, which is

taken as a reasonably typical size for a massive proto-stellar core. The column densities are

calculated from material within the 3D clump radius, as anything outwith this region cannot

be affected by the forming star. However, as shown in Table 7.2 contamination from material

along the line of sight could increase these values by up to a factor of two. On the same plot

as the column density the growth of the central sink is shown. In all cases it increases to

form a massive star. The column densities surrounding the sinks are consistently above the 1

gcm−2 limit in the calculated region. However, the average column density of the clump as a

whole is an order of magnitude below this value. Although the column density surrounding

the star was above the threshold proposed by Krumholz, in Section 7.4.2 it will be shown

that the massive stars were not formed from a single massive thermally supported fragment,

but instead from a smaller core which accreted additional material channeled towards it by

the potential of the forming stellar cluster. The high column densities, in this instance, seem

mainly an indication of there being a large gas reservoir available for accretion.
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Figure 7.4: The global properties of the mass within 1 pc of the most massive sink for clumps Alpha
(solid line), Beta (dotted line) and Gamma (dashed line) . Top, the total mass and bottom, the mass
weighted dispersion of matter plotted against the simulation dynamical time (td yn ∼ 4.7× 105 yrs).
The clump mass increases with time and becomes more concentrated.
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Figure 7.5: The masses and column densities around the central sink in clumps Alpha top, Beta middle
and Gamma bottom plotted against the simulation dynamical time ( td yn ∼ 4.7×105 yrs). The dashed
line shows the sink mass and the solid line the column density calculated in a 0.15 pc box centered on
the sink. 114
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7.3.2 Observable Properties

The above analysis uses the full 3D data-set. However, a better comparison to observations

can be made by generating and analysing synthetic dust continuum emission images. To

create an observers’ version of Figure 7.4 the simulated data is interpolated (including all

material along the column) to a 2D grid of 66×66 grid cells, with a spatial resolution of 0.03

pc, comparable to recent observations (e.g. Zhang et al., 2009; Longmore, 2009). The flux is

then calculated from each grid cell using the relationship

F(ν) =
∑

i=1,n

mi gκνBν(Ti)
d2 (7.3)

where F(ν) is the flux in Jy, mi is the mass of the SPH particle, g is the dust to gas ratio, κν is

the dust opacity, Bν is the intrinsic emission of the SPH particle at temperature Ti according to

the Planck equation and d is the distance at which the cloud is observed. The standard value

of 0.01 is taken for the dust to gas ratio (Kauffmann et al., 2008) and a value of 0.1 m2/kg

for the dust opacity (Ossenkopf & Henning, 1994). The flux is calculated at a frequency of

230 GHz (1.3 mm) and distance of 5 kpc but these values do not affect the dispersion trends

discussed below. Emission directly from sink particles is neglected, but they still contribute to

their surrounding gas particles emission due to the heating described in Section 7.2. Figure

7.6 shows the emission in mJy from Clump Alpha at early and late times. The emission

increases with time, particularly in the centre of the clump where the massive star is forming.

As before, a dispersion is calculated from the grid cells weighted by emission as shown in

Eq. 7.4.

σ2D(r) =

È

∑

ξi(ri − r̄)2
∑

ξi
(7.4)

where ξi is the emission from the grid cell i, and ri− r̄ is the distance from the grid cell where

the largest sink is located. Figure 7.7 shows the total emission and dispersion of the clumps

with time.

The total emission from the clumps roughly doubles over the time considered here (2.35×

105 yrs). This is partially due to the increased mass of the clumps, but also due to increased

emission from warmer dense gas where star formation is occurring. As in the three dimen-

sional case a decreasing trend is seen in the dispersion. However, it is slightly less marked in

emission due to the decreased resolution and the fact that only collapse along one plane is
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Figure 7.6: The dust continuum emission at 230 GHz from clump Alpha at top 0.75 td yn (3.53× 105

yrs), and bottom 1.25 td yn (5.9×105 yrs). The colour scale denotes emission from 0.5 mJy (dark blue)
to 500 mJy (yellow). As the clump becomes more evolved the emission from its centre, where the
massive stars are forming, increases.
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Figure 7.7: The observable properties of the mass within 1 pc of the most massive sink calculated
from a 2D grid with a size resolution of 0.03 pc, plotted against the simulation dynamical time (td yn
∼ 4.7× 105 yrs). The clumps are denoted by the following lines; Alpha (solid line), Beta (dotted line)
and Gamma (dashed line). The panels show: top, the total emission from the clump and bottom, the
emission weighted dispersion.
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visible.

7.3.3 Direct Comparison to Observations

Now the evolution of molecular gas structure predicted above shall be directly compared to

observations. This section was principally carried out by Steven Longmore.

Longmore et. al 2009 (L09) recently observed 6 massive star formation regions at 3 dif-

ferent evolutionary stages prior to UCHII region formation using the Submillimeter Array at

230GHz to image the thermal dust continuum emission. They found the dust continuum emis-

sion to be weaker and more spatially extended at early stages and becoming more centrally

concentrated with time. As the global properties of the L09 regions are similar to those of

Alpha, Beta and Gamma, this dataset offers an excellent opportunity for comparison with the

simulations.

The synthetic flux image was generated from the numerical simulation in the same way

described above. To take account of the spatial filtering inherent in the interferometric obser-

vations, the simulated image was then sampled with the same uv-coverage as the L09 obser-

vations. The resulting synthetic 230GHz flux distributions towards Alpha, Beta and Gamma

(at the same time steps as Figure 7.1) are shown in Figures 7.8, 7.9 and 7.10.

The difference in source structure compared to Figures 7.1, 7.2 and 7.3 is striking. All of

the largest scale extended emission has been filtered-out and the images are instead domi-

nated by the regions of highest density contrast. The much coarser resolution cannot distin-

guish most of the fine detail, which is instead convolved into a smaller number of unresolved

or partially-resolved sources.

The flux scale in each image, in units of Jy, is given by the colour bar. In all three regions

the emission is a lot weaker at earlier times as the gas is more dispersed and cooler. Sig-

nificantly more structure is seen at these earlier times down to the L09 sensitivity limit (∼1

mJy) However, sensitivity is clearly an issue here – more shallow observations would miss the

weaker sources.

The contours in Figure 7.8 show the flux levels in the images in 10% steps of the peak

value. In all three regions, at early times the many sources in the field have similar flux

densities. As the clump collapses its density decreases in its outer regions and increases at its

centre. Moreover, the collapse feeds massive star formation at the centre of the clump, which
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Figure 7.8: Simulated interferometry observations of clump Alpha top at the same time intervals as
shown in Figure 7.1.
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Figure 7.9: Simulated interferometry observations of clump Beta middle at the same time intervals as
shown in Figure 7.2.
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Figure 7.10: Simulated interferometry observations of clump Gamma bottom at the same time inter-
vals as shown in Figure 7.3.
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heats the surrounding gas. This leads to the emission becoming dominated by one or two

sources which are significantly hotter/denser than the surrounding cores. In real observations

this may lead to dynamic range problems – typical submm and mm interferometer images are

limited to dynamic ranges of few hundred at best.

7.4 Discussion

7.4.1 Collapse and Accretion

The evolution of the stellar cluster and the massive stars are intrinsically linked by the overall

cluster potential and the accretion it induces. As the clump of gas evolves towards a stellar

cluster it goes through several evolutionary stages. First, the clump becomes bound due

to dissipation of turbulent energy, and the density enhancements within it begin to form

bound cores. Secondly, as the clump becomes over-bound it undergoes global collapse which

channels mass towards its centre, creating a large reservoir of gas. Thirdly, this gas will be

accreted by the proto-stars with the largest accretion radii. Bonnell et al. (2001) showed

that for a collapsing system where the gas velocities and proto-stellar velocities are similar,

the tidal radius is the most appropriate accretion radius. From analogy with the Roche Lobe

formalism the tidal radius is,

Racc = Ct idal

�

M∗
Menc

�1/3

r∗ (7.5)

where M∗ is the stellar mass, Menc is the mass enclosed within the cluster at the star’s position

r∗ and C = 0.5 from the Roche Lobe approximation (Eggleton, 1983). This gives a mass

accretion rate of

Ṁ∗ ≈ πρvrelR
2
acc (7.6)

where Ṁ∗ is the accretion rate and vrel is the relative velocity between the proto-star and the

gas. So the most massive star in a region is the most effective at gaining additional mass.

There is also an additional boost to the accretion rate of the massive stars at the centre of the

cluster from the enhancement of the local density by global in-fall.

The above analysis considers the initial evolution of the cluster when the gas and stellar

velocities are well correlated. However, once the cluster becomes virialised and the gas and

stellar velocities are no longer correlated, the massive stars will become even more efficient
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Figure 7.11: The connection between clumps and sink masses during accretion. Top the growth in sink
mass over a period of 0.25 td yn plotted against the average potential in code units of the mass within
a pc radius of the sink. The sinks in the deepest potential well grow the most significantly. Bottom the
mass in sinks within regions Alpha solid line, Beta dotted line and Gamma dashed line plotted against
their dispersion. The mass in sinks grows as the clump becomes more concentrated.
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accretors (Zinnecker, 1982; Bonnell et al., 2001).

Figure 7.11 illustrates the connection between the clump collapse and accretion in the

simulation. The top panel shows the growth in sink mass over a period of 0.25 td yn (td yn

∼ 4.7 × 105 yrs) plotted against the average eventual gravitational potential of the mass

within a parsec radius of the most massive sink. Clump Alpha can be seen as a horizontal line

of equi-potential along the top of the graph. The greatest growth in sink mass occurs in clump

Alpha which has the deepest potential well. The greater potential shows that more mass has

been concentrated in the centre, which acts to focus additional mass towards the massive

sinks. This effect is not just due to limited numbers: there are 99 sinks whose environment

has an average potential above 550 code units and 157 below this value, but the three sinks

which grow the most are all contained in the upper subset. This shows that the mass of the

massive stars are linked to their environment. It is also worth noting that most of the stars

in clump Alpha do remain as low-mass objects, and that these constitute the bulk of the stars

within the stellar cluster formed from this clump.

The bottom panel of Figure 7.11 shows the total mass converted to sink particles in the

three clumps plotted against their dispersion. The total mass in sinks increases as the clumps

become more concentrated. In other words, the clump contracts and changes its distribution

as it forms a stellar cluster. This evolution happens simultaneously with the evolution of the

massive stars and affects their accretion.

7.4.2 Clump-Core Interaction

Let us next consider how the clump and cores interact during global collapse. Chapter 6

demonstrated that the mass function of bound cores was indeed similar to the IMF, but the

mapping between individual cores and their final stellar mass was poor. It was concluded that

this was mainly due to environmental factors. To investigate this further in Figure 7.12, the

fate of the mass within clump Alpha is shown at 1td yn. Clump Alpha is used for illustration

here as it has the simplest structure and contains the most massive sinks. The figure is colour

coded to indicate the eventual fate of all the SPH mass particles at the end of the simulation.

Green material will be accreted by the central massive sink (red dot). Black dots show the

position of other sinks and blue regions show the location of material in gas cores. The cores

are the ‘p-cores’ introduced in Chapter 4. In figure 7.12 the blue cores will contain a black dot

denoting a sink if they are proto-stellar, a hollow black dot if they are pre-stellar, and none if
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Figure 7.12: The final fate of the mass within clump Alpha shown at 1 td yn. The green dots show the
positions of gas which will eventually be accreted by the massive sink (red dot). Black dots show the
position of sinks and blue dots show the location of material in cores. The gas which will be accreted
by the massive sinks is well distributed throughout the clumps, and generally cores within this region
will not be disrupted by the massive sink.

they are unbound.

The gas which will be accreted by the massive sink is well distributed throughout the

clump, and it comes from a larger area than the typical size of a p-core. The p-cores sit within

the volume from which mass will be accreted by the central massive sink, but are largely

unaffected by this. Only the proto-stellar core directly to the left of the massive central sink

gets disrupted due to heating. Additionally, an unbound core above the massive sinks is also

destroyed and then accreted by the central sink before it can become bound. To illustrate why

most of the low mass proto-stellar cores are unaffected by accretion from the central sink,

their respective densities are plotted in Figure 7.13.

The top panel of Figure 7.13 shows at td yn = 1, the densities of SPH particles which will
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Figure 7.13: Top The density distribution of the material which will be accreted by the central sink in
clump A (green), compared to that of the material in cores at td yn = 1 (blue). Bottom The cumulative
density distribution of the entire clump (solid), material which will be accreted by the central sink
(long dashed) and material in cores (short dashed). The masses have been normalised to magnitude
one, to ease comparison. The material identified in cores contains mainly high density gas, whereas
the material which will be accreted by the central sink contains significant amounts of low density gas.
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later be accreted by the central sink in green, and the densities of the particles in cores in blue.

The accreted material extends to low densities, whereas the gas in cores is confined to higher

densities. As the free fall time of the gas is proportional to density as t f f ∝ ρ−1/2, the cores

have short dynamical times and can collapse before they can be accreted. The lower density

gas between the cores has a longer free fall time and therefore can be accreted by the central

sink. This can be seen in the way that the density of accreted gas decreases with distance from

the massive sink, as it needs to have a longer free fall time in order to successfully reach the

sink.

The bottom panel of Figure 7.13 shows the gas density plotted against cumulative mass

for clump Alpha as a whole, the accreted material, and the cores. The material in cores has

characteristic densities, ρc ∼ 10−17 gcm−3, the accreted material has ρc ∼ 10−18 gcm−3, and

the clump as a whole has ρc ∼ 10−19 gcm−3. Once again, this shows that the accreted material

has a wider initial density distribution range than the cores. It also shows that if the respective

distributions were observed above a density threshold, the mass available for accretion would

be underestimated. For instance, over 20% of the mass accreted by the central sink has a

density below the minimum seen in cores.

A major difference between this and other models of high mass star formation is that

within a typical massive star forming clump, there are smaller proto-stellar cores forming low

mass stars close to where the high mass star is forming (r < 0.15 pc), and within the region

which it accretes from. This would be most apparent at early times in the evolution of the

clump when it is still diffuse, before the cores have become concentrated at the centre, and

the emission becomes dominated by the central source.

7.4.3 Massive Star Progenitors

When the original progenitor of the massive sink was searched for using the p-core routine, it

was found to be a bound core containing 0.67 M�. This is very close to the mean bound p-core

mass of 0.7 M�, and is an order of magnitude lower than the final mass of 29.2 M� the sink

achieved by the end of the simulation. Similarly, for the other clumps studied here, their most

massive sinks are found to originate from intermediate-mass pre-stellar cores which become

massive proto-stars via accretion. Therefore, the mass which forms the massive star comes

mainly from the larger clump, rather than from a well defined massive pre-stellar core. In this

scenario initially there is a low-to-intermediate pre-stellar core at the centre of the potential
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which grows to a massive condensation (YSO) as the clump collapses. It does not matter if

smaller fragments form around this object, as the evolving clump continues to channel mass

towards it.

7.5 Conclusions

I have carried out SPH simulations of a giant molecular cloud with a simplified radiative

feedback model. From this simulation three gas clumps of radius 1 pc were identified which

are the progenitors of stellar clusters. It was found that the formation of a stellar cluster

occurs simultaneously with massive star formation. The evolution of the two are therefore

intrinsically linked. This leads to the following predictions.

1. Massive clump structure is originally diffuse and filamentary, but evolves into a more

concentrated structure by means of gravitational contraction.

2. The models presented here are in good agreement to the interferometry observations of

Longmore et al. (in preparation). Simulated interferometry images show more structure

at early times, and less at later times when the emission is dominated by hot, dense

central sources.

3. Both the most massive stars and the most massive stellar cluster are formed within the

most bound clump. This is despite it being the least massive of the three clumps studied.

4. The gravitational potential of the gas clumps causes global collapse, which continuously

channels mass from large radii towards the centre of the cluster, where it is accreted by

the progenitors of the massive stars.

5. The original pre-stellar core of the most massive sink formed was only of intermediate

mass. Most of the mass which goes into the sink originally came from the less dense

clump gas between the surrounding low mass cores.
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Since the local observations of Salpeter (1955), it has been found that the initial mass distri-

bution of newly formed stars has a characteristic profile (Kroupa, 2002). Thus, explaining the

origins of the initial mass function is a key requirement of any theory of star formation. The

observations of Motte et al. (1998), that the mass function of cores of gas within molecular

clouds also exhibits this profile, has lead to suggestions (eg. Alves et al., 2007) that there

might be a direct correspondence between core masses and the stellar masses formed from

them. Stars are formed in cores due to their high densities and low Jeans masses, however to

what extent their masses correlate is unknown.

One of the first difficulties is simply defining a core, as unlike stars, they are not discrete

objects, but instead join smoothly on to a continuous hierarchy of structure within a molecular

cloud. Core boundary definitions, and therefore their masses, are at least to some extent arbi-

trary as they are influenced by effects such as resolution, noise, orientation and the properties

of the observable used to trace them. This makes it difficult to clearly link the properties of

cores and stellar systems. Moreover, while a core is collapsing to form a stellar system it is
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still evolving within a larger clump of gas where other stars are forming. The forming star

may be influenced by this environment through dynamic interactions or competitive accretion

(Bonnell et al., 2004).

A further problem in forming stars entirely from well defined cores with no outside influ-

ences is the difficulty of forming massive stars. Massive core are liable to further fragmen-

tation, which would instead form several smaller stars instead of one massive star. It has

been contended that support from turbulence (McKee & Tan, 2003), or radiative feedback

(Krumholz, 2006) may prevent fragmentation, although simulations by Dobbs et al. (2005)

have thrown doubt on this.

In this thesis the link between the earliest fragmentation in molecular clouds and the stars

formed from them has been probed through SPH simulations of molecular clouds. By using

large scale simulation we are able to study star formation across all the masses seen in the

IMF, and to study the interactions of the first bound cores with their larger environments.

In addition to using the standard CLUMPFIND method (Williams et al., 1994) which has

been modified for SPH data by Paul Clark, a new method of clump-finding using gravitational

potential was introduced. This allowed gravitational potential wells to be found, and bound

structures to be identified with respect to their environments. The major results from this

thesis will now be outlined below.

8.1 The Universality of the Clump Mass Function

In Chapter 5 the clump-finding algorithm was tested to determine how consistent the results

were when applied to differing data-sets and at differing resolutions. By using a simulation

of a star-forming region in a molecular cloud as a standard reference, it was shown that the

emergence of a clump mass function resembling the stellar initial mass function is a ubiquitous

feature of molecular cloud structure. Three different techniques were used to extract the

clumps used for this comparison. In the first two, the SPH particle data was interpolated to 2

and 3 dimensional grids before performing the clump-find, using position-position (PP) and

position-position-velocity (PPV) information respectively. In the third technique, the clump-

finding is performed on the SPH data directly, making use of the full 3 dimensional position

information. Although the CMF is typically similar to that observed in regions of nearby

star formation, the individual clumps and their masses are found to be unreliable since they
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depend strongly on the parameters and the method of the clump-finding. In particular it

was found that the resolution and orientation of the data make a significant difference to

the resulting properties of the identified clumps in the PP and PPV cases. In conclusion,

comparisons between a CMF and the stellar IMF should be made with caution, since the

definition of a clump boundary, and hence the number of clumps and their properties, are

arbitrary in the extraction method. This is especially true if molecular clouds are truly scale

free.

8.2 The Earliest Fragmentation in Molecular Clouds

Having ascertained that core boundaries are unreliable, the next step was to determine a more

consistent and reliable method of identifying cores. As outlined in Chapter 4, a clumpfind

using gravitational potential instead of density has several advantages. Gravitational potential

has a smoother distribution and clearer boundaries than density. Additionally, the depth of

the identified potential well gives an indication of future collapse, as bound potential cores

(p-cores) represent the earliest stages of fragmentation in molecular clouds.

In Chapter 6 the potential clump-finding routine was used to identify star-forming gas

cores in an SPH simulation of a Giant Molecular Cloud. It was found that the mass function

of the p-cores genuinely resembles the stellar IMF and the observed clump mass function,

although p-core masses (∼ 0.7 M�) are smaller than typical density cores. The bound p-cores

are generally subsonic, have internal substructure, and are only quasi-spherical. There was

no evidence of massive bound cores supported by turbulence. The evolution of the p-cores

was traced forward in time which enabled the connection between the original p-core mass

and the stellar mass that formed from it to be investigated. Although there was a trend of

increasing stellar mass with core mass, the correlation was poor and there was considerable

scatter. This suggests that accretion onto the forming proto-star is dependent on more factors

than just the initial core mass. During the accretion process the p-cores accrete from beyond

the region first bound, highlighting the importance of the core environment to its subsequent

evolution.
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8.3 Massive Stars and Stellar Clusters

Finally in Chapter 7 the role of accretion onto cores from their environment was studied

in more detail. As no massive pre-stellar cores were found in Chapter 6 this is particularly

relevant for massive star formation. Using the same simulation as in the previous chapter

it was shown that massive stars and stellar clusters are formed simultaneously, and it is the

global evolution of the forming cluster that allows the central stars to become massive.

It is predicted that massive star forming clumps, such as those observed in Motte et al.

(2007), contract and grow in mass, leading to the formation of both stellar clusters and

massive stars. This occurs as mass is continually channeled from large radii onto the central

proto-stars, which can become massive through accretion. In the simulated GMC, clumps are

initially diffuse and filamentary, and become more concentrated as they collapse. Simulated

interferometry observations of the clumps provide an explanation as to why young massive

star forming regions show more substructure than older ones. The most massive stars in the

simulation are found within the most bound cluster. Most of the mass accreted by the massive

stars was originally distributed throughout the clump at low densities, and was later funneled

to the star due to global in-fall. Even with radiative feedback no massive pre-stellar cores

were formed. The original cores were of intermediate mass and gain their additional mass in

the proto-stellar stage. It was also found that cores which form low mass stars exist within

the volume from which the high mass stars accrete, but are largely unaffected by this process.

8.4 Summary

In summary, observed core boundaries can be arbitrary and great care should be used when

deducing core masses. However the underlying mass function of bound cores in our simu-

lations did resemble the IMF. The first bound fragments identified were subsonic and have

masses similar to stellar masses. These fragments collapsed to form stars. The connection

between the cores and the stellar systems formed from them is complex and depends in part

on the environment of the core. Although there was a trend for increasingly massive cores

to form more massive stars, for individual cores there was too much variability to predict the

mass of the stellar system formed. The role of accretion from the environment was partic-

ularly significant for the formation of massive stars. In this case, the global collapse of the

surrounding clump directly affects the evolution of the massive star. The overall binding of
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the larger clump as a whole appeared to increase efficiency of the star formation as regards

both the number of stars formed and the most massive stars formed.

In conclusion there is a connection between the IMF and the core mass function. However,

in the dynamic clustered environment of molecular clouds, this connection cannot be solely

determined from the original core mass. The cores will indeed collapse to form stars, but

there is often an additional contribution to the stellar masses from subsequent accretion after

the initial core has become bound. Therefore the stellar masses formed from cores depends

both on the initial core mass and the surrounding environment of the core.
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