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Abstract

The production of accoustical noise in stellar convection

zones is shown to give rise to stellar coronas, stellar winds

and U-V radiation. Moreover it is found that the detailed

structure of the outer atmospheres of stars is completely

determined by this noiseflux and that it consequently can be

predicted for not too luminous stars of late spectral class.
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Se~tion 1. Introduction

During the last 20 years the existence of a corona, that is,

of an extended dilute atmosphere of high teII!-f'eratureoverlying

the "normal" atmosphere of the sun has been well established.

However? until recently it was not very ale,r to what extent

stars other than the sun possess extended atmospheres of a similar

nature. This is somewhat surprising as the internal structu;re of

stars is fairly well known as a function of luminosity and

spectral class? and since moreover, quite early the correct

mechanism responsible for the appearance of the corona was

pointed out.

Qualitatively, the process is as follows: In the large

turbulent convection zones of cool. not very luminous stars.

accoustical noise is produced which represents at that level in

the star only a minute fraction of the total energy contained in

radiation and convective mass motion.

This sound energy travels outward into regions of lower

and lower density. By the time the atmosphere becomes optically

thiT4 all energy in the mass motion is converted into radiation,
while the sound energy is carried by the particles of a more and

more dilute gas.* Thus. the amplitude of the waves grow, until

shock waves appear and a sudden conversion of sound energy into

heat occurs.

*The exact nature of this conversion process including the so-
called problem of overshooting [92J does not conoern us here.



2

It is the purpose of this investigation to relate the

energetic behavior of the convection zones to the structure of, ,

the outer atmospheres. The information required for this endeavor

is available for the sun to a quite satisfactory degree. However!

even Ln the stelle,1'oases th~o1'et,ioaldata pr-ovdded by Bbhm-,

Vitense [16] and(others are sufficient to predict the transition

from the photospheric to the aoronal layers. It is nevertheless

obvious that the sun serves as the primary test case for this

type of work.

Previous models of the outer solar atmosphere have been based
. 1_

largely on the interpretation of observed data, such as the flash

s~ectruml the radio frequency and ultraviolet speatrum~ and the

like, thus relating the model atmosphere to the lower boundary!

or on the observed solar wind which ties the model to the boundary

behavior at Lnf LnLby ,

Computations of the type envisaged here have been carried

out for the sun by Bird, Uchida, and others, and most recently by

Kuperus who also treated the case of stellar ooronaso The primary

difficulty in this approach is the determination of the exact,
balanoe among the various energy terms, in particular, the shock

dissipation, the radiative losses, the heat conduction, and the

stellar wind flowo Thus~ it presupposes a quite detailed knowledge

of a variety of phenomena~ in particularg the ones related to the

passage of a shock through an atmosphere with variable densityo

In addition3the presence of radiation terms requires a certain

degree of a-priori-information on the structure of the layers
I '

involved, and the availability of such quantities as the emission
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coefficients for plasmas departing from 'thermodynamic equf.Li.br'Lum,

It is clear that this investigation is only one step further

on the way to a quantitative understanding of outer stellar

atmospheres. On the positive sids we can say that we applied a

more genera]. th9c~y c: Sh0::k b~ha;,:r.io~ i and that we +hus were able

to include i.n the energy baLance dissipation 9 z-adi.at Lon , conduction ~

and flow termso On the negative side~ we have left out viscosity

which is probably of minor importance~ but more significantly.

we left out magnetic fields. The reasoning in that respeot was

that for the sun magnetic fields are not the dominant f ea+ur-e

outside of areas of activityo* Finally, the atmospheres were

treated as homogeneous, so that for instanoe the spioule structure

of the solar atmosphere that determines many of the observational

features, such as the Bheight of the ohromosphere," is lost.
f

We begin by a detailed di~oussion of the fundamental set of

hydrodynamic equations, on which our shock theory is based. After

deriving th.e theoretical relations that determine the energy

balance across the outer atmosphere we introduoe the numerical

procedures and the computer program. Results were obtained for
the sun and .3 stars of luminoSity classes III~ V~ and comp:rise~

in particular? the radial variation of electron temperature, gas

pressure, and stellar wind velocity.

* /This can be seen from arguments, given by Alfven [5. Eq. (26),
p. 95]. If, as is true at least for the upper photosphere in
regions with no activity, the magnetic field lines, the direction
of wavepropagation and the direction of the gas flow are all .
directed vertica.lly, no energy is fed into magnetio field
disturbances. Thus, no magnetohydrodynamic waves are generated.
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Section 20 Flow and Pressure Equations

The behavior of a non-viscous fluid streaming with a velocity
...
u can be described by the following equations [58, po 3]8

Eqn" of Continuity·

...•
'\10p'1.:l. "" 0 • (2-1)

Eqn. of Motion~

...
~~_+ (~ ° '\1) 1i '" 1 /\

= P '7p ~ gx

Eqn. of Entropy Conservation~

--+ oS I+ uo'\/S = ~t .
U ext

...•
These three equations determine the five state functions, u

(fluid velocity), p (density)? p (pressure)~ uniquely if we specify

the respective boundary conditions. S is the entroPY9 ~~ \ext the
external entropy influx? g the gravitational acceleration v ~ a unit

vector in radial direction. t the timBo The pressure p can be
\

removed from the system by the aqna of state.

In a stationa:ry atmosphere the state functions are not

e
l
xplicit f'unctdcns of time so -t;hatwe can write in spherioal

one dimensional geometry [99]
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2g x
o 0

2x
:.:0 .

As shown in Seco 6 we can writeg

where T is the kinetic temperature, c, the sound ve Loc f ty, 'Y the

ratio of specific heats, go the gravitational acceleration at

level xo.
Defining a dimensionless variable r

x "" r.r o

where

r = xo 0

is an arbitrary reference level in the starVs atmosphere. and

introducing the flow maah number M

we obtain

d _9:MQ 2 MMe -E. + p -- + ~ ""
dr dr r o ,

o .
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Differentiating Ego (2-6) we obtain

2 d 2 02 -Hd,-VV~ ""SL, do + £, ~ = ~dr y dr 'Y dX' P '"2 dr •
I'

2(l=-yM ) 2Mc=~
r

or

2 2 yg r
_dM_""' __ M~ (J=yM ~ ~ 1,.£1. + __ 0_2. = £)
dr 2 . 2 2 dr r dr :2 2 rl=yM c c r

(2-14)

Eqo (2~14)is the well known flow equation [12J, [61J~[80J~ [19J.

Solving (2-11) for dp/dr yields

~ (2 dM = M2 dC.
2

_ go r 0) pdr ..,~ Me dr 2 dr 2
r

Eqo (2-15) is the pressure equation.

The pressure can also be computed in a di.fferent manner 0

For this purpose we recall that Eqn. (2-1) in steady state reads

-<>
Vop u ""0 •

Integrating (2-16) over a seotion of spherical volume bounded

by a cone of unit solid angle and by the radii Xo and x we find [19J

-",
U. dT 2,." pux 2= p u x000
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Using Eqs. (2=6). (2-7) we obtain

In prlno1ple, Egs. (2=18) ana (2=~~) are identicalo In

praxi1 Eqo (2-15) will be used as a check on the accuracy of the

numerical integration 0 The pressures derived from Eqso (2~18)

and (2-15) indeed agreed very wello
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Section 3. The Shock Front

After introducing in the last section the fluid equations

in a form suitable to our problem~ we now turn to the discussion

of the rela tiona tl-.atgcv ez-n the physi cal behav i our- of the gas

upon passage of a shock front.

First we have to connect the gas parameters, on both sides of

the discontinuity that represents the shock front.

Suppose the shock is given in a one dimensional flow. Then

we know tha t mass, momentum and energy have to be conserved in

the flow across the shock.

u2v2P2P2 u1v1PlPl
Region 2 Region 1

u

x

Fig. 1. One dimensional shock discontinuity

Suppose further that relative to the shock the functions of state

which describe the flow are (Vl,P1,Pl)' (v2,P2,P2) where the
subscript 1 refers to the parameters in the front of the shock

[58, p. 318J. We have

Maas f Lux s

Momentum flux:
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Energy fluxg

VI and v2 are the velocities relative to the shock, u1 and u2
relative to the lab frameo p denotes density, p pressure and H

en'bha Lpy par-gz-am , IT the sheck velooity relative to the lab frame.
r

Introducing the specific volume

v",l
p

We can write E~s. (3-1) to (3-3) in a more convenient form

.2
J

(3-7)

E~. (3-8) is the so-called shock adiabatic [58, po 320]0

At this point we ought to emphasize that the actual shock
structure in a gas is much more complicated as indicated by the

above simple relations. We can summarize a more realistic

picture [97J, [117J leaving electric and magnetic effects aside,

by distinguishing the following regions of a shock front:

1) ~xterna1 (kinetiq) Relaxation Region.
I

This region immediately follows the shock front. The

kinetic temperatures T , T., T of atoms, ions and electronsa ~ e
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respectively rise to an equal and very high value;

T ••T. ""Ta ~ a

2) Internal (ionization and excitation) Relaxation Region .•

Following kine~1C relaxation~ ~ne electrons spand their

energy in excitation and ionization; their kinetic temperature

decreases:

T < T. ~ Ta ~ a

3) Radiative Recombination Region.

Here inelastic collisions between atoms1 ions and electrons

predominate and give rise to an ionizing radiation (which may

penetrate to the front of the shock producing the precursers).

At the same time, it leads to an equalization of the kinetio

temperatures.

'r '"'" T. - Te 1 a

For our purpose of main importance is the fact that the

ratio of specific he~ts r is the same from in front of the shook
and in the front itself through the end of the kinetic relaxation

region, where ionization starts to change y. (See Section 5)

With these remarks in mind we now suppose that the specific

heats cp' Cv (per gram) depend only on the (kinetic) temperature

(cf. Eqs. (5~15) to (5=17)).
We then can write:
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H = <0 T
p

C =0
p v (3-10)

C

'It "" J. cv

where T is the temperatu.re~ R the gas constant in erg per degree K,

~ the mean moleoular weighto Hence~

(y+l)Pl + 'Cr~1)P2
rr=l)Pl + (y+l)P2 (3=12)

(3-14)

With the flow velocities u relative to the lab frame and

the sound velocity 01 of the ¥as in front of the shock we can

write the above equ.ations in terms of the shock Mach number M ,s

Ms

where

'11 - u1 = U

"2 ~ u2 = U

(3=16)

(3=17)
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As a small disturbance in region 1 travels always with velocity

01 we see that always

•
1\1 > 1s -

Thus we have as a final result [58, po 331]

2'Yl'iI
S
2

= (7~1)

1'+1
(3-20)

(3-21)

where y is now a function of the temperature.
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Section 4. Shock Equation

We are now ready to derive the relations which determine the

behavior of the shock passing through the nonuniform medium

described by the system of equations reviewed in Seotion 2

The solutions have to conform to the conservation conditions

derived in the last section which connect the parameters behind

the shock front with those of the undisturbed steady state flow

in front of the shock.

There are three different methods in the literature. to find

the development of the shock Mach number M during the passages '

of the front through the mediumo

1) The approach developed by Brinkley and Kirkwood [17J for

underwater and atomic- explosions. Here a shock of arb;i.trary

strEW-gth is considered, and use is made of the "principle

of shape similarity Lnvar-Lanc e" which is based essentially

on experimental results.

This approach has been adopted by Sohatzmann [93],

Weymann [115] and Osterbro~k [76J to the solar atmosphere
for small shock Mach numbers.

2) The approach treating shoc~s as the result of the devel<;>pment

of large amplitude sound waves which has been given by Landau

and Lifshitz [58, p. 372Jo
This approach was adopted by Kuperus (54]to stellar

coronas, again for small shock Mach numberso

3) The approach based on the theory for shock tube experiments

that was developed by Whitham [116J and Bird [11J.[12J~[14J
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and adopted by Bird [13J,[14J to the solar atmosphere for

arbit;:a~y shock Mach numbers.

We shall follow in our discussion Bird~s treatment, however

expand it to include the variability of y and include the

influence of dissipation te~ms on the shQok Ma~h number as

suggested by methods 1) and 2). We shall subsequently show that

our treatment reduces to the above methods in their proper

domain of validity.

a) Shock equation without dissipation.

First, let us modify Birdis treatment to account for a

variable y, but still withou~ dissipation term.

All unsteady flow processes have one characteristic property

in common. A disturbance at a point P of the x,t plane can be

felt at a later instant only within a limited region, the so-called

region of influence, bounded by the two characteristics C+, G=
that ar~defined respectively by the equations [72J

t

dx ±~ u cdt (4~1)

dt = u+c
c+ dx

x

Fig. 20 Distance~time plot of a gas flow
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d:x/dt is theveloci ty of a disturbance 9 u the flow ve Locd.ty ,

o the sound velocity as before.

The 3 eg,uations of continuity~ of momentum and energy

conservation conne cf the 3 state functions p p p , u at the poLnt Q

with tbose at: "i;r.,e po i.n+ 00_ But; u.nd.Ar no ct.rcnma+ances can they

connec;t the state functions at Q with those at Q",as Q" is outside

the region of influencBo

Indeed P could be the seat of a discontinuity» and if the

discontinuity propagates with velocity 09 as for instance is the

case with weak discontinuities or very weak shocks» the state

functions would jump discontinuously at QI!!when we cross from Q
to Q!V. At the point Q,m our time and space derivatives have to

behave therefore in suoh a way that all derivativBs aoross C+
vanish.

In a gravitating atmospbere of spherical symmetry with

outward mass flow we can write the basic equations in the form~

(See See 0 2)

Eq. of Continuity

(4=2)

Eq. of Motion.

Adiabatic eqs*

*The use of this equation behind the shoak front is somewhat proble-
ma td.o , The huge increase in en+r-o py by the disoontinui ty is
followed by an entropy loss due to recombination radiation. (cant.)
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(4=4)

Again u is the flow velocity and xo' go are defined like in

section 20

we get

and with the definition of the s01J.ndvelocity

where the sign is vali& in (4=5) and (4=6) if we are on

The characteristic equati.ons (4=5)? (4=6) exhibit that there
4-are only derivatives along the respective characteristics C' ~ ~=

vizo

(4=7)

To show how these equations are applied in deriving the shock

equation we consider the case of a shock generated by a"piston

However this loss is small if the pressure and thu.s the t,emperature
drops very rapidly to the equilli b:rium va Lue 0 Whether this drop
is indeed suffiaiently rapid could only be asoertained by a
d.etailed investigation of the ionization relaxation region which
at present appears impossible to carry out.
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moving into atube~ It is assumed that the gas is at rest in

front of the shock.

R)<Y-
x

Fig. 3. Distance-time plot of a shock wave

The charaoterist~9s c+, C- are drawn for both regions. The

slope ofC+.in region 1 is larger than the slope of the shocl,{

world line .tfiati.nd~oates the supersonic propagation of the shock

into reglCin:1.

Consider.nowa point P on the shock world line. From P

disturbances travel along C- until they get reflected on density

variations at S and St. +They travel along C to catch up with the

shock and modify it at R, RI.
These so-called re-reflected waves should be taken into

account at every point if we want to use the characteristic
equations in region 2.

The effort is greatly reduced if we neglect the effect of

the re-reflected waves altogether as has been done by Bird [llJ,

[12J and Whitham [116J. This procedure will be called BW approxi-
mation.

Bird [llJ has compared the BW approximation with exact

calculations and. found that there is very good agreement when
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shocle propagate toward lower densl,ties c We feel that the reason

for this good agreement is the far.Jt that d.Lstur-banc ea travelling

towards regions of higher density such as 'those travelling along

C= are damped out as already Lamb [j'7J has shown for an isothermal

atmosphersv

With the BW approximation we can use the characteristic

equation along C+ until it meets the shocke There the quantities

are connected across the shock with the flow in front via the

equations derived in Section 3.
We haveg

1flOe

~RU~
'IJ.

M '"'I M ~ _l (4~12)
I;l ©!l n1
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Now it is true identically that:

U1=U u1=U u1-=~-+-
(;1 01 a

or

2M 2 = 2.~

Going over to the dimensionless var~able v as in Sea. 2 we

obtain after some manipulations (cf. Appendix A)

dM '11M 2 2~ _ s {= ls.+2M-:C X.s.±.?UM L de +
(l.r - 1 M2 2 2 dl'=1 C
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where

11 Ii ,__ ~-.-i.Y+111~ .--=~
r~I((r-1)M. 2+2) + (; ~.:+l)

a

(4=18)

and.

M
o •• -L, (~"= ,~) (4-19)1+1 e(; .

Equation (4-17) is identioal with Birdls [12J result except

for the additional term proportional to ~ %; 0

Letting dc2/dr ....•0, g ...•O~ 2/r ...•O/r (plane geometry),
o

dr/dr ...•0 we see that the right hand side of Eqo (4=17) goes to

zer.o~ and as M > 1s -

dMs---..,- •..•0 •dr (4-20)

We thus have shown that Bdr-d0 s theory is a oonstant flux

theory where the energy loss by dissipation is resupplied from a

reservoir such as a piston moving with constant velocity into a

pipe, In our case where we have shocks of a given shape (triangular

shape) the energy is carried in this shape of he shook and the

shock thus becomes the smaller the more it dissipates.

This effect of modification of the shock Mach number by

dissipation is the dominant feature of the approacb by Brinkley

and Kirkwood [17J which we will discuss now.
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b) Inclusion of a dissipation term.

To oalculate the rate of dissipation of a shock we consider

a shock pulse of arbitrary shape in a gas at rest:

u "" 0

P :e" Po at p
t""t rn [)1.~ .!.a c

p p "'" Po
X

u tt; 0

p p "'" Po at p

T r=: 'It. >Tt='t'b . b 0

P p "" p <0b '0 ,
X

Figo 40 Fluid element before (top) and after (bottom) arrival
of a shock pulse.

The total work done on the small volume element at P is

ioeov we have increased the internal energy and the volume against

the pressure Poc H is the enthalpy per gram.
If D(x) is the total energy of the shook per unit area of

initial surface in our spherical geometryv then

,dDl2fl,
d..x

2
es = p Lm ~xo 2xo

where



D(x.) ~ p )1), (it
o

22

Here pressure p and flow velocity u refer to the shock profile 1

t is the time of ar~ival of th~ shook f~ont a~ the point x"
x

We can rewrite this integx"al us Lng the Hprinciple of shape

similarity invarianae" as defj.ned in Appendix B and obtain

D(x) '"
xo

Fig. 5. Triangle shook pulse

difference, ~ the time soale, ~ the form factor and

is tJ:18 maxdmum pressure difference, 11 the maximum ve Locf ty
ill

-~ f'OT" triangular eho cka2 .- -

"P.;:.for sawtooth shockj3
4

~ for exponential shooks
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wi tb.~

1 for exponential shocks

23 for triangular

·t for sawtooth

and P the period of the shook.
Now fiR is the total enthalpy ohange after the pressure has

come back to equilibrium

Using the results of Appendix C we have

or with Eqso (4-9) and (4-10)=

fiR ""T g In ¢ e=1v

From Eqso (3=9) to (5-11) we know that

(4=30)

so that
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Thus

~ ""= Pdx:
2 2

x (l In ¢ e='Y
2 ( )x: 1',1'=1o

(4=32)

2x I
D(x) """2 ()?i-l)p s c 1t ~

x
Q

where we neglected M ~ 10=1 against S ~ 1.* This neglect is

permissible in most of our applications. except close to the critical

pointo However. there almost 8,11 shock energy is dissipated

alreadyo
2 2Holding x Ix I PI c constant and differentiating only theo

terms oontributing to the dissipation term as we have already

treated all the other contributions~ we obtajiJl

2
.£D (x 2_ _~ .._. I d (d 11 dP'\- ~- pc it 'i1 (EYj.= + (¢=l) -:;",.,\

dx ~ 2 V dx \ dx),xo

Using the definitions of ¢ and S again and

we find instead of C4=34)g

* /One might think that as dM dr is large. it should contribute
to (4=34), however even when M changes fr~m 10=4 to 10.,,;;2it is
still much smaller than s.



Comparison with (4-32) yieldsl

dMs
-,----'.-' ~
d.x

'2 ._..l. lx±1h In ¢~ = y ~
40 y(y=l/ (3M 2 = 2 = _1_)

, S M 2'
s

or with the dimensionless variable r from Seo. 2;

dM s'~=dr (4=37)

where

_lnLe=~~
f 'OM 2 '. 2 1)\' ~ ='--, ' s 2

Ms

(4 '~8\\. =) I

There is one more minor correction to be applied to (4-31).
So far we assumed that there is no flow in front of the shock.
To include such a flow we consider the following situationg

~--------------~~
X
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b) u = MOl I 0

Fig. 6. Influence of fluid flow on the shock diss~pation.

Now: drl = dr + MOl dt dr ::= Macl d.t or dr! "" d.rCl + ;: )
s

Thus instead. of (4-37) we have

dM dMs s____ = ~ 0

dr' dr
1 1 Xro

1 + ~M :: - 4' C "jr ""1"( 1 + MM )
Ms s

(4=39)

a) Complete shock equation
The complete shock equation can now be written as
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with ~, 6, X defined by Eqs. (4-18). (4-19) and (4-38) respeotively.

d) Comparison with existing theories
1) Bird [12J;

PuttIng l' •• constant, j.t "" 1 and neglecting the dissipation

term lead8 immediat~l? baok to Bird7s theory.

2) Schatzmann [93], Weymann [115J, Osterbrock [76J:
These theories are valid only for weak shocks see Osterbrock

[76, po 369J, y ~ const. and no mass motion"
For weak shocks we can define a "shock strength ~ by the

relation

~ « 1 , (4=41)

where again the indices 1 and 2 refer to the regions in front of

and behind the shock respectively. With Ego (3-21) we gat

2M ~,1
8 (4=42)

where for weak shocks the shock Macb number is written as

Suppose now that t;here Ls no mass mot Lor, i:nH'e atmosphere"
) 2We can expand Eqo (4=40, in terms of a up to terms of order a

(See Appendix D)I

1. dOl
a dr "" = (4=44)
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where:
2H B.T:x:

e "" ·;g'~2o xo

2 2o l'="-

is the scale height.
Using the more familiar relation

x. "" ro!,o

from Seco 2 and (4=42) we have

1 .9Jl.._1.1.. dc.2+ _l~ 1+1 1 =

T
~ dx = 4 2 dx 2H = 24 c 'j:t ""\r 11
I 0 s

(4=45)

Inserting '~'""\r ~ P/12 from Eqso (4-25), (4=2~) for s~wt~oth shocks
(4-45) becomes identical with Osterbroc~s result in the absence
of an external magnetip field.

It is interesting to note that the first and second term,

arise purely from energy conservation. This faot shows again
that Bird ~s theory is one applying energy' conservation 0 The
first term modifies the shock strength such that energy is
conserved when the shook enters a region with different sound

I

velocitY1 but equal pressureo (See Appendix F)o The shock
strength deereaasG as the sound velocity increaseso The second
term modifies the shook strength such that energy is c:onser'Ved
when a shock travels down a density gradient produced by a
gravitational :field. (See Appendix F). Here the shock strength
~ets longer with decrea~ing densityp
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The third term is the Brinkley=Kirkwood dissipation term,

the only term proportional to ~.
2) Land.au=Lifsh~tz [58J, Kuper-us [54Jo

This approach too is restricted to weak shocks as only small
amplitude waves remain simple waves in second approximatio~ of.

Landau-Lifshitz [58, po 377].
For weak shock waves we know the energy in.a sawtooth wave:

(Problem 1 [58, po 377]) to be:

E = E /(l+av t/~ )2000
(4=46)

where

a "" t (),+1) 0

v

--~~~--~--~~--~~~----~X

Fig. 7. Sawtooth shock

Now:
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1 dE(Ql (y+1}j1E[6) -cG. "" = 2b ,., = of (4=48)

where we used Eqo (2) of Appendix F, that is~

u ~ 2v ~ ~c (4=49)
o

and:

Here P is the period, ~ the frequency of the shock waves.
Aocording to Eqo (4-24) the energy in the shock wave can be

written

(4=51)

or with

we get:



Since for sawtooth shocks 'tt'~ "'" P/12 we finally ob.tain:

31

(4=55)

This is identical with our Ego (4-45)0 The energy oonservation
. ,

terms have to be added in Ego (4-55).
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Section 50 Composition and T~ermal Properties of the Stellar Gas

Before we derive the third and last major relation required
for our problem, we would like to show how y, I.t and H may be
computed in stellar atmosphereso

a) Abundanoes

We oonsidered the ten most abundant elements according to
Aller [4J i.e. H, He1 C~ N, 0, Ne, Mg, Si9 S, Fe with the following
abundances:

Element ei

R 19000,000
He 157~00O
C 400
N 891
0 roo
Ne 500
Mg 32
S1 27
s 20

F 9

Atomiapa.rmetBrq 1Jah fl.S onizat1on potentials, etc. were
t k n f~om All n [2]e
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b) Internal energy and enthalpy.
Under condi"tions of thermodynamic equilibrium, internal

energy E, enthalpy H and the adiabatic ooefficient yare functions
of temperature and density or pressure.

In the regions of .interest of our problem thermal equilibrium
is not established~ and we have to reformulate the expressions
for E, Hand y.

For this purpose we consider a gas of N neutral particleso

of which vINo are H atoms, V2No are He atoms, V3No are C atoms etc.,
then we have:

(5=1)
i

where the e, Os are the abundanoes by number, At a given temperature
1.

we define
fi

xio ~ 1 - I Xir ~ fraotion of element i in neutral state
r;;;l

XiI 5 fraotion of element i in first ionized state

xifi e fraotion of element i in fully ionized state

Let X. be the ionization potentials of element i in stage of1,r

ionh;a·tion r ,

'I'heinternal energy can now be written as the sum of the
translation, ionization and excitation energies:
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E = Et I + E. . + E 'trans. 10nlZo exel.

According to Rosa and UnsBld [89] and making explicit use of

the one to one correspondence of thermodynamics to statistical

mechanics in our problem which is po as LbLe for particles with a

Maxwellian velocity distribution.

E. =: No I 'Vi {xiI XiI .f. x:l.2{Xil+xi2}+ 0 . o}10niz.
i

f.
1 r

::: No I'V. I x. I x./; (5=3)J. :1.r J.

i r""l 1,,,,,1

Etrans .•••No! k Te I 'Vi {1+xil+2Xi2+ 0 '.0 fiXifi}
i

c No 't k Te{l +I'Vi(Xil+2xi2+ ••• fiXifi}
i

(5=4)

where
f.
1

X '" I'V. I r x. (5=5)a J.1"

i 1"",,1

TheRe two terms are formally identical with the corresponding

equilibrium terms~ if we insert for "theH temperature the kinetic

t emper-atuz-e ire which we assume to be the same for all particles 0

The actual departures from equilibrium are of course hid.den in the
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expressions to be given for the x. vs.J.r

Turning now to the bound states~ we have similarly [89J

n. *f l.

E excit. := No I\I. IXir I XiI'S N.
1- l::c'S

i r-=O s=O

where:

N. == b. N~l.rs :Lrs l.rs

with:

- X /kTirs e
N. *",..l.rs (5=8)

For n.* the number of the shell limit because of the Stark effeotl.

one may take:

1 * 1 620 2 1 Z lIPog nr ~. + 3 og i - ~ og e (5-9)

given by Uns81d [106J. XiI's denotes an excitation potential,
b. describes the departure from equilibrium in conventionalJ.rs
notation 1 N. * :i.sthe comparison population in equilibrium at- _. J,r'S

T Z. the ionic ohar~e_. P the electron pressure.eP 1. Q, a

It is convenient to usa the notation

L1.

E '.4.exca e ,
'Y. \'
1 ~

Xi h.: ,r J..r
i ;r1!!!0



withg

g ei:r.s
/kTe= X.irs e)

g'irs

(J-ll)

If we write internal energy and enthalpy in terms of one
a.tom of the original gas of No atoms, we have

H/a • E/a .•.iV • E/a + (1 •.:-;)kTe
o

( '-12)

where from Eqso (5-2) to (5-4) and. (5-10) follows

fi f.
r l.

M/a D i kTe(l'~) ~ " ~ +I'Vi I h (5-13)L\li ~ x .. Xi.t xiI'lor I:r.
i I'••l .t~l i r::rO

Thus
f .f'...
~ r 1.

H/a • ~ kTe ( 1+~x~) ~ L L "+ \I :i. x. X:i ..t + \ \. /,:IX I,
'l r••:!. .t ••l T'z:-()

w!.t"b x arid bir daf'Ln ed respeotively b,Y l!:qs. ( -I, ar,

Tn an extremely dilu.te atmosphere we have [49J:

b:tro ve:r:~ large, birs ...•.1 for s » 0 •

lloweverp we rate that Xlro ~ 0 60 tnat the maJor overpopulated
term does not enter the ene~gy balanoe.

We have neglslJted the bound erH,~rgy EAxr;i t , a1 together in our
oaloulation as Illut'fioien t aoouracy can ·09 acha evad without th16
oomplioated term" A numerioal oheck on the influence of this
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neglected term has been carried out and is given in Appendix G

and shown in Fig. 8.

a) The Ionization

Low pJ;'essuresand small optical depth make it possible to

use an ionization. formula reslJ.ltingfrom the balancing of

collisional ionization and radiative recombination" These assump-

tiona are valid roughly for ·the regions above the level where H

becomes largely neutrala We used the approximation even in

deeper layers in order to keep maohine oomputations within

reasonable limits. The actual computation was oarried out analogous

to the procedure adopted by House [34].
d) The quantities 1. cp' Dv and H.
In the above approximation p th.e ionization ratios depend only

on Te and not Pe or the density.

We have;

L:l..

E/a ~ t kfre(l+i) +I\)i I
rl'll

r

x , \X1 nJ.T L. XI

~",,1

(5-16)

and

I dELe.
(; a ""- dTP e

0v/a ~ .~*a
e

a la
r ""! -ETa'Q av

(5=17)

'I'hua
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to dx,t (l+x) + Te{
J..

2+
r

E \), ~ (1.' 0 (I: X 0 £) /kT ) ~
i ~ r""l 2 ,e",,13. e dT e (5=18)y =

f. dxi:t,2. (I+x) -+ Te{
J.

.2+
r

).:; "i k (r (,e:l Xi,e)/kTe)2 i r:::l 2 dT e

with x defined by Eqo (5=5).

The mean molecular weight reads; .

110
where 110 I: fl.e·/I: (5=19)fl=- "" eil-+x i 1. 3. .

~

fli is the atomic weight of element i.
In regions of oonstant y, 11, T < 60103 oK and T ~ 70105 oK

we get

(5=20)

since,

c ~C ~ R/Il or c /a = 0 /a ~ kl1 /~ ~ k(l+x) . (5=21)p v 0 v 0

Similarly,

H "'" c Tp e
')IR Te

= 11("1=1)

As the sound velocity depends only on quantities affected by the
kinetic temperature v it is simply:
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2c I = y ~ = y

ad P

RT e

e) Numerioal results.

Figs. 9 and 1Q give y, u and H as functions of ~e'

It is seen t~a~ oontributi~ns from elements other than.H and

He can be neglected, leaving y = 5/3 except in regions where
H H d H +. 0, e an e lonlze.

The enthalpy is dominated by the translatory energy:

except in the regions where H, He and He+ ionize. At those

regions not only x increases but also the ionization energy

Eqo (5-15). However as the ionization energy and x do not

increase after full ionization is achieved, the translatory term
\

Eq. (5-25) proportional to T slowly begins again to dominate.
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,/

'1.0
x

0.5

2

y = c /a and the ionization ratio x versus temperaturep v
To Influence of bound energy.
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5.0 6.0 L09 T 7.0

Enbha Lpy R per gram as f'unc t i.cn of' To The curve
R '" 2 0 '1R.T/fL shows th e trans 1ato:!:')' part of th etY'ans'
enthalpy only' 0
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Section 60 Energy Equat:Lon

From the three basic differential equations that we wrote

down in Section 2: (2~1), (2-2), (2=3) the first two were used

to derive the flow equ.ation (2-l4)~ while the first two. a

restricted form of the third and additional information about the

shock structure was used to derive the shock equation (3=40).

a) General Formulation
We now turn to Eqo (2-3) and consider the energy balance.

Recalling from earlier thatg

1V ••• -
P

dE '"TdS = pdV

d.H "" TdS ~ Vdp (6-3)

As before V represents the specific volume per gram, S ·the

entropy per gram, E the internal energy peT gram and.H the enthalpy

per gramo

Using equations (2=1) to (2=3) and (6=4) to (6~6) we show
in Appendix E that they can be combined to yield

lext ( 6'~4)

This is the same result ~s given by [58, p. 11] except that there

are the additiona.l terms represep.ting gravitation and external

energy acueces and sinks.
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Adding moreover conduction we get [58, p. 184J

d (1 2 )o't "2 pu +p e =

wb.ere we wrote f('!1'" tbA exter.nal energy term

p Q,ext oS Ie pT ot .
ext

This term may be split into a source term representing mechanical

heating produoed by the shock wave. and a sink de~cribing radiative

losses.

(6-7)

In steady state there is no explicit time dependence and we

obtain from (2-1)

Hence,

(6-9)

This equation agrees with Fieldis [31J result. (see Appendix H)o

After the passage of a shock an amount of energy dD/dx is

deposited per cm3• If we have v shocks per second.o

::0 \I ill?
o dx
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Thus with Eqo (4-32)

2 2
pQmech ..,voP .:2 Y(~~l) In ¢ e-'Y

a

* (6-11)

oRadiative lassies pQrad ar.e not so easy to treat and will be

discussed in detail in Section 7.

b) Treatment without conduction
In spherical geometry and using the dimensionless height

variable r: Eq. (2-7). we get using Eqs. (6-9). (6-11), (2-9)

e2 rI. _I' 2 Me (MC2 dM + M2 dc2 + dll + gorO) pQrad
v 0 y( y-l) In y; e ·r ..,r0 dr 2 dr dr r2 + p

(6-12)

With the aid of the flow equation (2-14) we obtain

*Eq. (6-11) can be compared with Birdus [14J work, noting that
for small shock Mach numbers ¢~ 17 8 ~ 1 and

In ¢ 8~r = y In((¢l/r 8=1_1)+1) ~ y(¢l/r 8-1=1),
or

2
pQmech '": 2 II(r~i)1l y(¢l/r 9=1_1)\)0.

o
This relation was used by Bird with the molecular weight Il = 1.



yM2 2 roypQrad
'" +-

l='yMt:: 1: pMC)

Now

2o
p = p-

t

and since ,}" 2c , H depend only on T,

.L .£li = ..L o dT
2 dr 2 p drc c

l' dT
= (y-l)T dr '

II _£1. dT
dr - dT dr etc.

Thus we can solve for the temperature derivative and obtain

dT
d.r ==

c) Treatment with conduction

We note that with the identities

...•
pu "

2g xo 0
2

x

...• 1\pu . gx =

(6-14)

(6-15)

(6-16)

(6-17)

and writing the loss term in (6-9) on the left hand side~ we can

express the entire right hand side as a divergence:
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o 0 {~(1 2pQmech ~ pQ'rad ::'V 0 pu '2 u +H

where we used (6=8)0
Integrating Eqo (6~18) over the volume of a cone of unit

solid angle which is limited by the spherical surfaces x = x and

x = x we can transform the right hand side into a surfaceo

integral

x
S (pQmech-pQrad) x2dx
xo

2
( 1 2 2 goxo dT} 2= lpMC(2' M c +H = x ) - K dx . x

(6-19)

Contributions over the sides of the cone vanish as

1i vT I I ~

Going over to the variable r (2-7) and using (2-17)
2pMcr P M c = constant

000
(6-20)

Hence we have

Sr • 2
ro(pQmech = pQrad) r dr ::

1

g r
{ ( 1 2 2 0 0) K dT 2} { 1 2 2pMoco 2M o +H ~ --;- - - d r - p M c ('2 M c +H -g r )ro roo 0 0 0 0 0 0

_ .1L dTO}
T dro
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and upon solving for dT/dr:

dT r 0 1 { K0 5/2 dT.o}dr'" 5/2 2' FLOW- DISS + RAD + r To ""'Ci'r"
K T r 0o

(6-21)

The symbolic notations ]'LOW~ DISS, R.A.Dare defined by:

r
DISS = ~I 0 ·S r v p __1__ In d e~rr4 dr 'o 0 .;..1 'P

1 'Y

(6-23)

FLOW PM c {( 21 M202 + H = go r 0) _ (1 IVI 2 c 2 + H
- 000 r 200 0

- g r )} (6-24)o 0

The origin of the factor ~ in (6-23) will be discussed in Section 12.

We used for the thermal conductivity the conventional [82J

(6-25)

Finally writing

K / / dTCOND ; ~ (T5 2 dT r2 _ T 5 2 ~)r \ dr 0 dro
(6-26)

we obtain the balance relation

COND = FLOW + RAD - DISS (6-27)
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The physical interpretation of the quantities RAD~ DISSp

FLOW, and COND is that they represent the total energies (per om2

of the initial surface) that are radiated~ dissipated transformed

into stellar wind and conducted, respectively per second within

the column bounded. by r ""1 and r ."r 0 (They are therefore energy

fluxes) .

From (~-27) we see that the conduction term acts as.a
I

reservoir from which we can borrow energy to radiate or increase

the thermal and kinetic energy of the stellar wind in case that

the s~ock dissipation is not yet sufficient to compensate for the

losses. (DISS < FLOW + HAD)

However ultimately the dissipation term must equal the. sum

of flow and radiation terms~ if the energy to drive the stellar

wind and to provide for radiation losses comes from within the

star and not from an external reservoir.,

This condition of a "shock dominated solution" is discussed

below in detail.
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Section 70 Radiative Losses

Of all the physical parameters that determine ultimately the
, , I

str'\lotureof our solutions, the amouJ;ltand di~tribution of radiative

losses is least knowno Again as in the case of the adiabatic

ooeffioient a truly self-oonsistent method would require an

iterative prooedure that is exoluded by oonsiderations of numerical

labor. And again it subsequently turned out that our solutions
I

are not very sensitive to the detailed knowledge of the amount

and distribution of the radiative losses.

We therefore decided to use the radiation rates given in

the literature and use the ones that seem most appropriate for

our problem.

Since we have to expect a rather large margin of error, we

consider two case(3 which we call "strong" and "weak" case and

settl@ for a "medium" case in the actual computations.
a) oTemperatures below 7000 K

The region above the photosphere at these temperatures is

optically thin for wave lengths abo;ve the Lymann limit, emitting
mostly subordi~ate H continua and the H= continuum, while the

Ly and Ba lines are optically thjcko For this region we treat

the hydrogen co~tinua in LTE.

1), Weak CElose

Noting that metal li~les can be included' by multiplying the

hydrogen contribution by a factor of 2 (Fo Ko Raju [88J) we can

estimate the radiation loss using the equilibrium emission with
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the Rosseland mean absorption coefficient [110J

The actual values have to be reduced by the contribution of

scatteringo The numerical values where computed from tables

given by L. Oster [74J, [75].
2) Strong case,

An alternate procedure has been suggested by Weymann [114J
(strong case)j based on caloulations by Seaton [96J for coal

interstellar gas. In this calculation all continua and r.esonance

lines are treated as optioally thin. The ionization is calculated

in the coronal approximation (Sec. 5).
This case predicts much higher radiation losses beoause of

the contribution by (optically thin) resonance lineso We considered

this "strongH case an an upper limit" Where the LTE caloulations

exoeeded this upper limit they were cut off.

b) Temperatur'es exceeding 7000 "x
1) We~k case.

Here we adopted Weyme"nn i~ [114J weak case tb,at inoludes only

the bound-free con tLnua of E and He in a,fidi tion to bremsstrahlung.

Such a speetrum can be oonsidered a6 a lower limit.

2) Strgng Qase.

H@~e Doherty and Menzel's (24J computation was taken ~s an
upper limit as it a~aaad~d other estimates suoh as Pottaschls
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c) Adopted loss function

After some preliminary numerical checks 9 we decided to use

the following loss function.

For temperatures below 7000 oK we use the LTE values as

discussed under a), Th.ese values may still be somewhat too high

as departures from equilibrium keep the ground state over-

populated thus reducing Balmer and Paschen=continua.

For temperatures exceeding 7000 oK we divid~d Doherty and

Menzells values by 5 to 10 to account for the optical thickness

of resonance lines. In the very hot regions our adopted curve

goes over into the strong case.

The following graphs Figs. 11=12 give the energy loss

p~ d (labeled M) in ergs/cm3sec as function of temperature, thera
logarithm of the gas pressure being a parameter.
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Log T

with Log Pga,..:a~~parameter p =41 M • Adopted case 0
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LogT
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5 6
~tgu12 Radiative loss ver~. t~mp~rature
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Seotion 8. Computation of Noise Energy Production
from BHhm-Vitense29 Models.

We now want to make ~he physioal connection between the

internal structure of the star and its outer atmosphere. The

quanti ty of major Lmpor-t ance is the mechan Lca.L eriez-gy input from

the convection zone through tbe photosphere.
a) Velocities
The mean velocities v' of ·~he rising or falling turbulence

elements in 15 stellar models have been calculated by B8hm-

Vitense [16J1[111J. We obtained v from these models. Since the

effective gravitational aoceleration

arising from gravitational, radiative and turbulent pressures was

not known from the beginning v an iterative prooedure was employed

using the tables for 11v 0p j c(p \Jad ooll.eC'Jted"by Unse1d [10') J .
It was found that in our 4 oases the effects of radiative

and turbulent acceleration are negligible against ggravO

We adopted the following models. (Speotral classes bave

been adopted. by Allen [2J" They differ somewhat from those

given by UnsBld [105J)

Spectral class Surfaoe gravo log g cm/sec2

Sun 02 V

Kl III

03 III
07 V

5800
4400
5000
5000

4 0 4~)
2.50
3000
4.45

Table 2. The four stars for whioh models were calculated.
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b) Production of accoustic noise ener~s

Following 1ightnill [59J9[60] and Osterbrock [76J we can

write for the rate of generation of accoustical noise:

(8=2)

where ex is a oonstant~ which depends on the spectrum of the

tu.rbulenoe and has ·t;hevalue 38 for the Heisenberg spectzum [86] s

t is the mixing length. It is customa~y to identify it with the

scale height [16J 9[111J 9['7£J ~ Le., to set

The values of A1(h) are given in Figs. 13-16. The total

noise energy can be computed from the relation

(8=4)

where we have assumed that all the noise directed upward.s escapes 1

while all the noise directed downwards is absorbed.0

+The values of xF are given in Table 3.mo
c) Frequency spectrum of the noise

The frequency spectrum is obtained from Osterbrock~s [76]

methodo The maximum of the frequency spectrum reads

We assume v to be the frequency of our sound waves.o
The frequencies are given in Table 3.
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d) The cut-off frequency

Kuperus [54], Moore and Spiegel [65] and others have shown

that there is a cut-off frequency for sound waves at low frequencies v

where the pressure gradient of the atmosphere becomes equal to

the pressure gradient in the profile oftha sound wave [.54J. We

havE?

\!aut-off,
..1iL

es 4n;0

The values of v t ff and l' at the, layer with maximum noiseau =0

production are summarized in Table 3.
The comparison with v shows that the frequency of the noiseo

produced is above the cut-off frequency v however withi~ a factor

of 2 to 4 from vcut-off"

+ Scale heights'1tF _I_ IStar m(l3 \) v -- 'Y H emergs/em(sea 0 sec cut~off see e

Sun G2 V 1.6 0 107 900 0 10=3 303 . 10=3 1022 200 0 107
Kl III 1.6 0 107 1.5 . 10=4 309 0 10=5 1015 105 109
G3 III 304 s 107 500 0 10=4 1.2 0 10=4 1013 501 0 108

G7 V 3.0 . 106 7.9 . 10=3 306 0 10=3 1025 107 0 107

Table 30 Noise produotion
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Section 90 Initial Con~itions and the Photosphere

We are now ready to derive ,the boundary conditions from which
we start our model calculations.

a) Th,eheight a~,whioh the shook forms 0

Sound waves of f~equenoy Vo oontaining flux nF:o trav~l in
an outward direotion down the density gradient and so long as
visoous di~sipation and heat oonduotion oan be negleoted (see
[59, p. 567J) will grow in amplitude to oonserve flux.

This growth will lead to larger and larger velooity amplitudes"
A large velooity amplitude however will distort the sinusoidal
shape of the sound wave [59, p. 366J and the hills and valleys
will melt into eQoh' other to form a ,shook wave C76J.

To desoribe this situation quantitatively, we first write
[58, p. 250J

or

where again

Let Hp be the height (~n the height soale given by B8hm""
Vi tense Is moch,lII)at whioh maX:,imuIDnoiliHlproduotion oocurs v and Hr

the height at whioh the ohook is formed. The oondition that the
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hills oatoh up with the vallers (Fig. 17)

Fig. 17. Velocity amplitudes in a sound wave

then beoomes

A•••- or4
(9~4)

With the aid of (9-2) we thus have

dh ••0 •

Ego (9-5) determines HF provided that a model of the stellar
photospbere is available.

b) Models of stellar photospheres
The photospherio models we used were based on the data by

B8hm~Vitense [16). From T •.01 on they were oontinued iso-
thermally and this established a boundary temperature To (See
Fig" 19). This approximation is justif':f,edin oases where
vi~oo~ity and radiative effeots could be negleoted [94]0 We
will oome baok to this point under d).

1



64

c) Initial pressures

Several calculations with the aid of (9-5) were performed

with different nF+ and for different stars. It was found thatmo
we obtain a result which is within 2~o of these calculations if

we ,just use (9=2) and put down the condition for getting a shock

as

Using this new condition we have

where

c - V'Y TIT /11000

d) Shape compression factor
It was shown by Schirmer [94J that there is a fairly large

difference between the growth of a sinusoidal sound wave without

viscosity and radiative coolingp and the case with those effects

included. This means that the sound wave will in reality travel
to much greater height before becoming a shock wave. We introduce

a factor ~ by

where p is the pressure as calculated from (9-7) and p the
j 0

pressure at which the sound wave in reality transform~ into a

shock wave.



The quantity 1; is call~d "shape compression f ac+oz-" as it

is a measure of how much the wave profile is distorted from the

free,oase by viscosity and radiation.

Thus the initial pressure Po finally reads

-+ .
p "" nF' /-1;yoo mo 0 (9=10)

For our 'models -j; = 4091 was fitted see below (Seco 14b- 3) and

4)).
e) Initial heights

1) The height H of the layer of maximum noise production can be
p

taken from Figso 13 to 16 in terms of the height scale of BBhm-Yitense.

2) The height HI of the layer at which 1" = 001 can be obtained

by numerical integration of the hydrostatic equation for the values

of ppT given in B8hm-YitenseQs models.

3) The height HF of shock formation can finally be computed from
the barometric formula.

""Hs (9-12)

PI is the pressure at HI' Po the pressure at HF given by Eqo (9-7)
and

2

Hs
o o= -- =yg
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is, the scale height.

f) The zero reference level

For all stars other than the sun we have assumed -t.;hatHI is

the reference level whose distance from the center of the star is

r 0o
For the sun the customary 'f ••• 00P3 was retained 01 The

interpolation of the ~ values for ~ = 0003 is given in Fig. 190

It was found

as measured in BBhm-Vitenseis height Boals.

~) I~itial ~hook M~oh numbers
From Eq. (4~3;)we have d~£ining

H
nFm+o • v D(H ) • (1 + 2 -£)(¢-1)p so ~ ~o 0 r· 0 0o

(9",15)

With H Pl'4 10"'3 r i definitions of ¢ an9. S and assuming a tr:iangleo 0

pulse (See Figo 18) Eq. (9-15) becomes

Mso

4y 1
6 (9=16), 2

(,},+1) I
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I

IIIIE;<~-- p.:.l. --~~
~@

x

Fig. 180 Shock form at shock formation.

We use positive pulses of triangular shape in oompariaon

with the sawtooth profile oustomary in papers where small shook
"

Mach numbers are employed (M ~ 1)0 The reason is that for largea
Ms-values~ say of the order of 4~ the negative pulse of a

symmetric sawtooth would result in a negative pressure~ Henoe

the major portion of the energy must be transported. in the positive

part of the sawtooth for which the triangle shape is a good

approximation 0 Behind strong shocks the pressuxe is indeed

increased by typically an order of magnitude (See Ego (4=9».

From Egs. (9=10) and (9=16) follows

eM 2 = 1)2
s -I; ~0 10068 0-1;M '" 4y 1 '"

s 06'0 ( 1'+1)2

Wi th 1:;••• 4091 that is

M "" 3091s
0

for all stars.

(9=17)

(9=18)
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h) Summary of initial values

Star T Po Ho••HF""H1 H Hl=H M r'o0 .p P soK dyn/cm2 km km . km 0 km
4064 668.3 I 609530105Sun G2 V 302 =90 3030 3091

Kl III 3069 3.67 29120 -3981 26239 3091 409370106

G3 III '5'79:, 7008 12689 =1698 7148 3091 303)7~106
G7 V 3793 0619 78907 =75 260 3091 408670105

Table 4. Initial values

i) Comparison of photospheric models
For the sun we comp~red our photospheric model following

BHhm-Vitense with otber data. As an illustration we quote a
recent model given by Heintze [33J. (See Figo 19)

Using HeintzeSs model we find the level of shock formation
(po • 3.2 dyn/cm2) at 13;0 km on the Btlhm-Vitense scale, or at
1060 km on the convent:l,onalscale. (HT: .003 ""0) Hence Ho •••HF=Hl ""
1090 km.

For the sun we summarize below the different heights defined
on B6hm-Vitense soale whioh sets the zero level of height at the
upper end of the oonvection zone:

Symbol Height Definition
km.

-" ••••• LCi _____

Hp ,..,90 Level of maxo noise prod.
HI +240 Level at which .r •• ~Ol
Has 6 +26~ Zero level of Heintze [33J'f!l!l.004
II"" +270 Conventional. zero level'fE.OO;
H +913.3 Level of shook form, our photosph.F



HF Heintze +1330 Level of shook form. Heintza
HO HF=H1 Ini.tial height
H RT/lJ,g Scale heights

Table 50 Height def:!.ni t:i.ons
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Section 100 The Complete Set of Equations

and the Type of Solutions

a) Summary of the mathematioal problem
From the discussions in the previous seatlons we can

71

summarize the mathematical problem by sta·'ng thp tnreR dl[ .r_

ent1al equatlons for the unknown quant1ti8s M, ~s' 1:

The flow equation (2-14):

dM d d9~: 2~7'" f (M. ~.? Y d.r' ~ v r)

The shook equation (4-40):

The energy equation (6.21) or (6-21):

d'1'_. ""dr
o

y. II P I Q,radv P. r) •

The rad.iative lose from SFh. I,'

"nCJ.r'M "., r. .p)

The thezmal properties from Seo. 5:

(10-5)
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The pressure finally follows from Eqo (2=18)

p = const. 2IlMcr

With the initial conditions of Seoo 9, Egso (10=1) to (10=7)
represent a closed set of equations.

b) Types of solutions
1) Conduction and shoak dominated solutions (CD, SD).

We first note that the shock equation (10=2) enters the
other 2 differential equations (10=1) and (10=3) only thTough the
dissipation term DISS in the energy equation (10-3)0 We can
therefore,treat (10=2) as a more or less independent equation
which provides the term DISS to the energy equationo

The relative magnitudes of the two gain terms DISS and COND,
arldth~ two loas tGlI'IDS RAD and FLOW in (10".,) (d.ef'ined via Eqs.
(6~22) to (6~26)) tells us the nature of the energy balanasp aueh
that we o.n define a region to be oonduotion dominated when the
main energy gain is due to oonduct~on and to be shook dominated
whell the main energy gain is due ,to shock dissipationo

The groups of solutions of the flow equation (10=1) thus oan

be classified as either shock dominated (SD) or ~onduction
dominated (CD) solutions 0

2) Super- and sub=critical solutions
To investigate ·theflow equation (10=1) we use,it in one for

this purpose more convenient form Eqo (2=13):
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or in short

AoB == C (10=9)

W th t th . 1 't . (10-1) for M -_ ~=1/2 ~s ofe see. a .e S:Lngu ar:Ly :Ln - I.

no consequence because with A in Ego (10-9) C vanishes at the

same time.

For a very small initial flow Mach number Mi~ A is relatively

large and B relatively small for the same Co The distance r

faster than M and in C the =1 term will become largergrows r

than r=2 at great distances~ leading to C o. If A I 0 at this=
point, then B = o~ and the flow Mach number M will decrease again~

leading to a subsonic flow at all distanceso This case is called

subcritical solutiono

( =1/2)For a very large initial flow Mach number Mi Mi < r 1

A is relatively small and B relatively large. M grows faster

than the distance r leading to A = O. If C ~ 0 at this point,

B has to be infinitep which means that Mer) swing~ back in r to

become.a multivalued funotion of ro This case is called super=

critical solution and has to be excluded because no physical
meaning can be attributed to a multivalued flow.

The case where' A and Cq vanish the same time leaving B > 0 is

called critical solu::U&n.. The flow Mach number M can continue to

grow and ultimately gives rise to supersonic flow.

This is the solution which we need on physical grounds for

stellar winds as supersonic velocities are observed at least in

case of the sun [81J.
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Thi.sbehavior of the flow equation is wel1=known and has

been discussed by Parker [82Jp Noble and S©arf [70J~ [71] for
CD solutions and by Bird [12J~ [14] for SD solutions.
3) The three critioal solutions (CDO, SDCFp SDCR)

If we use the full energy equation. (10=3) we get three
critical solutionso For comparison Parker) Noble and Scarf
who assumed COND = FLOWp and Bird who assumed DISS m FLOW obtained
only one.

We have Eqo (10-3)

COND ~ FLOW + RAD ~ DISS •

a) Starting off with a very high value of Mi we find

DISS) RAD « FLOW

and obtain the CD oritical solution (CDC).
This will be the only solution if everywhere

DISS < RAD

b) When, at the other hand

DISS > RAD

we obtain SD solutions by lowering Mi. If Mi is still la.rgep
then

DISS > FLOW > RAD

we say that we have a SD critioal solution where the flow is
dominant. (SDer)
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If Mi is smal19 then

DISS > RAD > FLOW

we get a SD critical solution where radiation is dominant. (SDCR)

c) Selection of the solutions

From the three solutions eDC, SDCF, SDCR which are possible
I

if we insist on supersonic stellar wind velocities* [81J we

can exclude ODC as this solution depends on a heat source outside

the staro The SDCR solution is ruled out by the physical arguments

stated belowo The remaining SDCF solution is the~efore the only'

object of our attention.

*Otherwise we would have a infinite multitude of subcritical
solutions.
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Seotion 110 Computer Program

The numerical calculations were performed on the IBM 7094

computer, of the Yale Computer Center in Fortran IV-Languageo

1) The quantities

and

were treated as subroutines interpolating from tables of the

radiative loss function of Seyo 7j and the calculations of Seco 5.
2) Another subroutine comp~ted the various numerioal factors in

the shock and energy equation that depend on Me and M.

3) The integrals DISS and RAD were performed with an integration-

interpolation formula [1~ p. 888J (Bodes Law).

4) The system of three first order differential equations was

numerically integrated with a 5th order Runge Kutta'method [121J
thwhere the 6 order term was kept to regulate the stepsize~

Root mean square values of this 6th order term were kept smaller

than a certain externally adjustable sizeo If this error exceeded

the permitted limit9 the step was rejectedo Asscond order

auxilliary formula predicted the next step size on the basis of

the last 2 accepted steps,

For the first few steps we used r as independent variable~

so that formally
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dT
- "" fT 'd.l" 1 0

Because of the initial steep rise in temperature we changed

then over to T as being the independent variab1ep so that formally

dM
~dT

dT
dT = 19

At greater heights we went back to r as the independent

variable.

The machine time required to complete one star model with

the final program was approximately one hour.
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SE'ction 120 The Principle of Similarity Invarianoe
and the Condition of Complete Shock Dissipation

When we first tried the computer progre,m as outlined in the

last section with ~ ~ 1 in Eqo (6=23) we found the conduction

dominated (cn) solutions and could iterate to the oritical aDe
solutiono

Lowering the initial flow Mach number M .• however, to searchl.

for the shock dominated oritioal solutions. did not bring us into

the shock dominated regiono This failure was soon realized to

be caused by the faot that at 1/10 solar radii still only a few

percent of the original noise energy had been dissipatedo In

other word.s~ as

DISS « FLOW + RAD

we obtained

CONI. ~FLOW + HAD (12=2)

and consequently higher and higher tempe:ratureso

This behavior in turn i:ncreased the thermal energy of the

gas (that is the FLOW-term) to make the DISS-term even smaller

compared to the sum FLOW + RAD in Eqo (12-1)0
Artificially increasing the dissipation rate beyond B:rinkley

and KirkwoodQs value (by multiplying both Eqso (4-39) and DISS

in Eqo (6=23) by an arbitrary factor) did not help the problem.

Extensive ohecks then showed that the origin was the prinoiple

of shape similarity invariance.
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This principle as explained in Appendix B states that
11t "t" = 6V ...const, or in other words 9 that once we have chosen
o

a oertain shook profilep in our case a triangle pulse9 it stays

a triangle pulse through all regions it passes until the shock

energy is completely dissi.pated.
We therefore are led to the conclusion that this product 1t"t"

apparently does not remain constant.
It should be kept in mind that the principle of shape

similarity invariance was developed for underwater explosions where

there were no sharp density and temperature gradients.

In our case~ the product 1t~ seems to change to a degree

sufficient to invalidatB our solution.

To understand how ~ ~ may change we use Eqo (4-24)

D=p' u 1tvm m

p

x

Fig. 20. Change of shaak profile

and Fig 0 20. Changing ·the shap.e from our profile 1 in Fig. 20,
I

to profile 2~ ~~ increases considerably.



80

The correot procedure would thus be to develop a detailed
theory of the growth of the profile behind the shook1 similar
to the work done by Schirmer [94J for sound wave profiles in the
photosphere, and to inolude this feature in the oomputer program.
Ob,viously this is beyond ~p:resEintpossi bili ties 0

By assuming a shook profile different from the triangular
shape, praotioally any value of ~ ~ oan be obtained. In order
to exolude arbitrariness, we now postulate that all initial shook
energy is dissipated onoe the shook Mach number Ms has reaohed
unity again at great distance from the stars surface.* In the
oase of the sun

In numerioal terms, the oondition of oomplete shock dis-
sipation determines the aotual value of the produot ~ ~f that
is the factor ~ with whioh the term DISS alone has to be
multiplied. (See Sec. 6, Eq. (6-23))

We found this factor by plotting the energy at Me ~ 1 vs.
~ (each time iterating t~ the critical SDOF solution) and then
interpolated to the ~ value at whioh the dissipated energy/cm2seo

+is nFmo' See Fig. 21.
This was done for 'the sun and the star G7 V to 1% ~ however

for the stars G3 III and Kl III only to 17. 8,,},oand 15. 6'}'0

'*One might objeQt to this oondition, on grounds that there might
be some energy left over in the form of sound waves when Ms ~ 1
and therefore not all the energy reappears in DISS. This
possibility oan however be exoluded as the deorease in density
always tends to establish a new shook front. '
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respectively because it was,not felt to warrant the amount of
machine time involved to reduce the remaining difference.
Especially because a comparison of the effects of different
factors ~ for the case of the sun (Fig. 22) shows that the
change in the temperature profile is very slighto All the
factors ~ have approximately the numerical value 90
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Section 130 Numerical Results

a) Recalculation of Bird9s results
Leaving out the terms RAD and COND in the energy equation

(6.27) and using a 1ao or ~ • 1 in the DISS term as wpll as
ohanging the ahook equation to Bird,is form (Seoo 4d)~ we reoal-
culated one oase of Birdls work [1.4Jo We found very good
a,greement in the behavd.oz' of the solution v and fairly good
agreement* of our oritioal solution with Bird9s. (See Figo 2'3)

b) Survey of the different solutions with the full set of
equations 0

Figs. 24 and 25 show the different nature of the solutions
met in the process of, searohing for the ori tical solutions 0

These solutions are for the sun and the multiplication factor iT

is six for all solutionso Only the initial flow Maoh number is
ohanged.

For high Mi-values the oonduotion dominated solutions (CD)
are obvious in Fig. 25 'by their persistent positive temperature
gradient 0 Jj'romFig 0 24 we oonoludethat the cri tioal CD-solution
(eDe) has the orftioal initial flow Maoh number

For a smaller Mip we find the shook dominated solutions
(SD) with their negative tempal'atu,regradients (Fig 0 25). The

'I!We uaed a aaan mf)lal"Jula:v wei~ht ~ !"'I ~672 p wl:l:11a B;1,rd,had Il • 1.
Th:i.a Illl'l:y f'l'lf.;pla.:i,n the 'rama.lnin8' d:1.i':f'era:no "
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critical SDCF solution has been approached by iteration~ and we
=4 + 01.deduced the critical flow Mach number M. = 70195.10 = 034/0.J.

The two solutions bounding this value are almost identioal up to

a certain height from where on they behave according to their

superoritioal and suboritical nature~ respectivelye This point

(where dM/dr becomes infinite) lies the higher in the atmosphere~

the closer we have come to the critical initial flow Mach number.

For very small M. the supercritical nature of the solutions:t

b dOt t'l M 5 10=6 At MJ.'~ 1.06.10=7ecomes more pre omJ.nan un 1 i =' •

approaching the SDCR solution~ we discontinued the survey because

the initial step size became unrealistically low~ namely, in

numbers ~r = 2.10=13 r , which corresponds to a temperature
®

gradient of about 50000 per em. The reason for this behavior

is that at very low heights conduction is not yet important~ so

that the dissipation term in Eq. (6-16):

'V ro Old -~ 2-:-- - In 'P e I. rMo 'y=l

(where c, ¢~ e~ yare approximately oonstants) with its M~l

dependence dominates the temperature derivative.
We did not investigate the SDCR solution further because of

this physically unlikely behavior. We note however~ that

qualitatively the solution predicts an extended atmosphere of

coronal type with a temperature of a few million degrees K in the

same manner as the SDCF solution. Since the initial flow Mach

number Mi is much smaller, the amount of matter flowing away from

the star is much lessp giving rise to much reduoed solar or

stellar winds.
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c) The models.

The numerioal results of the correot critical SDCP solutions

for our four stellar models are exh Lbf.t.ed Ln Figs 0 26 to 38 and

'I'abLea 6=80 The comparison with available observations and model

calculations is given in the next two sections.

Star T Mi criticalcorona
oK

,~~

Sun G2 V 30160106 10136010=3 ± 038%

III 6 70468010~4 ± 0420;0Kl 2.76010
G3 III .3.530106 60968010=4 ± 0450;0

G7 V 6 20036010=3 :t .38°;6L 74010

Table 6. Coronal temperatures and initial flow Mach numbers.

Temp Sun Kl III G3 III G7 V
km km km km

T 0 0 0 0
0

70103 0056
10104 0062 002 001 0017
20104 .085
50104 .25 .23 .13 .65
1.105 L15 L05 054 4018
20105 5.54
5.105 65.5 54.1 30 1 261
10106

/ ~

493 470 253 2350

Table 70 Temperature rise in the transition layer 0 The heights
f

given. are heights above the level of shock formation.
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Section 140 Disoussion of the Solar Results

a) Disoussion of the model
As soon as the shook has formed» shock energy Ls dissi.pated

(nIBS)~a~y rapidly
serves primarily to heat the gas (balance the 'Fl.OWterm) wl1ile

conduction is not yet important I

DISS ..,FLOW + RAD

The temperature rise will bring the gas quickly into a
temperature region where the radia.tive losses (HAD) a.ncr ease

rapidly by approximately 4 orders of magnitude. (Sec. 7~ Fig. 11)
The comparatively slowly varying dissipation term (DISS) Da.n not
compete any more with the r'a.diaUve lOi:isesand 'r;1:1e en9rgy must
be supplied by ccnduc tf.on (COND) 0 The more energy is ra,diated

out , the steeper the emperature gl"ad.ient muaf be In crder to

balanoe this radiation via. aonduc ion~

CON]", RAD./.. FlOW (14=2)

This behavior can be illustrated by a oomparison with Birdie

[14] solar model (see Fi.gso 23 and 28) that balanC68 d.it38i.pation

(D16S) against thermal and kineti(Jl energy in the solar wind (FLOW).

DJSS ""FLOW

Bird find~ the same eteep initial tempera~ure rise due to the
large shook (Us~i.pation 0 However ~ aa conduett.on is negl.eal.ed as
well as the radiative 108B1 the steepening influan~e of a large
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conduction term balancing a large radia~ion term is not experienced

and his model temperatures rise very much less steeply furtner

out.

'l'be temperature region of extremely la1:'ge radiative Loaaes

Li.nrl.t s the amount of r adLat ive losses by re·j,ucing the to tal gas

mass in this regiono

At higher temperatures we see that tbe flow 8nerg,v (FLOW)

which inci.dentally consi.sts primarily of the thermal energy of

the gas and not of kinetic energy? domina'tes over tberadlative

contribution (See Figs. 26 and 28). This flow term .l.T!.c.reases

slowly.

Conduction fi.nally becomes' ama l l, compared with shock

dissipation and vanishes with vanishing temperature gradi.ent when

the dissipated shock enar-gy balances the sum of flow and r-adta t.ed

energies 0

At this point we have to oonsider the LnfLuenc e of vl,st'·osit.v

whose importance in ~~~jnd dalculations has been shown by

Noble and Scarf [70J. [71]. As the effec+ of ViB~~5: -, 1B
2 a'll"proportional to v and v ~d (c:f"Noble and. S.Jsrr Eqn (1.1)) wex:

see that it will beoome important whenever the flow rmer.gy

dominates 0

Hence at lower heigh t.s where t.he flow energy- and eape 'ially

its k.i.nebd.c pa~t is negligible viscos ity wi11 play a milLer IC:l,"l

and our temperature profile will no t be a.I.ter-e..':. 0 'The more the
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flow term dominates at greater heights :;h6 more tbe vtscosity

will influence the modeL, This is especLa Ll.y t rue where tr r.'

temperature of the corona has deoreased and the kinetic part of
the then supersonic flow is more important than the thermal part 0

at any rate beoause of the disparity of the supercritioal and

subcritioal solutions.

b) Comparison with observations and other models.

1) Coronal temperature

Our coronal temperature of T ""30160106 oK (Ta,b1e 6) maycor '
be compared with recent observations summaz-a zed i.n Table 80

T Year Nature of Observa'tioncor

20106 1965 radio
80105 1964 radio~ x=ray

2.60106 196:5 line width

1.:)0106 1961 x~ray
., ') 3 5 106 1961 line wa.dth?o.::.....hIO:I 0 0

20106 1959 line width

Author

era yn [22J

Kund.;.l [52J~ de Tager [42J
Billings and Lilllequlst

[.10]

Elwet'~ L<: I J

Jarr6tt and Von KlhhA%! [.14J

~B:tllir,gs [9 J
;

Table 8. Obser'vatio1'1sof coronal temperature.

Recent model ca.Lcu.Le tLons of the solar wind by Par-kez- [82] and

Noble and Scarf [71J give coronal temperatures of L2=L9010C OK
and 20106 OK respectively.

Our result is somewhat higher than most d8terminations~ but

clearly within a reasonable rangeo
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2) Pressure and electron density

Ou.r values of Ne versus height are shown (see Figo39J

Ln a graph ad.opted f'r-om Kuper-us [54j. The curves refer to the

following authors •

.::D;.::e:.:s.:i~g:n::.at.::.;i::.:o:::.:n::...p.__ .;:;:R:.::::e.g;:,&1:i~on:-_+ ..;;A:.::u:.::t:.;.:h;.::;o.;:.r__ ~ __ ._~ _

1

2

.,
4

5

6

7

8

9

10
11

12

normal

active

quiesoent
promil'1·n"'9

normal

de Jager (1959) [41]

Von de Hulst (1953) [35J

Ivanov~Kholodnyi (1961) [39]
Kakinuma and.Swarup (1962) [47J
Kawabata (1960) [48J
Chris·Uonsen llo a10 (1960) [20]
Newkirk (1961) [69J

Riei (1962) [36J
Koe1bloed and.Kuper-us I .Qt I

DlmsohneidAr solar IDoiAL

UImachns.Ldez- so a> mode J P "" 16 J.yrlj
o 2

I";m

Table 9. Origin of eleutron density data.

3) Shape Qompression faotor

Comparing Figs. 1 and:; of Sohirmer's (94) article we fi.na.

a shape oompression faotor of * a 6.5/205 • 2060 A snape

oompression faotor ot * m 1, on the other handp yields acoording
to our Eqg (9 .••10) an initial press'l.'tre Po ffl 16 d.ynji'Jm2seo. Pr-om
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Fig.39 Electron density (cm-3) versus height.
Authors Bee Table 9.

107

Loa t~_
-:J fo



108

this pressure the solar model 13 in Fig. 39 is dez-Lved, It

requires clearly too high density valueso

Therefore a shape compression factor * ~4~91? that is

dividing Po by 5, was adopted leading to the solar model 12 with

Po "" 302 dJm/cm2. (898 also 4))

4) Total emission of transition layer and corona

Recent theoretical estimates of the total emission of

chromosphere and corona are given in Table 100

F temp/om2sec year Authorx: ~.•.-.-~~
2.107 1961 Osterbro~k [ '(6]

2050105 1959 de Jager [411

Table 100 Total emission of chromosphere and oorona.

Our result is 30480106 ergs/cm2sec. It has to be noted,

however, that the radiated energy is direotly proportional to the

pressure as can be seen from Table 110 For the energy radiated.
60.from the transition region below 1010 K we obta1ned the

following values~

160 1.25 0 1<p8

10260107

10270106

1.280105

Sun

ini.tial pressure Po energy radiated Model

16
1.6
016

<fr := 10

Table 110 Influence of ini tia.l pressure p on th.e radiative losses.o
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5) Mass flow

The above value lies well within the presently available d.ata.

a) Using a diseussion of ooronal line profiles Bll1ings and

Lilliequist [10) obtained data on the velocities alose to the

velooity

In our model we find for this point (see Fig. 27)

hlog"';"""•••~ 1052,
ro

We obtain a solar wind ve~ocity of

v ~ Me = 1304 km/seo

within a factor of two of the observed value.

b) Observations of the solar wind at the orbit of the earth

listed in Table 12.

by Mariner II and values given by rs@snt model calculations are

Solar wind

2: 2/pv '"' B 811:

Parker [82]

Noble and Scarf [71J

velocity
km/s9o

year Method

500

1 300

20 = 40

6.75
440 ~ 730

352

Table 12.
(

1962 Mariner II Neugebauer and Snyder
[68], Goleman at. a1.
[21]

Solar wind

Mass flux observations and model results at the earthus
orbit.
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Using the equation of mass conservation

we obtain from Mariner II observations Mo ""201010=6 and froml.

Parkeris values M. Q 8.1010-5• These values do not comparel.

=)favorably whit our Mi ~ 1.1.10 • Howeve:r~ the same discrepan0Y

results for the observations of Eillings and Liiiequisto The

r eason is presumably that the Mariner II results are stzong'Ly
influenced by coronal inhomogeneities.

6) Mechanical energy input

'I'he input of mechanical energy into the outer atmosphere has

been calculated by Osterbrock [76J on the basis of the earlier

model of the solar convection zone given by ViLanse [111J. An

independent minimum esti.mate from calculations of the convection

zone can be obtained in the following way~

From the fact that there exists a supersonic solar wind at

a distance of r ~ 1 and that the aoronal temperature is ~ 20106 oK

we get with Eqo (6-24):

. =]1 / 3 s / =%using Po g 1.2010 - gram am I 00 ~ 601010~ em sec. Mo = 101.10 ~I

M = I. a g 2010107 am/sea. and the data collected in Fig. 10,
we find.
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Radiation losses will increase this value so that this

estimate represents a minimum estimate. A summary.of values is

given in Table 130

F+ ergs/em 2 Author Nature11; seemo
3030107 Osterbroek [ 76] Convection zone

10105 Sturrock [100] estimate

10106 Saito [91J estimate

1.60107 Ulmschneider Convection z one
-

6070106 U1mschneider estimate (solar wind alone)

Table 13. Noise energy produc;t:i.on data

7) Comparison with recent models of the transition layer.

The most recent solar models quoted in the literature,

Al1eni.s [3J and Kanno and Tominaga's [46J, 81.'9 not vet published

in full form.

a) Allen [3J reports calculations that result in a very sharp

.temperature transition with a rise in temperature from log T ""4.5
to 503 over a distance of only 100 km. Our oalculation (See

Table 7) prediots this rise over 5.4 km, is therefore st&sper by

a factor of 20.

b) Kanno and Tominaga [46J quoted in an artiole by PottBsah [83]

also give a very sharp temperature rise .from log T ~ 405 to 5.3
in 48 km. Our calculation is a factor of 9 times steeper.

a) A quite steep temperature gradient was also pred~c~ed on

general grounds by UnabLd [107] and. byWe;ymarl~J [114]0
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d) From observat:ional arguments Zirln and Dietz [120] came

to the same resulto

e) Calculations of Kuperus and de Jager [531 and Kuperus [541

performed with a shook dissipation theory) restricted to small

shock Mach numbers and excluding Tne solar wind flow. also show

a very steep temperature gradient" However) only corona temperatu.res

of 6050105 OK to 7080105 OK were obtained .• This is probabl~

due to the fact that a larger amount of shock energy instead of

conductive energy is used to balance r'adiation losses~ leading

to a premature exhaustion of tne shock energy.

f) Finally the model of Uchida [104] shows a steep rise (log T
from 308 to 500 in 200 km). The corona temperature is 10106 OK

and the solar wind flow is taken into account, but not based on a

supersonic critical solution as in our caseo The initial wind

velocity va of 3 km/see does not compare very well with ou.r

50 cm/sec.

~----------------------------------~------------------------------------------
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Our stellar models behave in a very simila manner as the

solar model (See Figs. 50 to 38) except that~ of course~ none of

the data could be cbe~ked aga~nst ob8ar~at{onB ~ comparigon

will be given however with the only available model calrula Inn

given by KuperuB [54J.

a) The amount of conveotive noise energy produced by d.ifferent

stars.

The amount of noise energy produced, by a convection zone

depends strongly on tlle value of the mean veloo.ity v in the

turbulent velooity field. For very ho t stars \T ~t")' }')D) ann. e

stars with v'ery low auzf'ace gravity (log g ~ 1) the inner Lona-.

zation zone of hydrogen occurs already in the outer radia t i.ve

equilibrium layer of the star and thus does not start a convection

zone as is the aase in cooler and more dense stars. With no

convective motion no noise is produ~ed by the pro~ ~ses ccnslaerpd
in this paper.

It is readily seen from Eg. (8-2) and Figs. 13 to 16 that
the noise produotion is important only in a narrow region around

the maximum of the velocity curveo It is limited towards the

stellar interior by the increase of the sound velocity and toward

the outer atmosphere by the sharp d.ecrease of the turbulent

velocity"

Noting that very cLcse to the layer of max i mum no i fj pr-oduot r or...
the total flux reF of the star ,i.~' ca rrLeu r.omp lete ly by conve • )Ii.

as is shown by Vitense [111J Fig. 5p we can understand. the amount
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of noise energy produced by a star as function of the effective

temperatur,e Teff and the surface gravite as follows:
I

As the convective flux nFk is proportional to v and the

density p, we can write for a point shortly before the velocity

maximum v is reached:max

(15-1)

Now consider two stars with effective temperatures Teffl, Teff2

and surface gravities gl' g2.

If gl = g2 and Teffl > Teff2 the size of star 1 is the same
as st~r 2, or possibly a little larger. That means that the density

in star 1 is the same, or possibly a little smaller. From Eq.

(15-1) we see that then v1 >,v2" and the noise production in star

1 is greater than in star 2.

If gl < g2 and Teffl = Teff2, the star 1 is less dense. , Eq ,
(15-1) shows tha~lthen VI > v2 and the noise production in star 1

is again greater than in star 2. We find therefore

T.1. The higher Te,ff and t:he smaller gthe larger, therefore. the

noiserenergy production.

This statement is valid only when a convection zone of
reasonable size can develop in a star, however, it is consistent

with all our models as well as those given by Kuperus [54, p. 63J

(See Tables 2 and 3). A !SV.WW-I1.rJ..'740141' CoV\cll.\~~O~5 is. ~(vt\l\ iM+t~'fo.

b) Coronal temperatures and temperature gradients in the
I

transition layers for different stars.
I

The height at which the shock is formed is determined entirely,

by the flux of noise energy and the scale height H of the atmo6~s
phere (Eqs. (9-10) and (9-12)). The temperature of the upper

I I
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Luminosity class-IO~~~~~--~~--~~~~~

~bs
-5

o

I~
Ib
n
m

+5

+10

+150
25000

Spectral class
B A

10000
F G

5000
K M

3000

Fig. 40. Hertzsprung-Russel diagram and lines of e~ual noise
productio~ (Schematic)

photosphere of the stars is roughly the same (3500 oK to

4500 oK). The less the noise flux and the lower the surface

g~avity the more extended the upper photosphere.

Most important for our considera~ions, however, is the
I

pressure p at the height of shock formation. Considering theo

similarity of boundary temperatures T , and that this valueo

as n~we can make the following state-oenters E~. (9-10) only
ment, keeping this limitation in mind: (See Tables 3 and 4)

The pressures p at the level of shock formation are
o .

directly proportional to the noise fluxes.

T.2.

As we already found for the sun that the radiative losses are

directly proportional to p (see Table 11), we conclude in general:o

T.3. The amount of radiative losses in a star is directly

proportional to the amount of noise energy produced.

This can be ascertained in our models by comparing the

"RADII-profiles of our 4 stars (Figs. 26, 30, 33, 36) and correcting
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them by the factors p star/p sun. All curves can approximatelyo 0

be brought to coincide with the solar curve.

The lines of equal noise production in Fig. 40 are lines of

equal radiative losses from the transition layers of stars~ or

in other words, lines of equal UV radiation from the star.

Another important conclusion can be drawn from statements

T2 and T3 by remembering that conduction (COND) is balancing the

radiative losses (RAD) at the heights where most of the radiative
)

losses occuro If the RAD-term is very large? the COND-term has

to be very large and, consequently, the temperature gradient very

steep. We can state therefore:

T.4. The steepness of the temperature gradient in the transition

layer is directly proportional to the amount of noise produced.

This can be checked from a comparison of Tables 7 and 3.

However, the temperature gradient must be measured at temperatures

above 104 OK because at lower temperatures the assumption

COND = RAD is not valid as can be seen in Table 70 Again the lines

of equal noise production in Figo 40 are lines of equal steepness

of the transition layer.

From Fig. 2l~ invoking the similarity of the stellar boundary
temperatures, keeping the limitations of this statement in mind,

and using the equation

mass flux = p c Mo 0 cr

where M is the critical flow Mach number of the supersoniccr
stellar wind flow, we can say:

T.5. The larger the noise flux the larger the mass flux due to

.stellar wind from the star.
"
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We have again that the lines of equal noise production in

Fig. 40 are lines of equal mass flux due to stellar winds.

Finally we deduce the statement

T.6. The larger the noise flux the higher the coronal temperature

of the star.

The lines of equal noise flux in Fig. 40 are then again lines

of equal coronal temperatures. To prove this statement, we just

note that because a higher noise flux means higher mass fluxes,

higher radiative losses and steeper temperature gradients, so that

conduction may balance the radiative term, then, the ~e~perature

has already reached a higher value when the shock dissipation

finally catches up with the FLOW and RAD terms.

c) Comparison with Kuperus

The comparison with Kuperus's [54J models is shown in

Table 14.

Sun Kl III G III G7 V Author

F+ { 2.6.107 4.80107 7.9'107 4.7.106 Kuperus
7 7 3.430107 3.106mo 1.6.10 1.6 ·10 Ulmschneider

{ 7.8.105 1.2'106 1.40106 3.70105 Kuperus
T

3.160106 2.760106 30530106 6cor 1.74·10 Ulmschneider

Table 14. Comparison with Kuperus [54J.

There is general agreement in the behavior of both the noise

energies produced and the coronal temperatures. In addition our

statements T.l and T06 agree very well with Table 9 in Kuperus,'
paper.
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The energy production is ·oigger by a factor 2~3 due probably

to Kupe.rus I) more approximate method of comput Lng it"

IThe coronal temperatures are bv a factor of 3=4 lower whLch ,

as already noted in Seco 149 is probably due to the exhaustion

of shock ensl'gy J3;1" great.AT' bei ght,g becan,se hi a theory depends on

small shock Maoh numbers and uses up more sbock energy at lower

heights in order to balance radiationo
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Appendix A

Derivation of the shock equation
Inserting Egs. (4=9) to (4=15) into (4=8), we obtain

Using

to eLLmfna t e p , multi.plying Eq , (1) by (pye)=l and using

Eqs. (2=15) and (4=13)>>we get~

Now, from Eqs. (4=9) to (4-13) follows
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(1)



and from Eqs. (3) and (4) for the left side of (2)_

If we now usa Eq. (2-14) in (2). and if we take G/!lruyM2)
out of the right hand s:i.deof (2). we fi..nd

1 dMs--..,
M drs

« . 2 .' ) ) 2 ( , 3) 2 }-~~-~M+lC =l-ly-l C~ M = r-1)CM ;

where:

11 es __ .--'1•...•.t:"'""'••,,1.;;""1••••.•L.;;;.,L ~2~

~'Y!--1 (lr-1)Ms2+2) + C (MsM+l)
. s

M
[) "'"--L_ (...it = '1)

'Y-tl· ec

This is the desired shock equation 0
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(7)

(8)



Appendix B

1) Principle of shape similarity invariance.

To illustrate the principle of shape similarity invariancB,

of time:

P i
ill

U &
m

-t/t.te (1)

u

tt:t
We want to caloulate

t

00

D ~ r p9 u dtJ
tx

For this purpose. we

1) Normalize to unity initial shock strength~

(2)

00 (>0
=t/!lD "" Pm r u r _£11._ d.t F.; Pm 'u S d,tJ 9U

em p m
t m m tx x

2) Normalize to unity initial slope:



127

From Eqo (1) follows:

The principle of shape similarity invariance now states hat

the integral "'Q" over the shape of this normalized shock remains

the same during propagation.

2) Time scales ~ and form factors ~

On several occasions. we used in the main body of the text
~he quantities ~ and ~ related to specific shock forms. Their

derivation is briefly reviewed in the following.

a) Exponential pulse~

•

t
We know from Eq. (4)=

"V •• 1 (6)

If P i and u have the same time behavior. we havem m



P Qm
.=t/2fC 0e "" p ,m

=t(lpe .

'j2' "" P/2

b) Triangle p'lllse~

we find

tu •••u (1 - u)m J..

2
'" ~p

P
D "" S P Q U d t ••Pm 1 ':lm fC "It

o

~ ~ JP ~ (1 = ;)2 dt ~ ~
o

c) Sawtooth pulse

t
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(8)

!

n~ l1_. l~l<:~_-
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Assuming~

_f<,t<o2- -

o < t =s P/2

we find the results

(10)

S
P/2 P U

D •••2 -!L.
2

u U
-1!L
2

2t 2
(1 = --p) dt ~ p i U ~~m m

o

(11)

o



130,
!

Appendix C

Entropy differenoe

In a gas with r = const. and ~ = oonst.,

RT J--..r-8'=_1
p = p _/ V

~ P
spec. vol. per gram (1)

From the 1st and 2nd la~ of thermodynamics, we have

TdS (2)c dT + pdV ,v

dT R dVdS = c - + --v T u V '

or upon integration,

T R V
flS = 0 In -T + -, In -V

v 0 ~ 0

With

.0 - cp v
R
~

from Sec. 5 and with Eq. (1)

flSr. = cv
In ...E... - 0

Po P

&S = cv (6)

with
r = c /cp v

as usual.
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Appendix D

Expansions for small shock Mach numbers M ~ I+as

Eq. (4=10):

Eq. (4~13): 1 + .1.=1 1 .1::l 2
P = 2 -a+- a')'+1 2 ,),+1

2
Eq. (4-15): , ...k=~')'+1 1'+1

2
Eq. (4~18): 11 ill l( 1) + l (§:l ~17Y+9) 2= 8 = 4 ')'= ex 16 ,),+1 a

'11
..t±l L 2= 8 = 16 a (6)

(7)

(8)

Now~

and correct to terms of third orderp

(10)
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A1sos

3M 2 = 2s
1- -- = 80:

M 2
s

(11)

and from Eqo (4-38):

2 2
X ss 3' 0: (12)

If Y is eonstant~ if we use plane geometrys and if there is

no mass f1ow~ we get from Eqs. (4)~(6), (8)9 (12) and (4~40)

2
do: {1 1 2 1 de2 -z. .,..J... '7 2 r} 1 0: r0- '" (1+0:) ~ (4 0: = -8 0:) -2 dr + (1: 0: - ...w.±..L0: ) ~ - ~~dr 2 8. yH - 6 C"jt'V

c

or

_1do: _ (1 1 ) 1 de2 (1 "'~'7' ) r0 1 0:X' 0= -+-0: --+ -+..L.::.J.,a - -
0: dr ~ 4 8 2 d.r 2 8'Y H - 6 C it' "'Ve

(13)

Appendix E

Equation of Energy Conservation
From the identity

we have with Eqs. (2=1)9 (2=2)
l



or
112... -+ (1 2 ) ..•T ->" opE= ~ ~ u 9pu,~ pU9 2 u +H +pu· 9s-puogx + ~t2 I 0

Now:

dpE = Edp + pdE = Edp + pTds + ; dp = pTds + Hdp (2)

whefe we used Ego (6=2) and (6..;3).. Henc99 with Egs. (2-1) and

(2-3) ,

~;E = H ~ + pT ~~ = = H~p~ _ pT~o~s + pT ~~ I
ext

or

(1 2 ) ..• ..•(1 2) ..." oS I= = 2 u +H ~opu - pU9 2 v +H ~ pu·gx + pT at ext

and finally,

o (1 2) ....•(1 2) -+" oS Iot ~ pu +pE ~ = 9°pU 2 u +H, - puogx + pT at ext
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Appendix F

Shock beh~vior under energy conservation.

1) Isothermal gravitational atmosphere.

The conservation of energy flux of a weak shock wave can

be written in the form:

2pu c = 2
P u c000

Now in a weak shock the propagation velocity

U ~ c.

Using this fact and Eqs. (4-42) and (3~21)we get:

v2 u-U-:=--=1=U
u,.",- =c

or

u = 11c

With the aid of the relations

c = co
~h/hP = P e 0o

wher~ Hs = RT/~g is the scale height, we have

or
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(2)
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1 ..9J1 1 (4)11dh = 2Hs

2) Isobaric atmosphere? no- gravitation

Using
2 'Y ..E.c = p

and Eqs (2) and (1) we get:

pif -2 (5)c = Po 110 c0

Now if P = Po •
- 2

-2 110 c0 (6)11 = c

Hence

1.£n
=: =
-L dc2 (7)- dh 402 dh11

Appendix G

Importance of the bound state energy.

To check the importance of bound state populations in computing

internal energies we have calculated the bound energy for an

atmosphere consisting of 84~0 (~l = .84) Hydrogen? the remainder

being some unionized gas.

To specify the physical conditions in the atmosphere? in

particular the pressure verso temperature behavior? we used the



136

"working model for the chromospherell by Aller [4~ p. 5071
(interspicule case). The partition functions were taken from de
Jager and Neven [43] and Aller [4, p. 116].
1) LTE Case

The ionization was calculated from tables given by UnsBld
[105, p. 87].

2) Norl.-LTECase
9We assumed bl = 10 1 b2 = b3 = . = 1. The ionization

was calculated according to House [34]. The results were:
\

1) LTE case.
The contribution of the bound energy is negligible.
2) Nqp-LT~ case
The contribution of the bound states may exceed at times the

other contributions.· But only in oertain temperature ranges.
We feel that the inclusion of this effect is not worth the
tre,endDUB mathematical labor involved, especially as it subsequently
turned out that the variation of y is unimportant for our
calculations.

The influence of the bound energies is shown in Figo 8 in
(

terms of the variation of y.

Appendix H

A~reement with G~ Ba Field's ~eBult.
Eq. (6~9) a~~ees with Fieldvs [31J resultp as can be seen in

the fo~lQwin~ m~nner:
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(1)

Secondly with Eq. (2-2) in steady state*

(;1 . v) ...• 1 1\
u = = - vr. - gxp

(2)

and ,from Seco 5 with constant y:

H =-LJ2.
1'=1 p

or

H 'Y epV ~ p(~~l) '1p - 2 '1p
I (Y=l)P

Using

we obtain

or

__1__;1 0 '1p = -L~ ~ 0 '1p + (pQO pQo ) = ~K~T= 0
"1-1 "I~l p rad= mech v v

(6)

This is the steady state form of Field's Ego (9).


