THE STRUCTURE OF THE OUTER ATMOSPHERE OF COOL STARS

by

Peter Hermann Ulmschneider

A Dissertation Presented to the Faculty
of the Graduate School of Yale University
in Candidacy for the Degree of

Doctor of Philosophy

1966



Abstract

The production of accoustical noise in stellar convection
zones is shown to give rise to stellar coronas, stellar winds
and U-V radiationr Mofeover it is found that the detailed
gtructure of the outer atmospheres of stars is completely
determined by this noiseflux and that it consequently can be

predicted for nct too luminous stars of late spectral class.



Section
Section
Sestion
Section
a)
b)
c)
a)

Section

a)
b)
c)
a)
e)
Section
a)
b)
c)
Section
a)
b)

¢)

Section

a)

Shock equation without dissipation term

-]

°

Contents

o

©

]

o

o

3

]

°

Flow and Pressure Equations

e

©

Inclusion of a dissipation term .

o

o

Complete shock equation . . « o « o o

Comparison with existing theories

1. Introduction

2,

3, The Shock Front

4, Shock Equation . . .
5

Stellar Gas

Abundances .

o

@

o

o

o

o

a

L]

Internal energy and enthalpy .

Ionization .

The quantities ¢y, ¢

Numerical results

60

General formulation

o

P?

Energy Equation .

@

]

[+
v

L

o

and H

@

o

°

[

Treatment without conduction .

Treatment with conduction . .

7.

Radiation Losses

&

o

o

°

Temperatures below 7000 i .

Temperatures exceeding 7000 °x

Adopted leoss function . . . . &

80

B8hm-Vitense's Models

Velocities

e

o

o

o

o

o

o

o

a

o

o

°

o

°

o

o

Composition and Thermal Properties of the

o

Computation of WNoise Energy Production from

15
14
21

26
27

39

45

46

50

52



b)
i
d)
Section
a)
b)
c)
d)
e)
f)
g)
h)
i)

Section

a)
b)

c)
Section

Section

Section

a)

Production of accoustical noise energy . .
Frequency spectrum of the noise . . . . .
The cut=off frequency o « o o s o o ¢ o o

9 Initisl Ceonditiong and the Photogphere

S e o

The height at which the shock forms . . .

Models of stellar photospheres . . o . o &

Initial pressures . . ¢ s o ¢ s o o o s o

Shape compression factor . « « o« o & & o o

Initial heights s © o o © & e e @ 0 o e @

The zero reference level ., . . o « o o+ o

Initial shock Mach numbers . o« « o ¢ o « o

Summary of initial wvalues . . ¢ o o o = o

Comparison of photospheric models . . . o

o

10, The Complete Set of Egquations and the Type

of Solutions . ¢ o ¢ o o o o o o o o o
Summary of the mathematical problem ., . .

Type of solutions . « o o« ¢ o o s o o &

1) Conduction and shock dominated solutions

(CD;SD) o L] o o o o ° o © o o ] o o o

2) Super- and subcritical solutions . . . .

o

o

Page

56
56
57
62
62
63
64
64
65
66
66
68
68

Ti

« 11

L

3) The three critical solutions (CDC,SDCF,SDCR) .

Selection of the solutions . o+ & o ¢ & o o

11. Computer Program . o o » o o « o o o =

°

o

o

12, The Principle of Shape Similarity Invariance and

the Condition of Complete Shock Dissipation .

13, Numerical Results . ¢ o ¢ o o o o o o o

Recalculation of Bird's results . . . . .

72

72
T2
14
i

78
84

. 84



b)

c)

Section

a)

b)

Section 15, Discussion of the Stellar Models

2)

b)

c)
Section

Section

Survey of the different solutions with the
full set of equations

The models . . o »

14, Discussion of the Solar Results
Disgcussion of the model

Comparison with observation and other models

1)
2)
3)
4)
5)
6)
7)

The amount of convective noise energy produced by

e

o

o

o

o

®

o

o

°

(]

o

o

o

@

-]

@

L

]

o

L]

o

@

L]

Corona temperature . « o o o o o o o o o

Pressure and electron density .

Shape compression factor .

Total emission of transition layer and corona

Mass flow., . .

Mechanical energy input

Comparison with recent models of the

o

o

transition layer .

different stars ., .

Coronal temperatures and temperature gradients

in the transition layers for different stars . .
Compariscon with Kuperus

16: BofeXreiioll. o« o s o 55 & @ 6d & & % o @b e

17,

Acknowledgments

@

°

[

3

o

o

o

L]

o

o

]

®

@

©

o

@

°

]

o

L]

@

@

o

o

]

o

e

]

o

®

o

@

e

o

]

o

o

©

o

o

°

[

o

°

®

©

@

o

®

©

©

@

o

@

@

@

o

o

@

®

L]

°

o

o

L]

©°

@

@

L]

®

o

3

o

e

Page

103
103
105
105
106
106
.108
109

110

111

113

113

115
117
119

123




Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

Derivation of the shock equation . .

Principle of shape similarity invariance

Entropy difference . . ¢ o« ¢ o o o

Expansion for small shock Mach numbers

Equation of energy conservation . .

Shock behavior under energy conservation

o

@

Importance of the bound state energy .

Agreement with G. B. Field's results

°

o

Page
. 124
v A2k
. 130
o LIk
“132
. 134

. 135
. 136




Segtion 1. Intreduction

During the last 20 years the existence of a corona, that is,
of an extended dilute atmosphere of high temperature overlying
the "normal" atmosphere of the sun has been well established,

However, until recently it was nct very clear to what extent
stars other than the sun possess extended atmospheres of a similar
nature. This is somewhat surprising as the internal structure of
stars is fairly well known as a function of luminosity and
spectral class, and since moreover, quite early the correct
mechanism responsible for the appearance of the corona was
pointed out.

Qualitatively, the process is as follows: In the largs
turbulent convegtion zones of cool, not very luminous stars,
accoustical noise is produced which represents at that level in
the star only a minute fraction of the total energy contained in
radiation and convective mass motion.

This sound energy travels outward into regions of lower
and lower density. By the time the atmosphere becomes opticaelly
thin all energy in the mass motion is converted into radiation,
while the sound energy is carried by the particles of a more and
more dilute gas.* Thus, the amplitude of the waves grow, until
shock waves appear and a sudden conversion of sound energy into

heat occurs.

*
The exact nature of this conversion process including the so-
called problem of overshooting [927] does not concern us here.




It is the purpose of this investigation to relate the
energetic behavior of the convection zones to the strugture of
the outer atmospheres. The information required for this endeavo:
is available for the sun to a quite satisfactory degree. However,
even in the stellar cases theoretical data provided by BShm-
Vitense [16] and others are sufficient to predict the transition
from the photospheric to the coronal layers, It is nevertheless
obvious that the sun serves as the primary test case for this
type of work.

Previous_modeis of the cuter s?lar atmosphere have been based
largely on the interpretation of observed data, such as the flash
spectrum, the radic frequency and ultraviolet spectrum, and ths
like, thus relating the model atmcsphere to the lower boundary,
or on the observed solar wind which ties the model %0 the boundary
behavior at infinity.

Computations of the type envisaged here have been carried
out for the sun by Bird, Uchida, and others, #nd most resently by
Kuperus who also treated the case of stellar coronas. The primary
difficulty in this approach is the determination of the exact
balance among the various energy terms, in particular, the shock
dissipation, the radiative losses, the heat conduction, and the
stellar wind flow. Thus, 1t presupposes a quite detailed knowledge
of a variety of phenomena, in particular, the ones related to the
passage of a shock through an atmosphere with variable density.

In addition, the presence of radiation terms requires a certain
degreerof a-priori-information on the structure of the layers

involved, and the availability of such quantities as the emission




coefficients for plasmas departing from thermodynamic sequilibrium.
It is clear that this investigation is only one step further
on the way to a quantitative understanding of outer stellar
atmospheres., On the pesitive side we can say that we applied a
more genersal theory of shock behavicr, and that we thus were able
to include in the energy balance dissipation, radiation, conduction,
and flow terms. On the negative side, we have left out viscosity
which is probably of minor importance, but more significantly, A
we left out magnetic fields. The reasoning in that respect was
that for the sun meagnetic fields are not the dominant feature
outside of areas of activity.* Finally, the atmospheres were
treated as homogeneous, so that for instance the spicule structure

of the solar atmosphere that determines many of the observational

features, such as the "height of the chromosphere,” is lost,

We begin by a detailed discussion of the fundamental set of
hydrodynamic equations, on which our shock theory is based., After
deriving the theoretical relations that determine the energy
balance across the outer atmosphere we introduce the numerical
procedures and the computer program. Results were obtained for
the sun and % stars of luminesity classes III- V, and comprise,
in particular, the radial variation of electron temperature, gas

pressure, and stellar wind velocity.,

*This can be seen from arguments, given by Alfven (5, Bg. (26),

p. 95]. If, as is true at least for the upper photosphere in
regions with no activity, the magnetic field lines, the direction
of wavepropagation and the direction of the gas flow are all
directed vertically, no energy is fed into magnetic field
disturbances. Thus, no magnetohydrodynamic waves are generated.




Section 2, TFlow and Pressure Equations

The behavicr of a non-viscous fluid streaming with a velocity
T can be described by the following equations [58, p. 3]

Eqn. of Continuity:

%%-.Lvm'ii’ﬁ 0. (2-1)
Eqn. of Motiomn:
é"‘a‘; - ”’o a = o= "‘1"’ = ‘,\ . @
3% (u-v) u = 5 VP gx . (2=2)
Egn. of Entropy Conservation:
S - S
8, Fs =2 : (2-3)

ext

These three equations determine the five state funcitions E
(fluid velocity), p (density), p (pressure), uniguely if we specify
the respective boundary conditions. S is the entropy, %% — the
external entropy influx, g the gravitational acceleration, & a unit
vector in radial direction, t the time. The pressure p can bs
removed from the system by the esgn. of state.

In a stationary atmosphere the state functions ars not
explicit functions of time so that we can write in spherical
one dimensional geometry [99]

d du 201
TiteEeEEan, (2-4)




2
g x
du 1dp  _oo0
' dx g p dx b x2 0. (2”5)

As shown in Sec., 6 we can write:

2 2_ . R
c el l A ; (2-6)

where T is the kinetic temperature, ¢ the sound velocity, y the
ratio of specific heats, g, the grawvitational acceleration at
level x

0

Defining a dimensionless wvariable r
X =TT (2=7)
where
T ®X (2=8)

is an arbitrary reference level in the star's atmosphere, and

introducing the flow mach number M

=2 (2-9)
we obtain
Mc%%+p%%?%+-2—%%=_o . (2=10)
g r
Mc %%% + %=%§'+ 020 =0 . (2-11)




Differentiating Eq, (2-6) we obtain

2

A%
e

dp _ s 4o  pdo ¢ 4y .
T ol + 7 dr p ?2 ir ° (2=12)
With Eq (2=12) we eliminate dp/dr from (2-11)¢
aMe (q_g2y o Mdcl Mo gy, TEoTo  2me )
ar Y T ¢ dr y dr 2 2 -} e
cr
orxr
o, M (lafee’ 1ar, T8 2 (2-14)
dr 1myM2 2@2 dr y dr GErZ T ’

Bq, (2=14) is the well known flow equation [127], [61], [80], [19].

Solving (2-11) for dp/dr yields

2 2 g r
_d_-£ - . ( 2 dM N M g o9 0) -
dr Me™ §r = 2 “ar 7 /P - (2-15)

Eq., (2«15) is the pressurs equation.
The pressure can also be computed in a different manner,

For this purpose we recall that Eqn. (2«1) in steady state reads

ey |

it
O

Vep (2-16)

Integrating (2-16) over a section of spherical volume bounded

by & cone of unit solid angle and by the radii x_ and x we find [19]

0 = j Vep U 4T = J ou-ds = puxz - p@uoxo2 . (2-17)




Using Eqs. (2-6), (2-7) we obtain

P uMec
RT 00 0 0 iy
b=p=== T 5 (2-18)
0 uMer

2-18) and (2=15) are identical. In

o~

In principle, Egs,
praxi, Bg, (2-15) will be used as a check on the accuracy of the
numerical integration., The pressures derived from Egs. (2-18)

and (2-15) indeed agreed very well.



Section 3, The Shock Front

After introducing in the last section the fluid equations
in a form suitable to our problem, we now turn to the discussion
of the relations that govern the physiczal behaviour of the gas
upon passage of a shock front.

First we have to connect the gas parameters on both sides of
the discontinuity that represents the shock front,

Suppose the shock is given in a one dimensional flow, Then
we know that mass, momentum and energy have to be conserved in

the flow across the shock.

-
UpVoPpPp |1 V1P1 Py
Region 2 Region 1

Y
4

Fig. L One dimensional shock discontinuity

Suppose further that relative to the shock the functions of state
which describe the flow are (vl,pl,pl)ﬁ (v2392,p2) where the
subscript 1 refers to the parameters in the front of the shock

[58, p. 318]. We have
Masgss fluxs PV = PV, = 3 (3‘1)

Momentum fluxs pl+plv12 = p2+92V22 (3=2)



c E..2 . 1,2 (
Energy flux: By +5 7 =Hy, +5v,° . (3=3)
vl and v, are the velocities relative to the shock, Uy and Uy

relative to the lab frame, p denotes density, p pressure and H
enthalpy per gram, U the sheck velocity relative to the lab frame.

Introducing the specific volume

1
Ty (3-4)

We can write Egs. (3-1) to (3-3) in a more convenient form

vy o= 37 v, = 3V, (3=5)
Dy=P
32 e vzﬂvl (3“’6)
1 2
V=V, = j(VlmVZ) = J(pznpl)(Vl=V2) (3=7)
1 2 24 .2 1
H1=H2 =75 (V2 “'vl ):! =5 i.vl+v2)(P1mp2) (3“8)

Eq. (3-8) is the so-called shock adiabatic [58, p. 320].

At this point we ought to emphasize that the actual shock
gstructure in a gas is much more complicated as indicated by the
above simple relations. We can summarize a more realistic
picture [97], [117] leaving electric and magnetic effects aside,
by distinguishing the following regions of a shock front:

1) External (kinetic) Relaxation Region.
This region immediately follows the shock front. The

kinetic temperatures Tag Ti’ $e of atoms, ions and electrons
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respectively rise to an equal and very high value:

2) Internal (ionization and excitation) Relaxation Region.
Following kinetic relaxation, the elestrons spend their
energy in excitation and ionizationj their kinetic temperature

decreases:

3) Radiative Recombination Region.

Here inelastic collisions beitween atoms, ions and electrons
predominate and give rise to an ionizing radiation (which may
penetrate to the front of the shock producing the precgrsers).
At the same time, it leads to an equalization of the kinetie

temperatures.

For our purpose of main importance is the fact that the
ratio of specific heats y is the same from in front of the sheck
and in the front itself through the end of the kinetic relaxation
region, where ionization starts to change y. (See Section 5)

With these remarks in mind we now suppose that the specific
heats cp, e, (per gram) depend only on the (kinetic) temperaturs
(ef. Egs. (5-15) to (5-17)).

We then can write:



v
H-'-@TB% 3 (3“’9)
R
Cp=Cy = 4 (%3=10)
C
v ==B (%-11)
v

where T ig the temperature, R the gas constant in erg per degree

@ the mean molecular weight. Hence,

V. ey, v, (7+1)p; + (y-1)p
%ﬁﬁé“i*( 1)l+(-+1)2» (3-12)
2 Pp ¥y ly=l)py + (7+l)p,
2 .
- (G-1)py + (12)my) (3-13)
v12 i % Vl((?-l)Pl + (y+1)p2> . (3=14)

With the flow velocities u relative to the lab frame and

the sound velocity ¢, of the gas in front of the shock we can

1

write the above equations in terms of the shock Mach number Mss

u, = U:ul = - %i, ‘ (3-15)
1 1
where
vy = u - U (3=16)
Vo =u, =T (3-17)
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8,2 - Y,EL = yp,V (3-18)
1 Py 11 "

As a small disturbance in region 1 travels always with velocity

Gl we see that always

M> 1 ‘ (3-19)

Thus we have as a final result [58, p. 331]

2
P, 2yM° - (y-1)

- = -20)
> ) (3-20)
Py ¥y (7+1)M52

— ;“‘ L (3-21)

where Yy is now a function of the temperature.
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Section 4. Shock Equation

We are now ready to derive the relations which determine the
behavior of the shock passing through the nonuniform medium
described by the system of equations reviewed in Section 2.

The solutions have to conform to the conservation conditions
derived in the last section which connect the parameters behind
the shock front with those of the undisturbed steady state flow
in front of the shock.

There are three different methods in the literature, to find
the development of the shock Mach number Ms during the passage
of the front through the medium.

1) The approach developed by Brinkley and Kirkwood [17] for
underwater and atomic explosions. Here a shock of arbitrary
strength is considered, and use is made of the "prineciple
of shape similarity invariance'" which is based essentially
on experimental results.

This approach has been adopted by Schatzmann [93],
Weymann [115] and Osterbrock [76] to the solar atmosphere
for small shock Mach numbers.

2) The approach treating shocks as the result of the development
of large amplitude sound waves which has been given by Landau
and Lifshitz [58, p. 372].

This approach was adopted by Kuperus [54] to stellar
coronas, again for small shock Mach numbers,

5) The approach based on the theory for shock tube experiments

that was developed by Whitham [116] and Bird [117,[127,[14]
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and adopted by Bird [1%3],[14] to the solar atmosphere for
arbitrary shock Mach numbers,

We shall follow in our discussion Bird's treatment, however
expand it to include the variability of y and include the
influence of dissipation terms on the shock NMach number as
suggested by methods 1) and 2). We shall subsequently show that
our treatment reduces to the above methods in their proper
domain of wvalidity.

a) Shock equation without dissipation.

First! let us modify Bird's treatment to ascount for a
variable y, but still without dissipation term,

All unsteady flow processes have one characteristic property
- in common, A disturbance at a point P of the x,t plane can be

felt at a later instant only within a limited region, the so-called

=

region of influence, bounded by the two characteristics C+, Y

that are defined respectively by the equations [72]

dx ,
—— p =1)
T cuie . (4=1)

Fig., 2, Distance=time plot of a gas flow




1

A 1]

dx/dt is the velocity of a disturbance, u the flow velocity,
¢ the sound velocity as before.

The 3 equations of continuity, of momentum and energy
conservation connect the 3 state functions p, p, u at the point‘Q
with those &t the point §'. But under ne circumstances can they
connect the state functions at Q with those at Q”,as Q¥ is outside
the region of influence,

Indeed P could be the seat of & discontinmuity, and if the
discontinuity propagates with velocity ¢, as for ipstance is the
case with weak discontinuities or very weak shocks, the state
functions would jump discontinuously at Q"™ when we cross from Q
to Q¥, At the point Q™ our time and space derivatives have to
behave therefore in such a way that all derivatives across ¢t
vanish,

In a gravitating atmosphere of spherical symmetry with

outward mass flow we can write the basic eguations in the form:

(See See., 2)
Eq. of Comtinuity

u . 2ug
o, 20 . g (4=2)

Eq., of Motion

2
X
du, ,au,13p,, o _
3t P23 Toaax t & T2 " 0 (4=3)

X

Adiabatic eqg:®

-
The use of this equation behind the shock front is somewhat proble~
matic., The huge increase in entropy by the discontinuity is
followed by an entropy lcss due to recombination radiation. (cont.)
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%%’+ u %£=e 62(§§“+ u %ﬁ) (4=4)

Again u is the flow velocity and X0 8, BTE defined like in
section 2.
Eliminating ¢ from Hq. (4-2) by Eq. {4u4} and using Eq. {Awﬁ)

we get

' 2
. 9P . 1 0P+ (,asa, __1-.3;&)3 8o o , S pu .5
! ax T BFc at ~ “P\3x T uic 3t wEe 8o . 4 (utec)x (4=5)
and with the definition of the sound velccity
[N 2@&..&..@&) (1-6
3x ~ ufe 3t - C \ax © ufc 3t (4-6)

where the { j } gign is valid in (4-5) and (4-6) if we are on
{53 .
-

The characteristic equations (4=5), (4=6) exhibit that there

s e

are only derivatives along the respective characteristics C , C

viz.

@)y - 38+ 338 oy 28 s e
¢ G

To show how these equations are applied in deriving the shock

equation we consider the case of a shock generated by a piston

However this loss is small if the pressure and thus the temperature
drops very rapidly to the equillibrium value., Whether this drop

is indeed sufficiently rapid could only be ascertained by a
detailed investigation of the ionization relaxation region which

at present appears impossible %o sarry cut.
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moving into a tube, It is assumed that the gas is at rest in

front of the shock.

Fig. 3., Distance-time plot of a shock wave

The charaqtéristigs 0+, C” are drawn for both regions. The
slope of C+_in région 1 is larger than the slope of the shock
world linglthat indic&tes the gsupersonic propagation of the shpc& .
into regicﬁ‘l.. T

Conéider now a point P on the shock world line. From P
disturbances travel along C until they get reflected on density
variations at § and 8'. They travel along C' to catch up with the
shock and modify it at R, R'.

These so-called re-reflected waves should be taken into
account at every point if we want to use the characteristic
equations in region 2.

The effort is greatly reduced if we neglect the effect of
the re-reflected ﬁaves altoggther as has been done by Bird [11],
[12] and Whitham [116]. This procedure will be called BW approxi-
mation.

Bird [11] has compared the BW approximation with exact

calculations and found that there is very good agreement when
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shocls propagate toward lower densities., We feel that the reason
for this good agreement is the fact that disturbances travelling
towards regions of higher density such as these travelling along
C” are damped out as already Lamb [57] has shown for an isothermal
atmosphers . ‘
With the BW approximation we can use the characteristioc

equation along ¢* until it meets the shock. There the gquantities
are éonnected across the shock with the flow in front wvia the

equations derived in Section 3%,

We haves
dp du e,0 X e 2c,u
P 2 %3P o >2Y2
(4-5)3 ix * %P2 T * b0, (s, Z Ty ) =0 (4-8)
p, 2p7 - (y-1) )
(3-20): e =g (4-9)
2
P (y+1) M
(3-21)1 -£ . s B (4=10)
L (y=1)m + 2
2
uy=U  (y=1) M+ 2
U=l ) (4-11)
1 (y+l) Mg
U=z u
1 1 .
MB = Qi M= ‘fr:*;' (4.-12)
o p Pan 3 /2 . 1/2
S (P S N ] f
e (7 2% /r o) () =< (4-13)
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Now it is true identically that:

1u Vp=l U, =U U, =l u
2 P 1

sEmgt s ks = b (4-14)
1 i 1

= (1 = 50 M, o+ M
or
a, |
=g+ M, (4-15)
"1
2M52 -2
g = T, (4-16)

Going over to the dimensionless variable v a3 in Sec. 2 wa

obtain after some manipulations (ef, Appendix A)

s . { lngMw (yee200M? 1 ac® |
dr - 1 2 2 dr L
=yM 6
8T
(C(B+C)=14(Cmy(E+C M) —2 -
§+Q-E-M ( ) cgrz
- g (€8=8m(cPa1-(y-1)c WPu (o1 )ow’ P -
- (8-M+(C~y8)M2) %.%% 3 (4-17)
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whersa
ke ”’*“f — (4-18)
sor (e e2) 4 ¢ (Be. )
8
and,
M :
o= _tg-._, ..:..g . a .
LB y+1 <6§ - f) (4-19)

Equation (4-17) is identical with Bird's [12] result except
for the additional term proportional to %’%% o

Letting dce/dr -0, g, = 0, 2/r = 0/r (plane geometry),
dy/dr = O we see that the right hand side of Eq. (4~17) goes to

zero, and as Ma p- I )

8 -4
= =0, (4-20)

We thus have shown that Bird“s‘theory is a constant flux
theory where the energy loss by dissipation is resupplied from a

reservolr such as a piston moving with constant velocity into a

pipe. In our case where we have shocks of a given shape (triangular

gshape) the energy is carried in this shape of the shock and the
shosk thus besomes the smaller the more it dissipates.

This effect of modification of the shock Mach number by
dissipation is the dominant feature of the approach by Brinkley

and Kirkwood [17] which we will discuss now,



b} Inclusion of & dissipation term.
To calculate the rate of dissipation of & shock we consider

a shock pulse of arbitrary shaps in a gas at resi:

= u o= 0
P A
) P = Pg
at P
’i‘n‘}; T = T
a @
i_TP > P= P
= %
o= 0
= P
P ¢ at P
= b 3
t tb o)
" ..P > = i’:‘w[‘)<h':‘lif,‘u
| X

Fig, 4, Fluid element before (top) and after (bottom) arrival
of a ghock pulse.

The total work done on the small volume slement at P is
AW = AE + p AV = AH , (4-21)

:i,ue@D we have increased the internal energy and the volume against
the pressure P - H is the enthalpyv per gram,
If D(x) is the total energy of the shock per unit area of

initial surface in our spherical geometry, then

2

aDd(x) X
dx = " P M x 2 (4'22)
X, :

where
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L2 &
Dix) = £L3=J (p = pﬁ)u at
*o %X

,_
B
§
N
(e
—

Here pressure p and flow velocity u refer to the shock profile,
+ is the time of srriwal of the shock front at the point x.
- :
We can rewrite this integral using the "principle of shape

similarity invariance" as defined in Appendix B and obtain

2
Dx) =F5p, u #v (4-24)
}:Q .
S0 F
pyU
sH A A
i u '
kd P
) m
///’
v U
Vv Y
; Ve
e & 3
< ®
¢ = p >

Fig., 5. Triangle shock pulse

P is the maximum pressure difference, w the maximum velocity
difference, # the time scale, % the form factor and

P o i .y

= for triangular shocks

2

for exponential shocks (4-25)

-

B

A
3 ey

for sawtooth shocks

e




withs

for triangulsar

o

v= = 1 for exponential » shocks

= for sawtooth

- .J

and P the pericd of the shock.
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(4-26)

Now AH is the total enthalpy change after the pressure has

come back to eguilibrium

AHs:T-AS+V% .

Using the results of Appendix C we have

MH = T o in 2= (=)
o Fo

or with Eqs, (4-9) and (4=10):
AH = T G“f in d eay

From Egs., (3-9) to (3=11) we know that

2 2
o G

“v T u(y-1) T Ty(y-1)

go that

2
P 487
AHlenﬁe

(4=27)

(4=28)

(4-29)

(4=31)
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Thus

& B

11163 I - W I e (4=32)
dx 2
x “r(r-1)
and with Eqs, (4=16) and (4=9)
D(x) = =5 (f-1)pE c v (4-33)
XO
-4

where we neglected M = 10 7 against € = 1.%¥ This neglect is
permisgible in most of our applications, except close to the critical
point. However, there almost all shock energy is dissipated
already.

Heolding Xz/xoz, p, ¢ constant and differentiating only the

terms contributing to the dissipation term as we have already

treated all the other contributions, we obtain

o 2 . '
an(x) e a(g-1 VI | B
ety (s _ngml + (¢-1) E%) (4-34)
. ;

o
Using the definitions of ¢ and £ again and
GE
P=p =

we find instead of (4-34):

*.
Cne might think that as dM/dr is large, it should contribute
to (4-34), however even when M changes from 10=4 to 10-2 it is
8till much smaller than €.
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AN

‘ s . am
i) o o gyt oy 2 2 ) 2 (4=35)
dx e 2 ( +1)2 'y M 27 dx
o LY o
Comparison with (4-32) yields:
i . 5 (y+1)° _in g 0”7 (4-36)
dx 4e y(y=1) 3k 2 . 1 y L4=30,
s 27
M
5
or with the dimensionless variable r from Sec. 23
% R a:!:, _:-LQL_-. y ("4”,7—{)
dr 4- C’»l b ol - S ) v
where
X = (pe1) nd e (4-38)
?(7‘“1;! {‘}M 2 s B o 1 ! L
8 i 2
8

There is one more minor correction to be applied to (4=37).
So far we assumed that there is no flow in front of the shock,

To include such a flow we consider the following situations

8.) u o= MGl = 0
8

Ms, t, M? Lt dt

7 7

i /

L = Ao m

y Ms? § Me €,

7 /

s R

i 2 >



b) u=M011£C‘
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Ms, 1 Mg, fo +dt %&)Tﬁ dt

/ | /

7
| 7 :

AMec+He, | A MicsMc,

/ 7

Aec—Mc,dt —les dr >

= dr’ -
< > X

Fig. 6, Influence of fluid flow on the shock dissipation.
. - - ; ir! = e )
Now: dr' = dr + Mc, dt dr = M_o, dt or dr dr(l + T
Thus instead of (4-37) we have
o e TN, WY WO (4=39)
drt = Tdr i 4 W :
1+ cwv(l + MS)
) Complete shock equation
The complete shock equation can now be written es
ﬂ@; { a+2m1-(v£+ac:}m2) 1 d4e® .
dr 1»7M2 2 dr
1 / 0T o
* EC A ((C‘§+§)*14§9Y(§+C))M) azrzjﬂ
2 2 2\ 2
- grea (68 - g+ (¢Pate(y-L)WP-(y1)0) 2 -
; 2 a xXr
- (8-l (gmyo)u?) = 4 2 (4=40)

4 ¢ w(l + é£0
)
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with 1, 6, x defined by Egs. (4-18), (4=19) and (4-38) respectively.

d) Comparison with existing theories
1) Bird [127:

Putting y = constant, u = 1 and neglesting the dissipation
term leads immedistelv back to Bird’s theory.
2) Schatzmann [93], Weymann [115], Osterbrock [76]:

Thege theories'are valid only for weak shocks see Osterbrock
[76, p. 369], v = const, and no mass motion.

For weak shocks we can define & "shock strength ﬁ;by the

relation

= ﬁu P-L 9 <=1, (4-41)

where again the indices 1 and 2 refer to the regions in front of

and behind the shock regpectively, With Eq. (3.21) we get

w2 .1

Lo 8 ot 4(&
N o= 2 == - (4-42)
(yml)M82+2 T+l

where for weak shocks the shosok Mach number is written as

Ms = 1 + a . (4=43)

Suppose now that there is no mass motion in tre atmosphere,
. Yo . 2
We can expand Bg. (4-40/ in terms of a up to terms of order «

(See Appendix D):

lde _ _11as” Fo 1 Tl

adr "4 2% "2 "Copv ° (4-44)
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where:

is the scale height.

Using the more familiar relation

ia 11 de 1L _optl 1 ~
ﬁdx“4°2 dx“*‘sz 24 c-grvﬁ° (4-45)

Inserting # + = P/12 from Eqs. (4«25), (4=26) for sawtooth shocks
(4=45) becomes identical with Osterbrockls result in the absence
of an external magnetic field,

It is interesting to note that the first and second term
arige purely from energy conservation, This fact shows again
that Bird's theory is one applying energy conservation., The
first term modifies the shock strength such that energy is
conserved when the shock enters & region with different sound
veloeity, but equal pressure. (See Appendix F). The shock
strength decreases as the sound velocity increases, The second
term modifies the shock strength such that energy is conserved
when a shock travels down a density gradient produced by a
grevitational field, (See Appendix F)., Here the shock strength

gets longer with decreasing density.
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The third term is the Brinkley-Kirkwood dissipation term,
the only term proportional to T.
2) Lendau-Lifshitz [587], Kuperus [54].

This approach too is restricted to weak shocks as only small
amplitude waves remain simple waves in second approximation, of .

Landau-Lifshitz [58, p. 377].

For weak shock waves we know the energy in a sawtcoth wave:

(Problem 1 [58, p. 377]) to be:
B = B /(Leev t/8,)" (4-46)

where

a = %'(7+1) .

<— (P —>

A
a2

Fig. 7. Sawtooth shock

Nows

2%
4]

. =2 1 N
E = EO(L+bx) , b= 5-(y+1) Eﬁz;; (4=47)

ors:
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1 _dB(0) _ _ 5y . o L2+l (4=48)

EEOF dx cP

where we used Eq., (2) of Appendix F, that is:

u=2v = fie (4=49)
and
. .
24 = cP =y (4=50)

Here P is the period, v the frequency of the shock waves.
According to Eq, (4~24) the energy in the shock wave can be

written

E=p uww (4=51)
or with

p' =7 W p, (4=52)
from (%-20) using

+1
Ma = 1 + 0 =1 + 11— n .

we get:

Emyop wv i . (4-53)

Hence

1 4dF
Fax = @ a (4=54)

L
i
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Since for sawtooth shocks # v = P/12 we finally obtain:

147 +1 x -
kRS T A (4-55)

This is identical with our Eq, (4-45), The energy conservation

terms have to be added in Eq, (4=55).
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Section 5, Composition and Thermal Properties of the Stellar Gas

Before we derive the third and last major relation required
for our problem, we would like to show how Y. & and H may be
computed in stellar aitmospheres.

a) Abundances

We considered the ten most abundant elements according to
Aller [4] i.e. H, He, C, N, 0, Ne, Mg, Si, S, Fe with the following

abundances:

Element éi
H 1,000,000
He | 157,000
c 400
N 891
0 100
Ne 500
Mg 22
Si 27
S 20
e 9

Teble 1, Abundances by number

Atomioc parameters such as ionization potentials, etec, were

taken from Allen [a27.
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b) Internal energy and enthalpy.

Under conditions of thermodynamic equilibrium, internal
energy E, enthalpy H and the adiabatic coefficient y are functions
of temperature and density or pressure,

In the regions of interest of our problem thermal equilibrium
is not established, and we have to reformulate the expressions
for E, H and y.

For this purpose we consider & gas of No neutral particles
of which leo are H atoms, v2N0 are He atoms, vSNO are C atoms etc.,

then we have:

£
5 Z v, =1 (5=1)
4 1

v
i zi

where the eiqs are the abundances by number., At a given temperature

we define

ty

xio 5 1 = z: Xy # fraction of element i in neutral state

r=]l

X # fraction of element i in first ionized state

il

a

b fi g2 fraction of element i in fully ionized state

:

Let Xip be the ionization potentials of element i in stage of
ionization r.
The internal energy can now be written as the sum of the

translation, ionization and excitation energies:
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(5=-2)

= B + B, " + B 4
“transl. ioniz, excit.

According to Rosa and Uns#ld [89] and making explicit use of
the one to one correspondence of thermodynamics 4o statistical
mechanics in our problem which is possible for particles with a

Maxwellian velocity distribution.

By onts, ™ %y Zlvi {xil Xip * XiQ{Xil+xi2} e °}

£
r
- No Vi Z *ip Z Xi4 (5-3)
i

| 5 Y { ' }
Bivans., ™ Mo 3K Tp ), Vg {14142+ « . fixifi
1

5 E:
N o3k Te{l + (xil+2xi 2 W @ fixifi}
i

- N -% kT (1 + %) . (5-4)

where

ue
PV@
PVﬂ
&
i
\Ji

I“sis

These two terms are formally identical with the corresponding
equilibrium terms, if we ingert for "the" temperature the kinetic
temperaturs Te which we assume to be the same for all particles,

The actual departures from equilibrium are of course hidden in the
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expressions to be given for the xier.

Turning now to the bound states, we have similarly [89]

*
f By
= 5w
F"excn‘.ta Nc:o z Vi zxir Z Xirs Nirs (’ 6)
i r=0 8=0
where:
- Eﬂa
Nirs birs Nirs (5-7)
with:

. e- Xirs/kTe
N, % u —EE (5-8)

irs ni*
z e.- Xirs/kTe
girs
ge=0

For ni* the number of the shell limit because of the Stark effeot

one may take:

ol

2 : ‘
log n,* = 1,620 + 5 log Z; = % log P, (5=9)

given by Uns8ld [106]. Xizg denotes an excitation potential,

birs deseribes the departure from equilibrium in conventional

notation, Nirs* is the comparison population in equilibrium at

iy Zi the ionic charge, Pe the electron pressure,

e?
It is convenient to use the notation

£,
i

oxoit, ® Mo Z Vi z Xyp Bip o (5-10)
i r=0
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with:
n, ¥ ni*
1 . i -
. ( E: h Xirs/kTe)/ ( E: . Xirs/¥Te
ir © Xirs irs girs _ , irs
g=0 P
(5=11)

1f we write internal energy and enthalpy in terms of one

atom of the original gas of No atome, we have

H/a = B/a + ﬁf-- E/a + (14§jkTe (5-12)

where from Egs. (5-2) to (5-4) and (5-10) follows

y r - £
) = a7
A ) h {(R.13
g kT (L4x) + )v; ) Xy 2, Xig *Z"i Z x50 By (5-13)
i el 4=l i =0

E/a.-
Thus
Ty T £5
Hfa = £ RT(14%) + ) vy ) Xy ) Xgp * ) Y5 ) Fie Pig
L r=] b=l i ral)
with x and b defined respectively by Eqs. (5-5) and (2-11),

ir
In an extremely dilute atmosphere we have [49]:

b very large, birs = 1 for 8 >> 0 .

iro

However, we rate that Ripg ® 0 so that the major overpopulated

term does not enter the energy balance,

We have neglected the bound energy E altogether in our

axcit,
caleculation as sufficient accuracy can be achieved without this

complicated term. A numerical check on the influence of this
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neglected term has been carried out and is given in Appendix G
and shown in Fig. 8.

¢) The Ionization

Low pressures and small optical depth make it possible to
use an ionization formula resulting from the balancing of
collisional'ionization and radiative recombination, These assump-
tions are valid roughly for the regions above the level where H
becomes largely neutral, We used the approximation even in
deeper layers in order to keep machine computations within
reasoﬁable limite. The actual computation was carried out analogous
to the procedure adopted by House [34].

d) The guantities 7, eps Oy and H,

Tn the above approximation, the ionization ratios depend only

on Te and not Pa or the density.

We have:
fi r
= '5’ l X (e 18
H/a 5 kTe(1+x) + E:“i E: Xy p E: X4 4 (5=15)
r=1 b=l
i, ;
i v
T . &
B/a 5 kTe(1+x) +=§:vi E: Xyp sziE (5-16)
ral Lesl

and

dH/a ik/a o,/8 ¢ s
Gp/&- ot dTe Gv/& = dTe ¥ “-G?E (5“"]7)

Thus
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£
i iy dx.
‘5"(1+3€)+T{2\)a22(r°2+(3 %o ) [T ) =t
2 el ; 1.4 2 P ig € dTe
y = (5-18)
fi o dx
+x) + T4 v, & (ro2+ (2 x,,)/ kT )—==
2 el 4 i Y 2 4=l ig e dTe
with x defined by Eq. (5=5).
The mean molecular weight reads: .
.Y h - by ‘ (5=19)
Bom where U = & p.e./% €4 5=19
1+x 1 i

ui is the atomic weight of element 1.

In regions of constant y, p, T 5,6°103 °k ana T Z,7°105 ok

we get
R
- =20)
WD S
gince,
cp-cv = R/u or co/a = Gv/a = kuo/u = k(1+x) . (5=-21)
Similarly,

) YR Te

H = cpTe = m (5=-22)

H/a = H o my (5=-23)

As the sound velocity depends only on gquantities affected by the

kinetic temperature, it is simply:
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e = 2R =y§=y——%. - (5-24)

e) Numerical results.

Pigs, 9 and 10 give y, u and H as functions of Te‘

It is seen tnat contribuitions from elements other than H and
He can be neglected, leaving y = 5/3 except in regions where
H, He and He" ionize,

The enthalpy is dominated by the translatory energy:
B/a = 3 kT_ (1+x) (5=25)

except in the regions where H, He and Het ionize, At those
regions not only X increases but also the ionization energy

Eq, (5-15). However as the ionization energy and x do not
increase after full ionization is achieved, the translatory term

Eq. (5-25) proportional to T slowly begins again to dominate,



LTE

NON-LTE

E
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axit g

X
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Fig, 8, y = @p/@v and the ionization ratio x versus temperature

T. Influence of bound energy.
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Fig. 9. 7y = cp/cv and mean molecular weight ¢ as functions of T,
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Fig. 10, Enthalpy H per gram as functicn of T. The curve
e ; , 2 .
Ht%ans = 2,5RT/¢ shows the translatory part of the

enthalpy only.




43
Section €., Energy Equation

From the three basic differential egquations that we wrote
down in Section 2: (2-1), (2-2), (2=3) the first two were used
to deriwve the flow equation (2-14), while the first two, a
restricted form of the third and additional information about the
shock structure weas used to derive the shock equation (3=40).

a) General Formulation |

We now turn to Eg,. (2-3) and consider the energy balance.

Recalling from earlier that:

) _
V== 6=1

> (6-1)

dE = TdS = pdV (6=2)
dH = TdS - Vdp (6-3)

As before V represents the specific volume per gram, 5 the
entropy per gram, E the internal energy per gram and H the enthalpy
per gram,

Using equations (2-1) to (2-3) and (6=4) to (6-6) we show

in Appendix E that they can be combined to yield

; . = by A 2
%(% Pu2 + OE) 5 Vupu(% u2+H) - pu o gX 3 er %S_E’ (6"’4)
: ext

This ies the same result as given by [58, p. 117 except that therse
are the additional terms representing gravitation and external

energy sources and sinks.
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Adding moreover conduction we get [58, p. 184]

o)

i g -1 2 - A :
312 pu +pe) = = V°{pu(§-u +H) - uVT} = pu ° gX + p Qext (6-5)
where we wrote for the external energy term
LS o=
e Qex;’c s ot - (6-6)

This term may be split into a source term representing mechanical
neating produced by the shock wave, and a sink describing radiative

losses,

meech

PRzt ™ - pQrad (6-7)

In steady state there is no explicit time dependence and we

obtain from (2-1)
V“pu = 0 (6“8)
Hence,

]

- 1.2 A .
meech = pu ={V(2 u +H) + gx} = VkvT + pQrad (6-9)
This equation agrees with Field's [31] result, (see Appendix H).
After the passage of a shock an amount of energy dD/dx is

5

deposited per c¢m”. If we have Vo shocks per second,

2 dD
Ppeon ™ Yo dx (6-10)




Thus with Bq. (4=32)

2 2
8 -7 _
PQeen = Vof 2 = In ¢ 8 (6 11)
“o

Radiative losses Pérad are not so easy to treat and will be
discussed in detail in Section 7.

b) Treatment without conduction

In spherical geometry and using the dimensionless height

variable r: Eg. (2-7), we get using Eqs. (6-9), (6-11), (2-9)

2 2 g r pQ
c (g1 LMo (2 WL ae 48 o) red
Vo T(7-1) in $ 8 '-r Me® o=+ 5 a0 *ar T 2 + e

o}
(6-12)

With the aid of the flow equation (2-14) we obtain

Eq (6=11) can be compared with Bird's [14] work, notlng that
for small shock Mach numbers ¢ -1, 08-=1and

1n g 877 = y (@7 071o1)s1) ~ y(g7 972a1),

or

2

: = = YRT 1/y =1

meech > 2 y(y=~ 1)u (¢ 6. —l)vo
o

This relation was used by Bird with the molecular weight v = 1.
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g r 2 r_ypQ
gt 0o M 2, _o rad (6-13)
1=9M° ¢“r°  1-yM° ° pMc”
Now
o2
B =g (6-14)

and since vy, 029 H depend only on T,

2 48 g . 4T 4T 4y _ 4y df u
Zdar - 2 °dr ~(y-L)T ar * dr - af ar °*° (6-15)

Thus we can solve for the temperature derivative and obtain

Yofo 1 =y _2 ropQrad yMz €50 2

T A Wep - s\ F07"~%
i e (& ac® 1 -
117M2 c2 T y 4T Ye=1)T

¢) Treatment with conduction

We note that with the identities

z 2
- N =y By®
pu o g% = pu ¢ 020 X = = Vepl - OXO ; (6-17)
i .

and writing the loss term in (6-9) on the left hand side, we can

express the entire right hand side as a divergence:
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2
o Y g X
pQ - 0Q =V o {pu(l T ) - KVT} i (6-18)

mech ‘rad 2

where we used (6-8),
Integrating Eq. (6=18) over the volume of a cone of unit
solid angle which is limited by the spherical surfaces x = x and

X = x  we can transform the right hand side into & surface

integral
x g x E
l..2.:2 o0 dT 2
J (meech pQrad) x dx = {pMc( M™e"+H - —— ) « K 3x] ¥
X
o
dT
2 2 2
{Po 2% o “+H -g %)) - K 52} X, (6=19)
Contributions over the sides of the cone wvanish as
a, vt || %
Going over to the variable r (2-7) and using (2-17)
pMcr2 = p M c = constant (6-20)
000
Hence we have
T . 5
J I‘c:(p(flznec}:l - pQrad) rdr =
1 :
1.2 2 €5 % K 4T 2 2 2 ;
{pMOco(E-M ¢THH - —— ) v T T } {poMoco F M e +Ho-g0r0)
_E f&}
T dr
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and upon solving for dT/dr:

T K daT
aTr _ g 1. {FLOW _ DISS + RAD + 2 p 9/2 _ ¢ (6-21)
dr h/ja 2 T o dr
KOT r o]

The symbolic notationsg FLOW, DISS, RAD are defined by:

e ig
- . 2
RAD = J r PQpngg T 4T (6-22)
1
T 1 - 4
DISS E-B°J.rovop—:fln¢6 T o4 ar (6-2%)
1 ¥
FLOW = Mc{(ll\f[zcz-l-Haio"I;g-)-(-]-'-Iv1202+H -gr)} (6-24)
Por0%1'\2 T 2 "o "o o o o -

The origin of the factor ¥ in (6-23) will be discussed in Section 12,

We used for the thermal conductivity the conventional [82]

K = KOTS/2 . 6:10° T T5/2 ergs/cmzsec . (6=-25)
Finally writing

X aT

- _0 (p5/2 4T 2 5/2 8
COND = 2 (T =T =T, dr) (6-26)

we obtain the balance relation

COND = FLOW + RAD - DISS (6-27)
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The physical interpretation of the gquantities RAD, DISS,
FLOW, and COND is that they represent the total energies (per cm2
of the initial surface) that are radiated, dissipated transformed
into stellar wind and conducted, respectively per second within
the column bounded by r = 1 and r = r. (They are therefore energy
fluxes).

From (6-27) we see that the conduction term acts as a
reservoir from which we can borrow energy to radiate or increase
the thermal and kinetic energy of the stellar wind in case tﬂat
the shock dissipation is not yet sufficient to compensate for the
losses. (DISS < FLOW + RAD)

However ultimately the dissipation term must equal the sum
of flow and radiation terms, if the energy to drive the stellar
wind and to provide for radiation losses comes from within the
star and not from an external reservoir.

This condition ofra "shock dominated solution" is discussed

below in detail.
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Section 7. Radiative Losses

Of all the physical parameters that determine ultimately the
structure of our solutions, the amount and distribution of radiafive
losses is least known, Again as in the case of the adiabatic
coefficient a truly self-consistent method would require an
iterative procedure that is excluded by considerations of numerical
labor. And agein it subsequently turned out that our solutions
are not very sensitive to the detailed knowledge of the amount
and distribution of the radiative losses.

We therefore decided to use the radiation rates given in
the literature and use the ones that seem most appropriate for
our problem,

Since we have to expect a rather large margin of error, ws
consider two cases which we call "strong" and "weak" case and
settle for a "medium" casge in the actual computations,

a) Temperatures below 7000 °K

The region above the photosphere at these temperatures is
optically thin for wave lengths above the Lymann limit, emitting
mostly subordinate H continua and the H™ continuum, while the
Ly and Ba lines are optically thick. For this region we treat
the hydrogen continua in LTE,

1) Weak Case

Noting that metal 1iges can be included by multiplying the

hydrogen contribution by a factor of 2 (P, K. Raju [88]) we can

estimate the radiation loss using the equilibrium emission with




the Rosseland mean absorpiion coefficient [110]

T

dre = 4 % o T4 (7-1)

The actual values have to be reduced by the contribution of
scattering. The numerical values where computed from tables
given by L, Oster [74], [75].

2) Strong case.

An alternate procedure has been éuggested by Weymann [114]
(strong case), based on scalculations by Seaton [96] for coal
interstellar gas, In this calculation all continua and resonance
lines are treated as optically thin, The ionization is calculated
in the coronal approximation (Sec. 5).

This case predicts much higher radiation losses because of
the contribution by (optically thin) resonance lines, We considered
this "strong" case an an upper limit. Where the LTE calculations
exceeded this upper limit they were cut off,

b) Temperatures excesding 7000 °K
1) Weak case,

Here we adopted Weymann's [1147 weak case that includes only
the bound-free continua of H and He in addition to bremsstrahlung,
Such & spectrum can be considered as a lower limit,

2) Strong case,

Here Doherty and Menzel's [24] oomputation was taken as an

upper limit as it exceeded other estimates such as Pottasch's

(847 and Raju's [88].
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¢) Adopted loss function

After some preliminary numerical checks, we decided to use
the following leoss function.

For temperatures below 7000 %k we use the L?E values asg
discussed under &), These values may still be somewhat too high
as departures from equilibrium keep the ground“state OVEr=
populated thus reducing Balmer and Paschen-=continua.

For temperatures exceeding 7000 °% we dividéd Doherty and
Menzel's values by 5 to 10 to account for the optical thickness
of resonance lines, In the very hot regiomns our adopted curve
goes over into the sirong case.

The following graphs Figs. 11=12 give the energy loss

pé (labeled M) in ergs/cm3sec ags function of temperature, the

rad
logarithm of the gas pressure being a parametar.
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Section 8, Computation of Noise Energy Production

from B8hm-Vitensels Models.

We now want to make the physical connection between the
internal structure of the star and its outer atmosphere, The
quantity of major importance is the meckhanical energy input from
the convestion zone through the photosphere,

a) Velocities B

The mean velocities v of the rising or falling turbulence
elements in 15 stellar models have been calculated by Bbhme

Vitense [16],[111]. We obtained v from these models. Since the

effective gravitational acceleration

Botf = Bgrav ~ Brad ~ fturbd (8-1)

arising from gravitational, radiative and turbulent pressures was
not known from the beginning, an iterative procedure was employed
using the tables for u, O o Vad collected by Uns8ld L1057 .

It was found that in our 4 cases the effects of radiative
and turbulent acceleration are negligible against ggrav“
We adopted the following models. “ESpectral classes have

been adopted by Allen [2]. They differ somewhat from those

given by UnsBld [1057)

Spectral class - % Surface grav, log g cm/see2
Sun G2 V 5800 4,45

XKl IIZ 4400 2,50

G% I1T 5000 %,00

GT V 5000 4.45

Table 2. The four stars for which models were calculated,
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b) Production of accoustic noise energy
Following Lightniill [59],[60] and Osterbrock [76] we can

write for the rate of generation of accoustical noise:

-
A, =& p g
(S

(8-2)

where « is a constant, which depends on the spectrum of the
turbulence and has the wvalue 38 for the Heisenberg spectrum [86],
4 is the mixing length, It is customary to identify it with the

scale height [16],[111],[7€], i.e., to set

L =H (8=3)

The values of Al(h) are given in Figs, 13-16, The total

noise energy can be computed from the relation

S Y 1
nE =3 IAl(n) dh (8=4)

Whére we have assumed that all the ncise directed upwards escapes,
while 8ll the noise directed downwards is absorbed.

The values of nF;O are given in Table 3,

¢) Frequency spectrum of the noise

The frequency spectrum is obtained from Osterbrock's [76]

method. The maximum of the freguency spectrum reads

=

Vo = F (8=5)

We assume Yo to be the frequency of our sound waves,

The frequenciss are given in Table 3,
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d) The cut-off frequency

Kuperus [54], Moore and Spiegel [65] and others have shown
that there ig a cut-=off frequency for sound waves at low frequencies,
where the pressure gradient of the atmosphere becomes egqual to
the pressure gradient in the profile of the sound wave [547]. We

have

. { -
Vout-off = 4nc (8-6)

The values of v and y at the layer with maximum noise

cut=0ff
production are summarized in Table 3,
The comparison with %, shows that the frequency of the noise

produced is above the cut-off frequency, however within a factor

of 2 to 4 from v

cut=0off"
+ i
EFmo, 1 1 Scale heights
Rien ergs/cmﬁse@ Yo Sec Veut-off sec| ! Sy oul
Sun G2 V 1.6 » 107 | 9.0 « 102| 3.3 - 10=% |1.22 | 2.0 - 107
K1 IIT | 1.6 - 107 | 1.5 - 1074| 35.9 - 10 [1.15 | 1.5 . 109
63 III | 3.4 - 107 | 5.0 - 204| 1.2 » 104 |1.13 | 5.1 . 108
GT V 3.0 » 10° | 7.9 + 1073 5.6 - 107 (1.25 | 1.7 - 107

Table 3, DNoise production
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Section 9, Initial Conditions and the Photosphere

We are now ready to derive the boundary conditions from which
we start our model calculations,

a) The height at which the shock forms.

Sound waves of frequency Vs containing flux nF:O travel in
an outward direction down the density gradient and so long as
viscous dissipation and heat conduction can be neglected (see
[59, p. 567]) will grow in amplitude to conserve flux.

This growth will leed to larger and larger velocity amplitudes,.
4 large veloecity amplitude however will distort the sinusocidal
shape of the sound wave [59, p. 366] and the hills and valleys
will melt into each other to form & shock wave [76].

To desoribe thie situation quantitetively, we first write

[58, p. 250]

ﬁF;O = pouozgo - puzg (9=1)
or
Luynrt /[ f7ee (9=2)
where again
0f ‘m 7% (9=3)

Let Hy be the height (in the height scale given by Bbhm-
Vitense's models) at which maximum noise production coours, and HF

the height at whioh the sghook is formed, The condition that the
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hills catch up with the valleys (Fig. 17)

rd

u /

= 2

u
Fig, 17. Velocity amplitudes in a sound wave

then becomes

c 4v0
With the aid of (9=-2) we thus have

H
P
4y, VuEk /7 _[ 1/fps dh = c . (9=5)
"
P

Eq. (9-5) determines Hy provided that a model of the stellar
photosphere is available,

b) lModels of stellar photospheres

The photospheric models we used were based on the data by
BYhm-Vitense [16], From 7 = .0l on they were continued iso-
thermally and this established a boundary temperature T (See
Fig, 19)., This approximation is justified in cases where
viscoeity and radiative effeacts could be neglected [94]. We

will come back to this point under 4).
|
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¢) Initial pressures

Several calculations with the aid of (9=5) were performed
with different mF;O and for different stars., It was found that
we obtain a result which is within 236 of these calculations if
we just use (9-2) and put down the condition for getting a shock

as
u = ¢ (9-6)
Using this new condition we have

+
p=nf [re, (9=7)

where
c, = Vy RT07uo " _ (9-8)

d) Shape compression factor

It was shown by Schirmer [94] that there is a fairly large
difference between the growth of & sinusoidal sound wave without
viscosity and radiative cooling, and the case with those effects
ineluded., This means that the sound wave will in éeality travel
to much greater height before becoming a shock wave., We introduce

a factor # by

P =D, # (9=9)

where p is the pressure as calculated from (9-7) and P, the
pressure at whiech the sound wave in reality transforms into a

ghock wave.,
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The quantity # is called "shape compression factor" as it
is a measure of how much the wave profile is distorted from ths
free case by viscosity and radiation.
Thus the initial pressure P, finally reads.

e 3
S R ~10
p, = wF /#Y0, (9-10)

For our models # = 4,91 was fitted see below (Sec. 14b- 3) and
4)).

e) Initial heights
1) The height Hp of the layer of maximum noise production can be
taken from Figs. 1% to 16 in terms of the height scale of Bbhm-Vitense.
2) The height Hl of the layer at which T = ,01 can be obtained
by numerical integration of the hydrostatic equation for the values

of p,T given in BBhm-Vitense's models,

Py
RT dp ’
HmHgJ—-— .
1 0 TR (9=11)
PO

3) The height HF of shock formation can finally be computed from

the barometric formula.

H, = H, = H, 1n == (9-12)

and

H = 2= = —2 (9-13)
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is, the scale height.
£f) The zero reference level
For all stars other than the sun we have assumed that Hl is

the reference level whoserdistance from the center of the star is

L
For the sun the customary T = ,003 was retained, The
interpolation of the T values for 7 = ,00% is given in Fig. 19.

It was found

E?=3003 = + 270 km

H?=°OO46 = 4+ 263 km

as measured in BBhm-Vitense's height scale.
g) Initial sheck Mach numbers
From BEq. (4=3%) we have defining

- (9.14"
+ Ho
nFo o = vD(E ) = (1 +2 ro)(sﬂ 1)p g0, * v (9-15)

With Ho *%'10"5 T definitions of ¢ and £ and assuming a triangle
pulse (See Fig, 18) Bq. (9=15) becomes

2

(Mg “-1)

+ o) 4y . 1
nFmo = ¢ P, T ; 5 "z (9-16)
BO \ }"5‘1) i




&

; / B
L >

|
< Pest

|

Fig. 18. Shoeck form at shock formation.

We usé positive pulses of triangular shape in oompériaon
with the sawtooth profile customary in papers where small shock
Mach numbers are employed (Ma = 1). The reason is that for large
Msnvalues, say of the order of 4, the negative pulse of a
symmetric sawtooth would result in a negative pressure, Hencs
the major portion of the energy must be transported in the positive
part of the sawhooth for which the triangle shape is a good
approximation., Behind strong shocks the pressure_is indeed
increased by typically an order of magnitude (See Eq. (4=9)).

From Eqs. (9-10) and (9-16) follows

(M, %= 1)?
o +* v _ B
= - : it 10,68 ° % (9=17)
. (1+1)2 - °
With 4 = 4,91 that is
M, = 3.91 (9~18)
N :

for all stars.
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h) Summary of initial values

Star | A P HouHF-H H H. =H A r

OE dyn?cgz km ; i E; ?EQP ®o E;
sun 62 v {4064 | 5.2 | 668.3 | -90 | 3.30 | 3.91 | 6.953-10°
K1 1113069 | 3.67 | 29120 | -3981 |26239 | 3.91 | 4.937.10°
G3 III|5793 7.08 | 12680 | -1698 | 7148 | 3.91 | 3,357:10°
GT Vv |5793 619 | 789.7 | =75 260 | 3.91 | 4.867.10°

Table 4., Initial values

i) Comparison of photospheric models

For the sun we compared our photospheric model following
B8hm=Vitense with cther data.’ As an illustration we quote &
recentlmodel given by Heintze [%3]. (See Fig., 19)

Using Heintze's model we find the level of shock formation
(po = 3,2 dyn/cmz) at 13%0 km on the BBhm=Vitense scale, or at

1060 km on the conventional scale., (H=

7=,003 = 0) Henoe Hy = Hy-H,=

F1
1090 km,

For the sun we summarize below the different heights defined
on BYhm-Vitense scale which sets the zero level of height at the

upper end of the convection zone:

Symbol Height Definition

km,
Hp =90 Level of max. noise prod.
Hy +240 | Level at which T = ,01
H?m;0046 +267% Zero level of Heintze [33])
H;mgOOE +270 Conventional zero level

HF +91%,3 Level of shock form our photosph,
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HF Batntice +1%30 Level of shock form, Heintze
HO HFmHl Initial height
By RT/ug Scale height

Table 5, Height definitions
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Section 10, The Complete Set of Eguations
and the Type of Solutions

a) Summary of the mathematical problem

From the discussions in the previous sections we can
summarize the mathematical problem by stating the three differ-
ential equations for the unknown quantities M, Ms? T

The flow equation (2-14):

2
aM dy , do 2 f1e )
ar = f(Ms ar? Y ar * © T ) . 8 kiO“L)

The shock equation (4=40):

~

dM . 2
8 d do 2 :
dr o f(Mss i, ar’ Y ar ? c o, E) Us

The energy equation (6-21) or (6-27):

4T

ar ~ £, M, M, 7, ¥, B, p rad? P r)

The radiative loss from Sec, |:
PQ“&& =1 f{f,p) (10~4)

The thermal properties from Sec, 5t

o ey E B ap(n), ye£(D), £ (10-5)
de? _ ag(m) ar ay _ ag(1) ar (10-6)
dr aT’  ar ! dr " dT dr =
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The pressure finally follows from Eq. (2-18)

p = const. L 5 (10=7)
uMer

With the initial conditions of Sec. 9, Egs., (10=1) to (10=7)
represent & clogsed set of egquations.

b) Types of solutions
1) Conduction and shock dominated solutions (CD, SD).

We first note that the shock equaﬁionl(lomz) enters the
other 2 differential equations (10-=1) and (10=3) only through the
dissipation term DISS in the energy equation (10=3), We.man
therefore treat (10-2) as a more or less independent equaticn
which provides the term DISS to the energy equation,

The relative magnitudes of the two gain terms DISS and COND,
and the two loss terms RAD and FLOW in (10=3) (defined via Egs.
(6=22) to (6=26)) tells us the nature of the energy balance, such
that we can define a region to be sonduction dominated when the
main energy gein is due to conduction and to be shock dominated
when the main energy gain is due to shock dissipation.

The groups of solutions of the flow equation (10=1) thus can

be classified as either shock dominated (SD) or conduction

dominated (CD) solutions.
2) Super~ and sub-critical solutions
To investigate the flow equation (10-1) we use it in one for

this purpose more convenient form Eg, (2-13):

Lo, aw  1egw® 3 1ay , Y8To 2 (1048)
M dr e dr y dr 0252 et AL S S
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or in short

LoD =@ . (10=9)

We wes Ak ibe wisgeineily 5 (lai)-Ear e 50 > 10 5
no conseguence because with A in Eq., (10=9) ¢ vanishes at the
same time.

For & very small initial flow Mach number Mi’ A is relatively
large and B relatively small for the same C., The distance r
grows faster than M and in C the r’l term will become larger
than r™2 at great distances, leading to C = 0. If A # O at this
point, then B = 0, and the flow Mach number M will decrease again,

leading to & subsonic flow at all distancses, This case is called

subecritical solution.

For & very large initial flow Mach number M, (Mi < 7&1/2),

A is relatively small and B relatively large. M grows faster
than the distance r leading to A = 0, If C ¥ 0 at this point,
B has to be infinite, which means that M(r) swings back in r to
become & multivalued function of r. This case is called super-

critical solution and has to be excluded because no physical

meaning can be attributed to a multivalued flow.
The case where A and C vanish the same time leaving B > 0 is

called critical solution. The flow Mach number M can continue to

grow and ultimately gives rise to supersonic flow,.
This is the solution which we need on physical grounds for
stellar winds as supersonic velocities are observed at least in

case of the sun [81].
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This behavior of the flow equation is well=known and has
been discussed by Parker [82], Noble and Scarf [70], [71] for
CD solutions and by Bird [12], [14] for SD solutions,
3) The three critical solutions (CDC, SDCF, SDCR)
If we use the full energy equation (10=3) we get three
critical solutions. For comparison Parker, Noble and Scarf
who assumed COND = FLOW, and Bird who assumed DISS = FLOW obtained

only one,

We have Eg, (10=3)
COND = FLOW + RAD « DISS .
a) Starting off with a very high value of Mi we find
DISS, RAD << FLOW

and obtain the 0D critical solution (CDC).

This will be the only solution if everywhere
DISS < RAD
b) When, at the other hand
DISS > RAD

we obtain 8D selutions by lowering Mi' If Mi is still large,

then
DISS > FLOW > RAD

we say that we have & SD critical solution where the flow is

dominant, (SDCF)




1
X Mi is small, then

DISS > RAD > FLOW

we get a SD critical solution where radiation is dominant., (SDCR)
¢) Selection of the solutions
From the three solutions CDC, SDCF, SDCR which are possible
if we insist on supersonic stellar wind velocities¥* [81] we
can exclude CDC as this sclution depends on a heat source outside
the star, The SDCR solution is ruled out by the physical arguments
stated below, The remaining SDCF solution is therefore the only

object of our attention.

*
Otherwise we would have a infinite multitude of suberitical
solutions.
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Section 11. Computer Program

The numerical calculations were performed on the IBM 7094
computer of the Yale Computer Center in Fortran IV-Language.

1) The quantities

pQra’d(TFP)
and
de> 2 a
(&% % & v E) = 2D

were treated as subroutines interpolating from tables of the
radiative loss function of Sec. 7, and the calculations of Sec. 5.
2) Another subroutine computed the various numerical factors in
the shock and energy equation that depend on Ms and M.
3) The integrals DISS and RAD were performed with an integrgtion-
interpolation formula [1, p. 8887 (Bodes Law),
4) The system of three first order differential equations was
numerically integrated with a Sth order Runge Kutta method [121]
where the 6th order term was kept to regulate the stepsize,
Root mean square wvalues of this Sth order term were kept smaller
than a certain externally adjustable size., If this error exceeded
the permitted limit, the step was rejected, A second order
auxilliary formula predicted the next step size on the bagis of
the last 2 accepted steps.

For the firgt few steps we used r as independent variable,

go that formally
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au _ .
dr M dr Ms > dr T " dr

Because of the initial steep rise in temperature we changed

then over to T as being the independent variable, so that formally

£
aw _fw Mg M oar L oar 1
m— gy 9 = 9 = 9 e ®
ar " T, * A " Ty’ af ar = T,

At greater heights we went back to r as the independent
variable.
The machine time required to complete one star model with

the final program was approximately one hour,
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Seation 12, The Principle of Similarity Invariance

and the Condition of Complete Shock Dissipation

When we first tried the computer program as outlined in the
last section with & = 1 in Eq. (6-2%) we found the conduction
dominated (CD) solutions and could iterate to the critical CDC
golution,

Lowering the initial flow Mach number Mi’ however, to search
for the shock dominated critical solutions, did not bring us into
the shock dominated region. This failure was soon realized to
be caused by the fact that at 1/10 solar radii still only a féw
percent of the original noise energy had been dissipated, In

other words, as

DISS << FLOW + RAD (12+1)

we obtained

.

.

N
0
N

COND =~ FLOW + RAD

and consequently higher and higher temperaturss.

This behavior in turn increased the thermal energy of the
gas (that is the FLOW-term) to make the DISS-term even smaller
compared to the sum FLOW + RAD in Eq. (12-1),

Artificially increasing the dissipation rate beyond Brinkley
and Kirkwood's value (by multiplying both Egs. (4=39) and DISS
in Eq., (6~23%) by an arbitrary factor) did not help the problem.
Extensive checks then showed that the origin was the principle

of shape similarity invariance,
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This principle as explained in Appendix B states that
Y = E%" = const, or in other words, that once we have chosen
a eertaig shock profile, in our case a triangle pulse, it stays
a triangle pulse through all regions it passes until the shock
energy is completely dissipated.

We therefore are led to thé conclusion that this product w w
apparently does not remain constant.

It should be kept in mind that the principle of shape
similarity invariance was developed for underwater explosions where
there were no gharp density and temﬁerature gradients.

In our case, the product # v seems to change to a degree

sufficient to invalidate our solution.

To understand how # v may change we use Eg. (4-24)

D=7p u v (12~3)
m m

o

73
B

¥ig., 20. Change of shock profile

and Fig, 20,_ Changing the shapé from our profile 1 in PFig. 20,

to profile 2, ¥ + increases considerably.
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The correct progedure would thus be to develop a detailed
theory of the growth of the profile behind the shock, similar
to the work done by Schirmer [94] for sound wave profiles in the
photosphere, and to include this feature in the computer program,
Obviously thie is beyond ,present possibilities,

By assuming & shock profile different from the triangular
shape, practically eny value of w v can be obtained, In order
to exclude arbitrariness, we now postulate that all initial shosgk
energy is dissipated once the shock Mach number Ms has reached
unity agein at great distance from the stars surface.®* In the

cese of the sun
T 2
DISS = 1,6°10' ergs/cm“sec for M, - 1.

In numerical terms, the condition of complete shock dis-
sipation determines the actual value of the product # %, that
ie the factor & with which the term DISS alone has to be
multiplied, (See Sec, 6, Eq, (6-23))

‘We found this factor by plotting the energy at Ms - 1 vs,
% (each time iterating to the critical SDCF solution) and then
interpolated to the ¥ value at which the dissipated energy/cmzsae
is nFy . See Fig. 21,

This was done for the sun and the star G7 V to 136, however

for the stare G3 III and K1 III only to 17¢836 and 150636

*
One might objeet to this condition on grounds that there might
be some energy left over in the form of sound waves when My = 1
and therefore not all the energy reappears in DISS. This
possibility can however be excluded as the decrease in density
always tende to establish a new shock front.




regspectively because it was not felt to warrant the amount of
machine time inveolved to reduce the remaining difference.
Especially because a comparison of the effects of different
factors & for the case of the sun (Fig. 22) shows that the
change in the temperature profile is wvery slight, All the

factors + have approximately the numerical value 9.
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Sectioh 13, Numerical Results

a) Recalculation of Bird's results

Leaving out the terms RAD and COND in the energy equation
(6-27) and using a factor & = 1 in the DISS term as well as
changing the shock equation to Bird's form (Sec, 4d), we recal-
culated one case of Bird's work [14]. We found very good
agreement in the behavior of the solution, and fairly good
agreement* of our critical solution with Bird's. (See Fig. 2%)

b) Survey of the different solutions with the full set of
equations.

Figs. 24 and 2% show the different nature of the solutions
met in the process of searching for the ceritical solutions.
These solutions are for the sun and the multiplication factor ¥
is six for all solutions. Only the initial flow Mach number is
changed .,

For high M,-values the conduction dominated solutions (CD)

i
are obvious in Fig., 25 by their persistent positive temperature
gradient, From Figo 24 we sonclude that the eritical CD-golution

(¢pC) has the critical initial flow Mach number
M, = 3,5:1077 % 50%

For a smaller Mi' we find the shock dominated solutions

(D) with their negative temperature gradients (Fig. 25). The

*
We ueed & mean molecular weight y = ,672, while Bird had p = 1.
This may explain the remaining difference.
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critical SDCF solution has been approached Ey iteration, and we
deduced the critical flow Mach number M, = 7,195°10"4 * .34%.,
The two solutions bounding this value are almost identical up to
a certain height from where on they behave according to their
supercritical and suberitical nature, respectively. This point
(where dM/dr becomes infinite) lies the higher in the atmosphere,
the closer we have come to the critical initial flow Mach number,
For very small Mi the supercritical nature of the solutions

6. At Mi = 1306-10”7

becomes more predominant until M, = 5+107
approaching the SDCR solution, we discontinued the survey because
the initial step size became unrealistically low, namely, in

numbers Ar = 2,10~L?

Ty which corresponds to a temperature
gradient of about 50000 per cm, The reason for this behavior
is that at very low heights conduction is not yet important, so

that the dissipation term in Eq, (6-16):

v.Tr
oo 1 it S -
"W 7.1 1 ¢ o " er (13=1)

(where ¢, @, 6, y are approximately constants) with its y~t

dependence dominates the temperature derivative.

We did not investigate the SDCR solution further because of
this physically unlikely behavior, We note however, that
qualitatively the golution predicts an extended atmosphere of
coronal type with a temperature of a few million degrees K in the
same manner as the SDCF solution. Since the initial flow Mach
number Mi is much smaller, the amount of matter flowing away from
the star is much less, giving rise to much reduced solar or

stellar winds.
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¢) The models.

The numerical results of the correct critical SDCF solutions
for our four stellar models are exhibited in Figs. 26 to 38 and
Tables 6«8, The comparison with available observations and model

calculations is given in the next two sections,

ek Tcorona Mi critical
QK
Sun G2 V 3,,16o106 1.136-1070 t ,38%
K1 III 2.76-10° | 7.468:107% £ ,42%
G3 III 35530106 6,,968=1ow4 t ,45%
G7T Vv 1074a106 29036010”3 x ,38%
Table 6, Coronal temperatures and initial flow Mach numbers.

Temp Sun K1 III @3 III GT Vv
km km km km
. 0 0 0 0
7,107 .056
1-10% .062 .02 .01 017
2.10% .085
5.10% .25 .23 .13 .65
1.10° 1,15 1.05 .54 4,18
2.10° 5.54
52107 65.5 54,7 30,1 261
1.10° 493 470 | 253 2350
Table 7., Temperature rise in the transition layer. The heights

given are heights above the level of shock formation.
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Section 14. Discussion of the Solar Results

a) Discussionof the model

As soon as the shock hag formed, shock energy is dissipated
(DISS) wery rapidly. (See Eqm (6-16) and (13-1)) Tue energy
serves primarily to heat the gas (balance the FLOW term) while

conduction is not yet important:

DISS = FLOW + RAD (14=1)

The temperature rise will bring the gas quickly into a
temperature region where the radiative losses (RAD) increase
rapidly by approximately 4 orders of magnitude., (Sec, 7, Fig, 11)
The comparatively slowly varying dissipation term (DISS) can not
compete any more with the radiative loegses and the energy must
be supplied by conduction (COND). The more energy is radiated
out,the steeper the temperature gradient must be in crder to

balance this radiation via conduction:
COND = RAD + FLOW (14=2)

This behavior can be illustrated by & comparison with Bird's
[14] solar model (see Figs., 23 and 28) that balances dissipation

(DISS) against thermal and kinetic energy in the solar wind (FLOW).
DISS = FLOW (14«3)

Bird finds the same steep initial temperature rise due to the
large shock dissipation. However, as conduction is neglected as

well as the radiative loss, the steepening imfluence of a largse
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conduction term balancing a large radiation term is not experienced

and his model temperatures rise wvery much less siezeply furtnér
out.

The temperature region of extremely large radiative lesses
iga thus passed with & wery stesp temperature gradien® whish
limits the amount of radiative losses by reducing the total gas
mass in this region.

At higher tamperatures we see that the flow energy (FLOW)
which incidentally consists'ptimafily of the thermal senergy of
the gas aﬁd not of kinetic energy, dominates over the ra&iative
contribution (See Figs, 26 and 28). This flow term increases
slowly. |

Cén&uctibn finally becomes small compared with shock
dissipation and vanishes with vanishing temperature gradient when
the dissipated shock energy balances the sum of flow and radiated

energies,
DISS = FLOW + RAD (14«4}

At this point we have to consider the influence of viscosity
whoée importance in golar wind calculations has been shown by
Noble and Scarf [70], [71]. As the effect of viscosisy is
proportional to v° and v %§={efu Noble and Scarf BEq, (11)) we
see that it will become important whenever the flow energy
dominates.

Hence at lower heights where the flow energy and sespescially

its kinetic part is negligible viscosity will play a minor role

and our temperature profile will not be altered. The more the
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flow term dominates at greater heights the more the viscosity
will influence the model., This is especially itrus where the
temperature of the corona has decreased and the kinetic part of
the then supersonic flow is more important than the thermal part,
However, at heighta heyond 0.1 T, OUT model becomas unreliable
at any rate because of the disparity of the supercritical and
subcritical solutions,
b) Comparison with observations and other models.
1) Coronal temperature
Our coronal temperature of Tcor = 50169106 %% (Table 6) may

be compared with recent observations summarized in Table 8,

Teor Year Nature of Observation Author
2°106 1965 radio Cronyn [22]
8.10° 1964 | radio, x-ray Kundu [527, de Jager [42]
2,6°106 1963 line width Billings and Lilliequist
: [10]
5 & & _ s Fana
1,53“10 1961 prﬂ.y .E:in:f.:." "; LE | l
'5u2m505°106 1961 line width Jarrett and Von Kliiber
1 [44]
2°106 1959 line width { Billings [9]

Table 8, Observations of coronal temperature.

Recent model calculations of the solar wind by Parker [82] and
Noble and Scarf [71] give coronal temperatures of 1;2m109~lﬂc %
and 20106 % respectively.

Our result is somewhat higher than most determinations, but

clearly within a reasonable range.
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2) Pressure and electron demsity
Our values of N versus height are shown (see Fig.39)
. in a graph adopted from Kuperus [54]. The curves refer to the

following authors.

besignation Region Author o

1 de Jager (1959) [41]

2

3 normal Von de Hulst (1953) [35]

4

5 Ivanov-Kholodnyi (1961) [39]

6 Kakinuma and Swarup (1962) [47]

T active Kawabata (1960) [ 487

8 Christionsen et. al. (1960) [20]

9 Newkirk (1961) [69]
10 | Hiei (1962) [36]

11 %zz;;;:g:e Koelbloed and Kuperus (1967 ) [51]
i2 ' Ulmschneider solar model
normal
13 Ulmechneider solar model p_ = 16 uyuf
%md

Table 9, Origin of eleatron density data.

%) Shape compression factor

Comparing Figs. 1 and 3 of Schirmer‘’s [94] article we find
a shape compression factor of # = 6,5/2,5 = 2.6, A shape
compression factor of % = 1, on the other hand, yields according

to our Hq, (9=10) an initial pressure B, = 16 dyn/amesau” From
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Leg nkm
Fig,39 Electron density (em~3) versus height,

Authors see Table 9,
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this pressure the solar model 13 in Fig. %9 is derived., It
requires clearly too high density values.

Therefora a shape compression fastor 4 = 4:91, that is
dividing P, by 5, was adopted leading to the solar model 12 with
P, = 3.2 dyn/cmg, (See also 4))

4) Total emission of transition layer and corona

Recent theoretical estimates of the total emissicn of

chromosphere and corona are given in Table 10,

Fr temp/cmzsec year Author
2.107 1961 | Osterbrosk [ 767
2.5.10° 1959 | de Jager [41]

Table 10, Total emission of chromosphere and corona.

6

OQur result is %,48°10 ergs/cmzsec. It has to be ncted,
however, that the radiated energy is direstly proportional to the
pressure as can be seen from Table 11. For the energy radiated
from the transition region below 1°106 ®% we obtained the

following values:

initial pressure p@ energy radiated Model
160 1,25010° Sun
16 1.26-10" M, = 1.35-1074
R
1,6 1.27°10 % = 10
.16 1,28:10°

Table 11, Influence of initial pressure P, on the radiative losses,
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The above value lies well within the presently available data.
5) Mass flow

a) Using a discussion of coronal line profiles Billings and
Lilliequist [10] obtained data on the velocities close to the

solar surfeace., They quote at a disptance:
r = 1,0% velooity v = 6,6 km/seo

In our model we find for this point (see Fig, 27)

6 o T

log 2 = - 1.52, T = 2,75:10° %, M = 5.6:1072, % = 2,4:10]

0

We obtain & solar wind velocity of
v = Mc = 13.4 km/sec

within a factor of two of the observed value,
b) Observations of the solar wind at the orbit of the earth
by Mariner II and values given by resent model calculations are

listed in Table 12,

Ne velocity year Method Author
(cm"a) km/se@
2 500 1962 | Mariner II | Neugebauer and Snyder
' [68], Coleman et. al,
[21]
1 300 ov? = B2/8x

20 = 40 440 = T30 1965 Solar wind Parker [82]

6.75 352 1963 | Solar wind | Noble and Scarf [71]

Table 12, Mass flux observations and model results at the earth's
‘ orbit. '
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Using the equation of mass conservation

2 2
poMic0 = PV T

11

0 = 1,2-107 gram/cmB, 6. w 6,1:10° em/seq, T = 214

]

we obtain from Mariner II observations Mi = .2.,1010‘:'6 and from
Parker's values Mi = 801010m5, These values do not compare
favorably whit our M; = 1.1.1072, However, the same discrepancy
results for the observations of Billings and Liiiequist. The
reason is presumably that the Mariner II resulits are strongly
influenced by corcnal inhomogeneities,
6) Mechanical energy input

The input of mechanical energy intc the outer atmosphere has
been calculated by Osterbrock [76] on the basis of the earlier
model of the solar convection zone given by Vitense [111]. An
independent minimum estimate from calculations of the convection
zone can be obtained in the following way:

From the fact that there existe & supersonic solar wind at
a distance of r =~ 1 and that the corcnal temperature is &~ 2”1%6 Ok

we get with Eq, (6~24):

FLOW z.pOMoco{(%=M232+H) - (%=M°2c02ﬁﬂo}}

1l

using = 1,2:107"" gram cm3, ¢ = 6,1°107 cm/sec, M_ = lulalonfe
?o o 0

M=1, ¢ =2,1.10" cn/ses, and the data collested in Fig. 10,

we find

6

FLOW = 6,7-10 ergs/cmzsec
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Radiation losses will increasse this value sc¢ that this
estimate represents a minimum estimate. A summary of values is

given in Table 13.

i
ano ergs/cmZSec Author | Nature
3030107 Osterbrock [76] Convection zone
1-10° Sturrock [100] estinate
1°106 ‘ Saito [91] . estimate
1°6°107. Ulmschneider L Convection zone
6oé°106 Ulmschneider estimates {solar wind alone)

Table 1%, Noise energy production dats

7) Comparison with recent models of the tramsition layer.

) The most recent solar models quoted in the ixteratures
Allen's [3] and Kanno and Tominaga's [467, are nct yet published
in full form,

a) Allen [3] reports calculations that result in a very sharp
" temperature transition with & rise in temperature from log T = 4.5
to ‘543 oVer a distance of only 100 km, Our calculation (See
Table 7) predicts this rise over 5.4 km, is therefore steeper by
a factor of 20.

b) Kanno and Tominaga [46] quoted in an article by Poitasch [83]
also éive a very sharp temperature rise froﬁ log T = 4.5 33-5,5
in 48 km. Our.calculation is a factor of 9 times sitseper.

c) A quite steep temperature gradient was also predicred on

general grounds by Uns81ld [107] and hyWegmamﬂ.ﬂli4jn
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d) From observational arguments Zirin and Dietz [120] came

to the same result.

e) Calculations of Kuperus and de Jager [537 and Kuperus [54]
performed with & shock dissipation theory, restricted to small

shock Mach numbers and exeluding the solar wind flow, also show

& very steep temperature gradient, However, only corona temperatures

> °k were obtained, This is probably

of 6,5:10° °K to 7.8°10
due to the fact that a larger amount of shock energy instead of
conductive energy is used to balance radiation losses, leading
to & premature exhaustion of tne shock energy.

f) Finally the model of Uchida [104] shows a steep rise (log T
from 3.8 to 5.0 in 200 km). The corona temperature is 10106 °g
and the solar wind flow is taken into account, but not based on &
supersonic critical solution &s in our czase, The initial wind

velocity Y, of 3 km/aeo does not compare very well with our

50 em/sec,




Section 15, Discussion of the Stellar ala

Our stellar models hehave in a very similar manner as the
solar model (See Figs., 30 to 38) except that, of course, none of
the data could be checked egeinst observations 4 comparison
will be given however with the only availablé model calculation
given by Kuperus [547.

a) The amount of convective noise energy produced by different

stars.

The amount of noise energy produced by a convestion zone
depends sirongly on the value of the mean velocity ¥ in the
turbulent velocity field. For very hot stars {Te > 15000°) and
stars with very low surface gravity (log g ® 1) the inner ioni-
zation zone of hydrogen occurs already in the outer radiative
equilibrium layer of the star and thus does not start a convection
‘zone a8 is the case in cooler and more dense stars., With no
convestive motion no noise is produced by the processes considered
in this paper.

It is readily seen from Eq, (8-2) and Figs, 17 to 16 that
the noise production is important only in a narrow region around
the maximum of the velocity curve, Tt is limited towards the
stellar interior by the increase of the sound velocity and toward
the outer atmosphere by the sharp decrease of the turbulent
veloeity,

Noting that very close to the layer of maximum noise production
the total flux nF of the star is carried completely by convection,

as is shown by Vitense [111] Fig, 5, we can understand the amount
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of noise energy produced by a star as function of the effective
temperature Teff and the surface gravite as follows:

As thé convective flux an is proportional to v and the
density p, we can write for a point shortly before the velocity

maximum v is reached:
max

4 _ _ - "
6T " =aF = aF ~pV (15=1)

Now consider two stars with effective temperatures Teffl’ Teff2

and surface gravities 811 8y

If g, = & and Teffl o= Teff2 the size of star 1 is the same
as star 2, or possibly a little larger. That means that the density
in star 1 is the same, or possibly a little smaller. From Eq.
(15-1) we see that then ;i > ;é, and the noise production in star
1l is greater than in star 2.

If g1 < 8 and Teff = Teffz’ the star 1 is less dense.  Eqg.

—

(15-1) shows that then vy > ;é and the noise production in star 1

is again greater than in star 2. We find therefore

T.1. Ihe higher T £o and the smaller g the larger, therefore, the

noise energy production.

This statement is wvalid only when & convection zone of
reasonable size can develop in a star, however, it is consistent
with all our models as well as those given by Kuperus [54, p. 63]
(See Tables 2 and 3%). A :SMMMM'}' of our covxdws:ov«s s zivm wm '-1-%40.

b) Coronal temperatures and temperature gradients in the

transition layers for different stars.

The height at which the shock is formed is determined entirely
by the flux of noise energy and the scale height HS of the atmos-

phere (Egs, (9-10) and (9-12)). The temperature of the upper
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~|0 Luminosity class
Mabs = IQ_
-5 = 1b
- 1T
- 10
0
+5 - IV
+10 i
‘ N\el-¥
Spectral class

+5,

25000 loooo 5000 20060 Teg

Fig., 40. Hertzsprung-Russel diagram and lines of equal noise
production (Schematic)

photosphere of the stars is roughly the same (3500 °k o

4500 OK). The less the noise flux and the lower the surface

gravity the more extended the upper photosphere.

Most important for our considerations, however, is the
pressure po at the height of shock formation. Considering the
similarity of boundary temperatures TO, and that this wvalue
enters Eq. (9-10) only as JE;, we can make the following state-
ment, keeping this limitation in mind: (See Tables 3 and 4)

T.2, The pressures p_ at the level of shock formation are
1®)

directly proportional to the noise fluxes.

Ags we already found for the sun that the radiative losses are
directly proportional to P, (see Table 11), we conclude in general:

T.3. The amount of radiative losses in a star is directly

proportional to the amount of noise energy produced.

This can be ascertained in our models by comparing the

"RAD"~profiles of our 4 stars (Figs. 26, 30, 33, 36) and correcting
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them by the factors po star/po sun., All curves can approximately
be brought to coincide with the solar curve.
The lines of equal noise production in Fig. 40 are lines of
equal radiative losses from the transition layers of stars, or
in other words, lines of equal UV radiation from the star.
Another important conclusion can be drawn from statements
T2 and T3 by remembering that conductiog (COND) is balancing the
radiative losses (RAD) at th? heights where most of the radiative
losses occur, If the RAD=term is very large, the COND-term has
to be very large and, consequently, the temperature gradient very
steep, We can state therefore:

T.4, The steepness of the temperature gradient in the transition

layer is directly proportional to the amount of noise produced.

This can be checked from a comparison of Tables 7 and 3.
However, the temperature gradient must be measured at temperatures
above 104 °K because at lower temperatures the assumption
COND = RAD is not valid as can be seen in Table 7. Again the lines
of equal noise production in Fig., 40 are lines of equal steepness :
of the transition layer.

From Fig. 21, invoking the similarity of the stellar boundary
temperatures, keeping the limitations of this statement in mind,
and using the equation

mass flux = p o M
0/o "o

where Mcr is the critical flow Mach number of the supersonic
stellar wind flow, we can say:

T.5. The larger the noise flux the larger the mass flux due to

gstellar wind from the star,




117

We have again that the lines of equal noise production in
Fig. 40 are lines of equal mass flux due to stellar winds.
Finally we deduce the statement

T.6., The larger the noise flux the higher the coronal temperature

of the star.

o

The lines of equai noise flux in Fig. 40 are then again lines
of equal coronal temperatures. To prove this statement, we just
note that because a higher noise flux means higher mass fluxes,
higher radiative losses and steeper temperature gradients, so that
conduction may balance the radiative term, then, the temperature
has already reached a higher value when the shock dissipation
finally catches up with the FLOW and RAD terms.

¢) Comparison with Kuperus

The comparison with Kuperus's [54] models is shown in

Table 14,
Sun K1l IIT G3 IIT G7T V Author
% 2.6°107 4,8-107 T°9°1O7 4.7°106 Kuperus
F
K 1,6-107 la6olO7 3943°107 3-106 Ulmschneider
798-105 1,2'106 l.4°106 5,T°105 Kuperus
i
°or | 3 16.10° 2.76-10° | 3.53.10° | 1.74.10° Ulmschneider

Table 14, Comparison with Kuperus [54].

There is general agreement in the behavior of both the noise
energies produced and the coronal temperatures. In addition our
statements T.l and T.6 agree very well with Table 9 in Kuperus'

paper.
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Thé energy production is bigger by a factor 2=3% due probably
to Kuperus' more approximate method of computing it.

The coronal temperatures are by a factor of %=4 lower which,
as already noted in Sec. 14, is probably due to the exhaustion
of shock energy at greater beights because his theory depends on
small shock Mach numbers and uses up more shock energy at lower

heights in order to balance radiation,
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Appendix A

Derivation of the shock equation

Inserting Eqs. (4=9) to (4=15) into (4-8), we obtain

o L ; gr ; \
dp@ | d(C+M)c . _Co-8p o 0 . 2Cc(E+M)e _
ar * PP T gr *(§+M)e,+gc( g v ) o (1)
Using
2 .
c Y o

to eliminate p, multiplying Eq. (1) by (pye)ml and using

Egs., (2=15) and (4=13), we get:

1 4a¢ | ¢ &5 o Q.,.Q_ (MG dMe ger0> _ G(E+m) ac?
v dr T T r
5 d a o2 d i sl B

1L (Zece, .2 20(ea)

R i ;E’(g+Q+M) 2

T r

L ay | PMCec(esm) do®

- (c%® - cm)

M dr 202 dr
2, gr 2
Co(E+C+M)=C S0 o  (E(E+M) 2 ,
g 2 T E+H+M (2)
e (E+C+M) r &

Now, from Egs. (4=9) to (4=13) followe

Ly, (p=D)u 2ep M5 My 4, (3)

oy +
v9 dr (7+1)2 " dr © y(y+1)8 dr °’




2
M "+l dM
¢ 45 . =€ s s ey (4)
dr =~ y+l 2 dr (y+1l) dr K
8

and from Eqs. (3) and (4) for the left side of (2):

Al i .
. - %. (=2 . {,\ &x (5)

i ¢ 51 \ye - ) ar

(=7

H
it

B

If we now use BEq. (2-14) in (2), and if we take g/{1m7M2)

out of the right hand side of (2), we find

dM 2
B W T | (=E =2M+( -gg)Mz) ~1_dec
0 T TR {- pochEl e 92 Ar
gr
+ g (€ (840)-1+(c-7(5+¢))m) 35 -
- (cg-gus(¢P=1(y-1)¢e )W =(y-1)c0’) £ }
- (8-Ms(C-po)u°) = 421} (6)
where:
m o= pnliz = (7)
2 2 Ms +l
7oz (42 + ¢ ()
M
. wite (m o
R '(eg 7) (8)

Thig is the desired shock equation.
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Appendix B

1) Principle of shape similarity invariance.
To illustrate the principle of shape similarity invariance,

we take as example an exponentiel behavicr cof pressure as function

cf times:

For this purpose, we

1) Normalize to unity initial shock strength:

11 s =
Blu o -t/ (2)
Pom
OO (= +]
D=p!'u R dt ~ p_'u j emt/u dt {(3)
m mJ Dp_'u m ‘m o ‘
. ‘m m !
K Y%

2) VNormalize to unity initial slope:
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’ 23] 00
= ] g 5 2 .Q‘. ; ¥ QT i (
D= p 'ut I £(6) 4t P, U J e dr (4)
t
\::;-Y’—_) 0 ]
B -

From Eq. (1) follows:

t=%
X

The principle of shape similarity invariance now states that
the integral <« over the shape of this normalized shock remains
the same during prcpagationo
2) Time scales # and form factors w

On several}occasionsg we used in the main body of the text
the quantities w and + related to specific shock forms. Their
derivation is briefly reviewed in the following.

a) Exponential pulse:

We know from Eg., (4):

i pm? and U have the same time behavior, we have




ot
N
(9]

. . =t/2 -t/P
P' =p ' e =p ' e
b) Triangle pulse:
pA ~T-
'
Fm
i i 1 k-
I B,
Pt —- : -
gt p —> t
Agsuming:
t : 1
uew(l-53 p=p'(1l=7%
we find
1 3 U, - 2 ik
Sy p ! u (1 =) = = (8)
i at m m P £=0 B
D= j P! u df = pm? U, ®
[s]
P 2 ‘
0
¢) Sawtooth pulse
! TT\\\\\\\\\\
]
Fo f |
==
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Assuming:

4
-2 -8 -zstszo0
w =] )
i?u(l . %%) 0<t<Pfe
p_° .
-4~ -zstse
p' = { P’
L (1-2 0<t<P/f2
we find the results
"7 at g
t=0
P/2 p v wu ! 2
m 2t
p-2[ 3 3 -F) ey E
[«
P/2 2 .
’ 2% 2dt L
“vﬂj 1-%F) =3 (11)
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Appendix C

Entropy difference
In a gas with y = const. and ¢ = const.,

(1)

RT ST
P =9p 0 v =-E spec. vol. per gram
st nd .
From the 1 and 2 law of thermodynamics, we have
TdS = ¢ 4T + pdV , (2)
ar R 4v
48 = e T+ T o (3)
or upon integration,
R v
85 = c_In g + yln g (4)
o} o}
With
c_-oc_ =2
P v oo
from Sec. 5 and with Eq., (1)
AS = co_1ln = - ¢ 1n & (5)
v p, p Po
Thus |
2 (eN7
AS = c, 1n ( ) (6)
Po Vo
with
Y = CP/GV (7)

as usual,
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Appendix D

Expansions for small shock Mach numbers Ms = l4a

2 2
Bg., (4=9): ¢ =1 + é%% a.+ ?f% o (1)
. g =L (3=1)% |
Eq. (4-10): 8 = y+l (1 y+1 y+1 + 4 y*l‘g (2)
. ey 1:.,1; _]',M 2 [ =z
Eq. (4-13): p =1+ 2 Lt Ty (3)
4o 2d° ;
Eq' (4"15)= ‘C: . Y“l"l - .Y+1 \4‘)
2
+1 1 1 /6% =17y+ 2
Eq. (4-18): 1 = Ig“ - Z{Twl)a + Eg“(minyi%1~2> b (5)
¢n =2t . Lo? (6)
= ﬂm 4‘,.5_13;2: 2 Srh
c(c+) 1+ 57 a+ 2t a , (7)
#)=1\ ¥ 3ys7 2
en( C+E )=te-la (8)
Nows
In (F077) =1n g -y 1n @ (9)

and correct to terms of third order,

in (ﬁe“?) N lé,lil_gl 3 (10)

(y+1)2
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Also,
sM 2 .2 . u B (11)
8 2
M
s
and from Eq., (4-<38):
X m%dz (12)

If y is constant, if we use plane geometry, and if there is

no mass flow, we get from Eqs. (4), (6), (8), (12) and (4=40)

2
2 T ar
da 1 i .2y 1l do . (1 Il 2y ol 1 e
ar * (l+“){“ Fo-Fe) B A if o - Sgie’) ol - Ing
or
. 2 r or
1o 1 1 y1lde _ 1 ¥ y_ o 1 0 :
sy~ (g i YRS AL el e (13)
Appendix E

Equation of Energy Conservation

From the identity

b

2.1 2 - L2320 -+ 2u 3pe
37 (2 ou” + pE) W 33 feu 3T ST

we have with Eqs, (2=1), (2-2)

= - %'u2Vpa - pﬁ(a°v)a - pE- %F = paag& + 208




or
1.2 = - 1 2 - - A pE
= = 7 uVpu - puv (E’u +H)+pu-TVs=pu’gx + Eﬁ; (1)
Now:
dpE = Bdp + pdE = Edp + pTds +"§°dpmp‘1’ds+Hdp (2)

where we used Eq, (6-2) and (6=3). Hence, with Egqs. (2-1) and

(2‘3)9

S g2y eT 28 . . HVpﬁ - pTﬁoVs + pT %%

ext

or

= = (% u2+H)v°pE - ouv (% vo4H) - pu-ght + of 22

2 ot |ext
and finally,
2. (L .2 - Wiieeo ¢ . " . 38
3t (2 pu“+pE) =V pu(2 u“+H) pucgx + pT o o -
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Appendix F

Shock behavior under energy conservation.
1) Isothermal gravitational atmosphere.
The conservation of energy flux of a weak shock wave can

be written in the form:

puzc =pu‘c (1)

Now in a weak shock the propagation velocity

Using this fact and Egs. (4-42) and (3-21) we get:

¥
-2 _ u=U e T
v Tagmleg=lah
1
or
u = Te (2)

With the aid of the relations

— ewh/ho

where HS = RT/ug is the scale height, we have

- ﬁ;z Jh/Hg

or
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ldn__ 1
- dh 2H
n s

2) Isobaric atmosphere, no gravitation

Using

and Eqs (2) and (1) we get:
(5)

Now if p = Py

-2
T e
-2 0 0
- = (6)
Hence
- 2
14dn _ __1 dc (7)
—dh = 7 2 dh
7@ 4o
Appendix G

Importance of the bound state energy.
To check the importance of bound state populations in computing

internal energies we have calculated the bound energy for an

atmosphere consisting of 8436 (vl = ,84) Hydrogen, the remainder

being some unionized gas.
To specify the physical conditions in the atmosphere, in

particular the pressure vers. temperature behavior, we used the
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"working model for the chromosphere" by Aller {4y 2s 507)
(interspicule case). The partition functions were taken from de
Jager and Neven [43] and Aller [4, p. 1167,
1) LTE Case

The ionization was calculated from tables given by Uns#ld
[105, p. BT].
2) Non-LTE Case

We assumed b1 = 1093 b2 = b3 = , « . =1, The ionization
was calculated according to House [34]. The results were:

1) LTE case,.

The contribution of the bound energy is negligible.

2) Non-LTE case

The contribution of the bound states may exceed at times the
other contributions. But only in certain temperature ranges.
We feel that the inclusion of this effect is not worth the
tremendous mathematical labor involved, especially as it subsequently
turned out that the variation of y is unimportant for our
calculations.,

The influence of the bound energies is shown in Fig, 8 in

terms of the variation of vy.

Appendix H

Agreeme;t with G, B, Field's result.
Eq., (6~9) agrees with Field's [31] result, as can be seen in
the following manner:

Firstly from (6=9) we have
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- 1 2 A . .
ou {v(3 u®+m) + gx} - VKVT + pd_ o - pl__ = 0 (1)
Secondly with Eq. (2m2) in steady states
(T - v) 1= =‘% vp = g& (2)
and from Sec, 5 with constant fy:
A = ot B
= 2 (3)
or
VH = ——t— vp - —EB = ¢ |
E(;ffj P (ro1) o2 P (4)
Y=1)p
Using
v %ﬂuQ =(d-v)%u (5)

we obtain

b d i l ;
pu {p‘?nl Vp = (y=1)p2 Vp = o Vp} = VKVT + pQradprmech = 0

or

LF-op-B BT vp 4 (o

?1 ,Yl ) = VKVT =0 (6)

rad"meech

This is the steady state form of Field's Eq. (9).



