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On the Propagation of a Spectrum of Acoustic Waves in the Solar Atmosphere
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The propagation of acoustic waves, their transformation into shock waves and their dissipation has been
computed on basis of the Harvard Smithsonian Reference Atmosphere (HRA) for the sun. Acoustic frequency
spectra of Stein (1968) were used and the effect of radiative damping included. Good agreement was found
between the heating produced by these waves and the computed radiative losses in the chromosphere. Coronal

heating proved more difficult to explain.
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1. Introduction

In a previous paper (Ulmschneider, 1971) it was
found that the frequency spectrum of the flux of
acoustic waves produced in the convection zone
of the sun determines very strongly the heating
of different height levels in the chromosphere and
corona.

Because high frequency waves develop into shock
waves earlier the outer height levels are heated
by successively lower frequency shock waves. In
a qualitative way it could be stated that waves
with periods of less than about 80 s are responsible
for the heating of the chromosphere while waves
of periods of 100 s or longer are the heating agents for
the corona. Because of the lack of detailed com-
putation including an adequate treatment of the
radiative losses suffered by these waves this finding
was of a qualitative nature only.

In this work an actual nonlinear computation
including radiation effects is undertaken based on
the frequency spectra of Stein (1968). Because the
radiative losses were treated in an approximative
manner taking account of the optical depth only
in a very crude way it was decided that the mathe-
matical treatment of the hydrodynamical equations
need not to be carried to utmost accuracy. Instead
of the explicit integration of the three differential
equations integral principles were used. This proved
to be entirely sufficient when compared with more
detailed methods.

In Sec. 2 we describe this method of computation
while Sec. 3 deals with the manner in which radiative
losses are incorporated. The question of how to
simulate the acoustic wavefield with its statistical

nature on the computer is dealt with in Sec. 4.
Sec. 5 gives results and a discussion.

Although this present work is only a step towards
the detailed understanding of wave motion and
heating processes in the outer solar atmosphere it
may serve already as a means to assess the importance
of acoustic waves for the generation of micro- and
macroturbulence, and to get an idea of the influence
of wave motion on the computation of empirical
chromospheric models.

2. Method of Computation

The usual procedure to compute the propagation,
profile growth and distortion of an acoustic wave
is to integrate the hydrodynamic equations (e.g.
Bird, 1964) by using either a finite difference scheme
or the characteristics method. Although these
methods appear conceptually to be quite simple
they exhibit practical difficulties when they are
applied to a problem where both soundvelocity,
entropy and radiation loss are specified functions
of height.

Moreover as radiative losses can only be treated
very approximately it seems unnecessary to improve
the accuracy in the mathematical treatment of the
wave behavior while being very inaccurate in the
dominant damping mechanism.

For this reason it was decided to use integral
principles like the conservation of mechanical flux
and the rate of profile distortion well known from
the theory of simple waves. This proved to be
surprisingly accurate in reproducing more detailed
computations of Bird (1964). The radiation loss could
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moreover easily be incorporated in the scheme as
well as computation time greatly reduced.

Let us consider a periodic acoustic wave of small
amplitude, that is, the velocity of the gas particles v
is small against the sound velocity ¢. Then the
energy flux carried by this wave may be written
(Landau and Lifshitz, 1959, p. 250).

P
1
7 Pyn =5 | QotPodt. (1)
0

Here g, is the density of the unperturbed atmo-
sphere and P the period of the wave. Let us consider
what happens to this flux.

a) Conservation

For a wave of very small amplitude the profile
essentially does not get distorted and is carried
along with the sound velocity ¢. Let us assume
that the sound wave is given for instance by a
positive sinusoidal velocity pulse v; (¢) of duration
P/2 as shown e.g. in Fig. 3. This is taken to be
representative for an infinite monochromatic sound
wave of period P. Because the sound velocity
changes along this pulse we cut it into I pieces of
duration A¢ and length Ax = cAt within which the
sound velocity is considered constant. At the result-
ing height grid (¢) which may be extended through
the whole atmosphere we consider as given ¢ (¢)
and the density g,(:) of the unperturbed atmo-
sphere. The initial profil at time #, is thus given by

0 6), 7,6), i=1,...,1+1 @)

After the time interval KA¢ where K is an integer,
at the time
ta=14 + KAt (3)

the undistorted but steepened velocity profile v (%)
may then be computed using Eq. (4)

00 (¢ + K) c(i + K) v3?(3)
= ,(1) ¢ (3) ¥ ()
xy(4) = 2, (0 + K)

i=1,.I+1. (@

b) Profile Distortion

In cases where » is not very small against ¢ the
profile suffers a distortion well known from the
theory of simple waves. Regions of high velocity
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Fig. 1. Velocity v as a function of distance x for a rectan-

gular shock wave moving through a density discontinuity

at z = 0 is shown in presence (drawn) and absence (dashed)
of the discontinuity

travel faster than regions of low velocity such that
the total velocity of a point in the profile is (Landau
and Lifshitz, 1959, p. 368)

u=c+%(y+1)'v. 5)

Here y = 5/3 is the ratio of specific heats.
At the time f, the profile point v, (¢?) will be

shifted by a height interval
1
dz=—5(y+1)v(—t), (6)
where
o= M (7
to the height
3 (8) = 2, (4) + dx . 8)

Because we want the velocity profile at the old
x spacing we interpolate in the v3(7) versus x3(s)
table to obtain the distorted profile

vg (i), 2a() §=1,...,]+1. )

This was done using three point parabolas in —v
direction.

In a homogeneous atmosphere the process Eq. (6)
to (9) ensures flux conservation as well. In a gravi-
tational atmosphere the distorting shift must also
be accompanied by a steepening. This may be seen
most easily considering a rectangular shock wave
at the interface between two constant density half-
spaces (Fig. 1) labelled by suffixes 2 and 3. Let
03 < @; and v, be the velocity of the shock front
arriving at time {= 0 at the discontinuity z= 0.
If no discontinuity were present the profile distortion
at time ¢ would be as indicated dashed. The amount
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of energy lost at the high density side in the time
interval At is thus

AE, = —g— v30: A%,

Azy=3 (y+1) vy At

In reality we have a velocity discontinuity and the
energy gained at the low density side is

2
AB;=5 v30; 4,

1
Azy= 5 (y+1) v 4t
Thus
0av3= 0575 (10)
Using Eq. (10) we find for the final velocity profile
at time ¢, under the action of both steepening and

distortion
23 (1) — 21 (3)

v5(8) = vy() €BEG+ B) (11)
where )
Hi+E)=2C10 (12)

is the scale height at the height x, (7).

¢) Formation of Shock Discontinuities

Eventually the above process Eqs. (4) to (12)
will yield a multivalued curve

vg(2), 23(s), t=1,...1+1
and provision for the occurrence of a shock at the
highest 2 points has to be taken. Because we assumed
v < ¢ the resulting shock will be weak and thus
travel with sound velocity. It will form exactly at
the highest 2 point. Because the =z, (¢) is always
smaller than xj(¢) three point interpolation parabolas
in —v direction are good for i=1,...,I. For the
highest 2 point however we use an interpolation
parabola going through wy(I — 1), 3(I — 1) and
vy (I), z5(I) and v3(I + 1) = 0, 23(I + 1) but opening
toward — z direction. We compute the second point
of intersection of the parabola with the
25(I + 1) = const. axis by

_ taP@a(l +1) — 2a(f — 1)

T (D) (@a(I + 1) — (I — 1))

— oI — 1)2(@a( + 1) — za(]))

— o3I — 1)(xa (I + 1) — x5(1))
If v, > 0 we have a shock discontinuity at «, (I 4 1)
with velocity v, (I +1)=wv, else a node with
v,(I +1)=0.

(13)
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d) Comparison with Other Methods

This above method appears to be extremely
stable and well behaved. It could easily be adapted
to simulate the boundary value problem where the
wave enters in time at a fixed z point. Using this
boundary condition we simulated the somewhat
different model computation of Bird (1964). A com-
parison of the height of shock formation with values
given by Bird is shown in Table 1.

It is seen that our very simple approach reproduces
fairly well the more detailed computations of Bird.
Moreover it is apparent that for shorter periods
our method will give better results in agreement
with the theoretical expectation that for a homo-
geneous medium, that is, wavelength small against
scale height, our method will be exact because it goes
over into the simple wave theory.

Table 1. Comparison of the heights of shock formation in km
for two shock waves in a constant temperature gradient atmo-
sphere computed with Egs. (4) to (12) with computations

of Bird (1964)
Period  Bird Bird present work
(s) (Temp. gradient) (Uniform gas) (Temp. gradient)
300 1100 1290 1265
150 600 640 664
3. Radiative Relaxation

a) Energy Equation
Neglecting viscous and thermal conduction losses
the energy equation may be written (Hirschfelder
et al., 1964, p. 463)

or oT oy .
00u (G- + v 55) + Pgr=4me (i~ EJ) (14)

Here j is the emission coefficient, J the mean inten-
sity and K the Rosseland mean absorption coefficient,
T the temperature and p the pressure of the gas
element, c, the specific heat at constant volume.
Assuming that the radiation field is negligibly
disturbed out of radiative equilibrium by the small
perturbation 7 where T'= T, + 1" and assuming
LTE we may write after linearization

00+ I 16Ro TP (15)
where T, is the temperature of the undisturbed
atmosphere.
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The radiative relaxation time is given by

o

T =
BT 16 Ko

(16)

The relationship between temperature and velocity
in a sound wave is given by

T'=To(y — 1) (17)
where
a__ . P
a=y2 (18)

With these relations Eq. (15) may be written

19 . dr ™
(c ot )T—dx_—TRc’ (19)
or integrated
— =8 __
T'=Toe § 2@ (20)

The physical meaning of Eq. (19) is that the
high (or low) temperature region 7" travelling with
sound velocity suffers radiative loss proportional to
the temperature perturbation 7”. A more detailed
derivation of Eq. (20) for the case of a stationary
temperature perturbation has been given by Spiegel
(1957).

b) Inclusion of Radiative Losses

The inclusion of radiative losses for the case of
small amplitude may now easily be done using a
pretabulated set of

Table 2. Radiative relaxation time Ty after Eq. (16) and
profile diminution function e (i) after Eq. (21) as function
of height on basis of the HRA model (Gingerich et al., 1971).

h (km) Tk (s) e
—46.8 0.026 2.55 x 102

0 0.698 1
48.9 2.54 1.32x 102
108 6.03 1.91x10-%
153 9.96 8.83 x 10—
198 154 5.39x 10—
297 39.4 3.03x10*
393 99.6 2.42x10
501 290 2.19x 10
606 652 2.12x 10
685 743 2.08 x 10—
797 471 2.03 x 10—
1022 365 1.89x10-¢
1288 288 1.74x 104
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values 20
dz

e(l)=e § TE@@ (21)
where z (¢) is the height grid of Eq. (3).

Because of Eq. (17) and (21) we just need to

follow up operation (4) by

V(8) = v2(0) e (i + K)fe(s) (22)
and continue with ¥,(¢) instead of v3(¢) in Eq. (6)
to (12).

In Table 2 we have tabulated the radiative
relaxation time 7'p, and the profile diminution
function e(s) as function of height on basis of the
HRA model (Gingerich ef al., 1971). The opacity in
Eq. (16) was computed using H™ and hydrogen
absorption. For the H™ absorption the routine of
Gingerich (1964) was taken multiplied by the non-
LTE hydrogen number density. In the hydrogen
absorption the LTE number density was used because
the Balmer emission is not far out of LTE.

b) The Effect of Optical Depth

In Table 2 we see that the wave looses energy
extremely rapid within the first 100 km. This is
only partly realistic and results from our optically
thin treatment of the radiation loss. A more detailed
treatment taking into account the optical depth
and the perturbation of the opacity and radiation
field will greatly reduce the radiation loss rate.

However there is also some uncertainty at what
height we might suppose the initial acoustical flux
computed by Stein (1968) to be present. Because
the acoustic emission rate is proportional to 8
where u is the mean velocity of the rising turbulence
element the greatest emission will come from the
height of greatest u. This is according to Vitense
(1953) at log p, = 5.25 or at —51 km in the Ginge-
rich et al. (1971) model. The profile diminution
factor e (¢) at that height (Table 2) shows dramat-
ically the need for a better treatment of absorption.

To account for this missing absorption we have
cut off in our approximate treatment the radiation
loss arbitrarily at a certain height A, for which
we took between 110 to 140 km, below which we
consider the atmosphere as completely optically
thick and above which we treat the radiation loss
according to Eq. (22). The above cut-off height &,
was chosen such that at 800 km still a total energy

flux of about 1 X 106

to balance the observed chromosphenc and coronal
radiation losses.

5 is present, to be able
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4. The Acoustic Flux Spectrum

Stein (1968) has computed three acoustic flux
spectra on basis of different assumptions on the space
and frequency behaviour of the turbulence in the solar
convection zone. He calls these spectra EE, SE and
EG spectra. The EG spectrum will be disregarded
in this work because it has an unrealistically low
total flux. The total fluxes are for the EE spectrum
7wl =77 x 107 erg/cm?s and for the SE spec-
trum sFi;= 5.5 x 107 erg/fcm?s. (Note that the
total flux of the EE spectrum is misprinted in
Steins paper).

We want to represent this spectrum by a series
of N monochromatic bands of bandwidth Aw. The
total flux is then computed by

N N
aF= [aFdo= ) aF,Ao= 3 nF; (23)
i=1 i=1

where NAdw is the total bandwidth.

Increasing the number of partitions N we notice
that because of the decrease of Aw the fluxes = F;
decrease correspondingly. Using now Eq. (24)

aF;= p4cv} (24)

to determine the wave amplitude v; would be quite
misleading.

The arbitrary splitting of the spectrum in mono-
chromatic regions is perfectly valid in cases where
linear effects are investigated. In our case however
the formation of shocks which we want to consider
is mainly a nonlinear effect. Thus it depends very
critically on the wave amplitude and a procedure
how to compute it has to be given on physical
grounds.

The physical situation of wave production on
the sun is a statistical process where wavetrains
of acoustic waves are generated by the rising and
falling turbulence elements. We expect a random
spatial and temporal superposition of these wave
trains in such a way as to yield the correct monochro-
matic flux by averaging over a sufficiently large
area or a sufficiently long time interval Az.

A simulation of a situation like that seems
difficult even for a large computer. Thus a simplified
physical picture is necessary. Thinking of the motion
of the turbulence elements and their appearance
in form of the granulation at the solar surface we
may assume a very similar occurrence of acoustic
wave trains. These may be pictured as pieces of
monochromatic waves which appear at different
surface elements and at different times. Considering

19 Astron. & Astrophys., Vol. 14

On the Propagation of a Spectrum of Acoustic Waves in the Solar Atmosphere 279

a fixed surface element we assume thus that mono-
chromatic wavetrains appear in time intervals 4¢ /N
where At, is a sufficiently long time interval in
which the complete flux spectrum can be measured
at that surface element. IV is the number of different
monochromatic waves possible and thus identical
with the number of frequencies in which we split
the complete spectrum.

From Eq. (23) we get now the energy which
has moved through the surface element in the
averaging time A,

¥ Aty
ﬂFmtAtA=2NﬂFj N (25)
=1

The velocity amplitude is then simply computed
using
NrF;=pycvf. (26)

5. Results and Discussion
a) Initial Conditions

The EE and SE energy flux spectra computed
by Stein (1968) were split in 11 and 9 monochromatic
frequency bands respectively. Tab. 3 shows the
wave periods P; and fluxes mF; of these bands.

Table 3. Wave periods P; and fluxes = F; of the monochromatic
frequency bands § into which the EE and SE spectra were split.

band EE spectrum SE spectrum

. er, er,

j Py (s) nF,(cm,gs) Py (s) ”F’(cmfs)
1 251.3 1.52x 108 125.7 2.72 x 10°
2 83.8 8.90 x 108 41.9 1.09 x 107
3 50.3 1.59 % 107 25.1 1.25 % 107
4 35.9 1.69x 107 18.0 9.70 x 108
5 27.9 1.33x 107 14.0 6.68 x 108
6 22.9 9.24 % 108 114 4.36x10°
7 19.3 5.47x 108 9.67 2.76 x 10°
8 16.8 2.67x 10° 8.38 1.69 x 10°
9 14.8 1.17x10° 7.39 113 x 108

10 13.2 5.00 x 10°

11 12.0 2.15x 108

To compute the behavior of a monochromatic
wave we choose P;, F; and the number of partitions
I in regions of constant sound velocity for which
we usually take 60 to 120. Using Eq. (26) we com-
pute the wave amplitude v;. At a chosen initial
height &, we appply the boundary condition

v(f)=1v, sin (%At(i—l)) i=1,...,I+1. (27)
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Fig. 2. Total flux of the acoustic wave spectra at the height
800 km as function of the cut-off height 5,

Using now Eqgs. (4), (6) to (9), (11) and (22) and
the HRA model (Gingerich ef al., 1971) as basis we
compute the velocity amplitudes at the height points
above h,. Here

At=l;i. 28)

A typical result of such a computation is seen in
Fig. 3 where the velocity profile is plotted wherever
the wave head reaches a multiple of 100 km.

Because of strong radiation losses at low altitude
these wave amplitudes depend strongly on the cut-
off height %, below which we assume the atmo-
sphere to be completely optically thick.

b) Dependence on Cut-off Height h,

Fig. 2 shows the dependence of the total energy
flux of the waves at a height of 800 km on the cut-
off height h,. As we have already mentioned we
choose for our final computation the height A, such
that at 800 km a flux of about 1 x10°erg/cm?s
remains for the heating of the upper chromosphere
and corona. Because the EE spectrum carries more
total flux the cut-off height h,= 110 km for this
spectrum is lower than h,=140km for the SE
spectrum.

In these heights A, all the uncertainties about
the magnitude of the flux spectra resulting from
our incomplete knowledge of the turbulent velocity
field as well as the crudeness of our treatment of the
optical depth effects are hidden. A more complete
treatment should lower h, to about 0 km. Because
we have fixed the flux at 800 km in agreement with
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Fig. 3. Velocity amplitudes of monochromatic frequency

bands of the EE spectrum versus height. Wave periods are

indicated. Except for the wave with 250 s period the waves

are drawn whenever the wave head reached a multiple of

100 km. The waves are introduced with a periodic boundary
condition at b, = 110 km

observations this uncertainty will not affect our
results of the velocity profile.

¢) The Velocity Amplitudes

Figure 3 shows the velocity amplitudes of a
few members of the monochromatic set of Tab. 3.
The velocities are all plotted on the same scale.
Because we have small amplitude waves, the positive
and negative amplitudes are equal in magnitude.
Thus the positive velocity pulses may be drawn
analogously in the —v direction. Here the shock
front faces backwards.

At low altitude the strong damping of the waves
because of the large radiative losses is apparent.
At high altitude very little flux is lost by radiation
and thus the waves are permitted to grow and develop
into shock waves much earlier in spite of their
small amplitude. This confirms the qualitative
arguments of Ulmschneider (1971).
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Fig. 4. Mechanical flux #F; of the 11 monochromatic
frequency bands of the EE spectrum as function of height.
The total flux = F is labeled 7'. The heights at which shocks
form and the shock is fully developed are indicated by dots
and triangles respectively. The dissipation % (dashed,

labeled by the heights A4, is compared with computed
radiation losses (drawn) between 800 and 1200 km

d) The Monochromatic Fluxes

In Figs. 4 and 5 we have plotted the fluxes
7F; of the monochromatic frequency bands of the
EE and SE spectra respectively as function of
height. This flux was computed using Eqs. (1), (25)
adding those parts of the wave which are below &,. The
strong decrease of the flux (~?) is seen here more
predominantly. If there were no formation of shock
waves these curves would level off at greater height
after the radiative loss becomes unimportant. How-
ever as soon as a flux conservation condition is
approached the wave grows rapidly because of the
small scale height (~ 100 km) and nonlinear effects
become important distorting the wave into a rapidly
dissipating shock wave. The heights at which a
shock discontinuity first appears are indicated by
filled circles while the heights at which the shock
wave is fully developed, when the velocity increases
monotonically toward the shock front, are indicated
by triangles. The total flux as function of height is
indicated by the curve labeled 7'.

19+

T TTTTT
ol

T T TTT

T T TTTTI
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T T T T

1ol

I T N T T Y I 1 N5
200 400 600 800 1000 1200 h (km)

Fig. 5. Mechanical flux #.F; of the 9 monochromatic frequency

bands of the SE spectrum as function of height. The total

flux #F is labeled 7'. The heights at which shocks form and

the shock is fully developed are indicated by dots and
F

triangles respectively. The dissipation jdn—h (dashed) is

compared with computed radiation losses (drawn) between
800 and 1200 km

e) Mechanical Heating

The derivative of the total flux curve gives the
dissipation. In Figs. 4 and 5 these mechanical
dissipation rates (dashed) are compared with H
and Balmer radiation loss rates (drawn, taken from
Ulmschneider, 1971) between 800 and 1200 km.
Radiative losses at these heights should be exactly
belanced by mechanical heating. The remarkable
agreement between the dissipation and radiation
loss rates is apparent. The top curve in Fig. 4
labeled 110 gives the dissipation rate if b, is 110 km.
Alowering of h, to 105 km yields the lower dissipation
rate labeled 105 which shows how an appropriate
choice of h, will exactly balance dissipation and
radiative loss.

1) General Pictureof Chromospheric and Coronal Heating

Looking at the spectral composition of Figs. 4
and 5 we notice that regardless of the magnitude
of the flux all high frequency waves develop into
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shock waves at low heights. This supports strongly
the picture already stated by Ulmschneider (1971)
that the high frequency part of the acoustic spectrum
is responsible for the heating of the chromosphere,
It is also seen that the low frequency waves are
the only remaining sources of energy for heights
above 1800 km. Thus the coronal heating is done
exclusively by waves of low frequency. Figures 3
and 4 show that at 800 km the main dissipator is
the fully developed shock wave of 28s period.
This supports the previous findings based on an
entirely monochromatic computation (Ulmschneider,
1970; 1971). However the present computation
shows also that many waves participate in the heating
of a certain height level. This is done in such a way
that the frequency of the main dissipator decreases
as function of height. Thus the heating of the chromo-
sphere seems to be relatively well understood.

g) Corona

At 1800 km both frequency spectra yield a flux
which is about a factor of 15 below the value needed
for the balance of the Ly« and XUV emission
which amounts to about 3x10°%erg/cm?s (Ulm-
schneider, 1971). One reason for this low flux might
be the inadequate treatment of the influence of
optical depth on the radiation loss of low frequency
waves. Spiegel (1957) shows that for long wavelength
A the radiative relaxation time 7'y increases like

K K\-1 B\2
Ty (1 — oot 7) ~3T, (7) 29)

where k= 2 m/A is the propagation vector and K
the Rosseland mean opacity. Better treatment of
this effect will greatly increase the flux carried by
long period waves. Another possible reason could
be magnetical energy generated at low heights. A
third reason might be the neglect of gravity waves
which Whitaker (1963) assumed to be the main
heating agent of chromosphere and corona. The
main objection against this view was the ready
availability of acoustic waves and the severe influence
of radiative relaxation on gravity waves. However
a better treatment of these effects along with the
gravity wave fluxes computed by Stein (1967) which
are by a factor of about 10 higher than the acoustic
wave flux might bring about the missing mechanical
flux. Fourth a better treatment of the turbulence
might yield an acoustic flux spectrum with greater

power at long wavelength. Note that an uncertainty
of the mean turbulent velocity » of a factor of 2
brings with the acoustic emission rate ~u8 a flux
uncertainty of a factor of 256.

k) EE versus SE Spectrum

Finally we want to discuss the question of how
well suited the EE and SE spectra are for chromo-
spheric and coronal heating. Figures 4 and 5 show
about the same flux at 800 km. Both spectra exhibit
in addition good agreement of dissipation and
radiation losses between 800 and 1200 km. In view
of the fact however that both spectra are set up
to have the same flux at 800 km this good agreement
does not surprise. Thus before a better treatment
of the optical depth is available we can not decide
whether the EE or SE spectrum fits observation
better. In order to bring more flux to great altitude
however we would prefer a spectrum with a greater
low frequency power.

Note added in Proof (29 July 1971). Two further points
show the surprising consistency of our results with expecta-
tion. First the height at which the first member of the fre-
quency band develops into a shock wave and thus starts to
dissipate agrees very well with the height of the observed
solar temperature minimum as seen in Figs. 4 and 5. Second
the cut-off heights %, of the SE and EE spectra lie at an
optical depth of 7550 = 0.1 to 0.2. This is exactly what one
expects for the effect of the optical depth on radiative
relaxation (see Section 3c).
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