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Summary. For solar magnetic flux tubes we compare three types of
waves: Longitudinal MHD tube waves, acoustic tube waves
propagating in the same tube geometry but with rigid walls and
ordinary acoustic waves in plane geometry. We find that the effect
of the distensibility of the tube is small and that longitudinal waves
are essentially acoustic tube waves. Due to the tube geometry there
is considerable difference between longitudinal waves or acoustic
tube waves and ordinary acoustic waves. Longitudinal waves as
well as acoustic tube waves show a smaller amplitude growth,
larger shock formation heights, smaller mean chromospheric
temperature but a steeper dependence of the temperature gradient
on wave period.

Key words: magnetic flux tubes — waves — chromosphere

1. Introduction

In this paper we consider the nonlinear, radiatively damped
propagation of magnetoacoustic waves in a thin, intense magnetic
flux tube embedded in the otherwise field-free solar atmosphere.
Magnetoacoustic wave propagation in magnetic flux tubes in the
last years has been extensively studied (Defouw, 1976; Roberts and
Webb, 1978, 1979; Wilson, 1979, 1980, 1981; Parker, 1979;
Wentzel, 1979; Spruit, 1981a, b, 1982; Roberts, 1983; Edwin and
Roberts, 1983) particularly in the case of negligible gravity. These
treatments usually start from the linearized MHD equations valid
for tube geometries. In the case of zero gravity, the wave equation
is solved in terms of a wave moving along the vertically-directed
tube axis, where the horizontal variation is described in terms of
Bessel functions both inside and outside the tube. Suitable
matching at the tube boundary allows the construction of the
complete wave. There are several wave types possible (see Spruit,
1982; Edwin and Roberts, 1983): a torsional mode, the nonlinear
propagation of which has been studied by Hollweg et al. (1982);
two transverse modes (also called taut wire or kink mode); and a
longitudinal mode (also called axisymmetric or sausage mode),
which is the subject of our present study.

Because the longitudinal mode is compressive, it closely
resembles acoustic tube waves travelling in rigid funnels and
ordinary acoustic waves in its propagation characteristics. For
situations of non-negligible gravity, these waves have first been
studied by Defouw (1976), who assumed an isothermal atmo-
sphere. This study was subsequently generalized by Roberts and
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Webb (1978) to non-isothermal atmospheres. Because the pressure
perturbation, and thus the wave in the medium outside the flux
tube, was neglected to make the problem tractable, both studies
are not as general as the previous work on cases of negligible
gravity. This approximation was justified by the fact that for cases
of negligible gravity and fully built-up external wave fields no
mechanical energy is radiated away from the flux tube in
horizontal direction if the external sound speed is larger than the
tube speed (Spruit, 1982; see also Spruit and Zweibel, 1979). Thus
the assumption of a constant pressure boundary which prevents
transmission of acoustic energy seems a good approximation for
this case. However, in highly nonlinear cases, where the wave
amplitudes are not small, and particularly in situations where we
have switch-on effects, the interfering wave field outside must be
built up by transfer of wave energy to the outside medium;
therefore some acoustic damping must occur. This question will be
addressed in a separate paper.

Another effect which cannot be described by a linear treatment
is shock formation. This is especially interesting for the problem of
chromospheric and coronal heating. The heating mechanism for
the outer atmosphere of stars is still unknown, but observations of
solar and stellar UV and X-radiation fluxes (e.g. Linsky, 1980;
Vaiana et al, 1981) have shown that a purely acoustic wave
heating theory cannot be correct, and that there is good correl-
ation between heating and the presence of magnetic fields. Because
much of the observed UV and X-ray variation from star to star can
be explained by different magnetic field coverage and because
hydrodynamic shock formation nicely explains the sudded onset
of chromospheric radiation loss (Ulmschneider and Stein, 1982) as
derived from empirical solar models, it seems appropriate to
explore the propagation of compressive modes in the presence of
structured magnetic fields.

A systematic comparison of longitudinal tube waves, acoustic
tube waves and ordinary acoustic waves in plane geometry has
been made by Rae and Roberts (1982) and by Roberts (1981, 1983)
in the linear regime. In the present work we compare these three
wave types in the nonlinear regime. In particular we are interested
in the shock formation properties to explore whether longitudinal
tube waves could be a chromospheric heating mechanism.

From purely acoustic work (Ulmschneider et al., 1978; hen-
ceforth USKB 78) it is well-known that radiation damping is
important in realistic situations. Webb and Roberts (1980) and
Roberts (1983) have in fact computed linear tube waves with
constant radiative relaxation time 7. Although this gives a basic
feeling for the properties of radiatively damped longitudinal
waves, it is also known that 7, is a rapidly increasing function of
height (Ulmschneider, 1971). In a time-dependent nonlinear
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treatment, such as ours, variable 7 and even radiative transfer are
easily taken into account (USKB 78). In the thin flux tube limit,
which we employ here in order to permit a one-dimensional wave
calculation, the radiation field of the flux tube can be neglected
compared with that of the surrounding atmosphere. As the mean
intensity of the radiation field in the flux tube thus is a specified
time-independent quantity, the radiation damping function
becomes a local quantity and the radiative transfer equation need
not to be solved. This results in a much simplified treatment, which
we carry out in the following sections.

Our paper is thus structured as follows: in Sect. 2 we describe
the basic equations for longitudinal tube waves, and discuss the
difference between these waves and acoustic tube waves. Section 3
describes the shock formation. Our fully nonlinear time-
dependent calculations are carried out in Sect. 4, in which we
describe the numerical scheme used (method of characteristics);
the results are described in Sect. 5. Our conclusions are given in
Sect. 6. The solutions of the linear theory for the longitudinal
waves are summarized in the Appendix.

2. Basic equations
2.1. Longitudinal tube wave equations

The equations which govern the propagation of longitudinal
MHD flux tube waves are derived by making the thin flux tube
approximation (Defouw, 1976; Roberts and Webb, 1979): the
variation of the physical variables, such as field strength B, velocity
u, pressure p, density g, etc., across the tube are assumed to be
much smaller than their variations along the tube. For simplicity,
one assumes a vertical flux tube of axial symmetry and expands the
physical variables at the tube axis in a Taylor series in the
horizontal direction. Let ¢ be the time, r the horizontal coordinate,
z the vertical coordinate and ¢ the azimuthal angle. Using the
series expansion of the system of MHD equations written in
cylindrical coordinates and neglecting all p-dependent terms, as
well as all terms of first and higher order in r, the following set of
equations is found

2 {et)o
%+u%+é%+g=0, @
g+p=pe(2), (©)

Here g is the gravitational acceleration for which we take the solar
value g=2.736 10* cm/s?, p,(z) is the gas pressure of the field free
region outside the flux tube and S is the entropy per gram. All units
are cgs. In Eq. (4) we have neglected Joule, viscous and conductive
heating, but retained radiative damping. Equation (1) is a combin-
ation of V- B=0, the continuity equation and the z-component of
the induction equation. Note that taking the external pressure p,
independent of time in Eq. (3) we neglect the inertia of the external
medium, as well as acoustic damping and dispersive effects. This
assumption was made to allow a one-dimensional time-dependent
treatment. Its restrictivenes can only be judged when simultaneous
time-dependent calculations in the flux-tube and the external
medium become available.

Equations (4) is the energy equation written in the form of an
entropy conservation law. Here S is the entropy per gram. For the

- . . ds .
radiation damping function —|  we use a grey LTE approxim-

dt Rad
ation (Ulmschneider et al., 1978; henceforth USKB 78):
ds 4nx ~
>0 =2 g—
Tl =71 VB, ©®
where
xk=138.10"23p0.74T* ©)

is the grey Rosseland opacity per gram fitted to calculations of
Kurucz (1979). T is the temperature within the tube which is
related to p and g over the ideal gas equation

AT
p=0— @
U

where #=8314410"7erg/Kmol is the gas constant and
u=1.3 g/mol is the mean molecular weight for a non-ionized gas.

7=2T )" ®)
T

is the adopted mean intensity, T, is the temperature outside the
tube, ¢ the Stefan-Boltzmann constant and

B="T1* ®

a9

is the Planck function. In this treatment of the radiative transfer we
assume that the flux tube is optically thin and that the tube is
embedded in a radiation field dominated by the external medium.
A comparison with the radiation treatments of Webb and Roberts
(1980) and of Roberts (1983) who use Newtons law of cooling and a
constant radiative relaxation time is given in Appendix B.

2.2. Acoustic tube wave equations

It is instructive to compare the longitudinal tube wave Egs. (1) to
(9) with the similar equations of acoustic waves in a tube with rigid
walls of the same geometry. Let 4 be the cross section of the tube
and, a, the geometrical distance along the tube axis at some initial
instant t,. This distance a is called Lagrange coordinate. If the
Eulerian coordinate z(a,t) along the tube is assumed to be a
function of the Lagrangian coordinate a and time ¢, the conserv-
ation of mass in the tube can be written in the form (index 0 labels
quantities at time ¢,)

0(a, 1) A(a, 1)dz=¢o(a) Ao(a)da, 10
or

0z 2o4o

ZY = . 11
(aa>t 04 (ah
Differentiating Eq. (11) with respect to ¢ and using

0z

= 12
=(Z). (12
we have the continuity equation in Lagrangian form

doA\  02%A4% (ou

il =0 1
< ot >a+ 0040 \0a/, )
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With the usual relations
S\ _(& il
<E>f(at),+“(az>,’
(@)-(2).)
da), \oz)\da),’

used when going over to the Eulerian frame we find from Eq. (13)
the Eulerian continuity equation for acoustic tube waves

0oA Ogud\
(%) (%)

This equation is well-known in the literature of engineering
aerodynamics and duct flow (e.g. Rudinger, 1969, p. 12; Lighthill,
1980, p.92). In plane parallel geometry, 4 is constant and Eq. (16)
reduces to the familiar continuity equation (Landau and Lifshitz,
1959, p. 2). The momentum and energy equations for tube waves in
Lagrangian form can be written as

(14)

(15)

(16)

ou ap .
2040 (§>a+ A (5;) +00409=0, an
and
oS as
o) e 1
<0t>a dt |Raa {18)

Here ¢4, is the mass element (g/cm); the pressure force acts on the
actual cross section A. With Egs. (14) and (15) it is easily seen that
the Eulerian forms of (17) and (18) are identical to Egs. (2) and (4).

2.3. Differences between longitudinal and acoustic tube waves

As the magnetic flux in a flux tube is concerved we have

BA=®=const. 19)

With this relation it is seen that the continuity equations (1) and
(16) are identical; and similarly for the momentum and energy
equations. However, because B can be eliminated from Eq. (3) in
favour of A, it is clear that longitudinal MHD tube waves are
acoustic tube waves with a specific “breathing law”, which specifies
the variation of the tube cross section with gas pressure. The
distensibility of the tube adds an additional restoring force to the
volume compressibility and thus alters the propagation speed of
the wave (Lighthill, 1980, p. 93). Note that this distensibility isnot a
wall effect like in human blood vessels but is a volume effect. For
the propagation speed in the longitudinal tube wave one has from
Egs. (3), (19)

1 1 2,2
= =54 0)
oA +2) _Lovy 104l cstel
N\ "V apls A dps

Here V=g"! is the specific volume, ¢ the adiabatic compressi-
bility, & the adiabatic distensibility, cg the sound speed and ¢, the
Alfvén speed. It is seen that while in a rigid acoustic tube wave the
propagation speed is the sound speed, the propagation speed ¢ of
the longitudinal tube wave is always less than both ¢, and cg. In
addition to the modification of the propagation speed, the
ordinary acoustic wave, the acoustic tube wave and the longi-
tudinal tube wave differ in the acoustic cut-off frequency w.,. As this
has already been found by Defouw (1976) and e.g. by Rae and
Roberts (1982) we do not repeat a discussion here.

ct=
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3. Shock waves

We now consider the formation of shocks as compressive tube
waves propagate down a density gradient.

3.1. Hugoniot relations for longitudinal tube waves

Purely hydrodynamic shocks occur over distances of the order of
the molecular mean free path

1
nq’

I= 21
which in the low chromosphere is about 10cm. Here n is the
number density of the gas and q is the hydrogen collision cross
section, which in the low chromosphere can be written

q=nQ2a,), 22

where a,, is the Bohr radius. As the typical length scale for acoustic
waves is of the order of the scale height, which is in the range of
107 cm, it is a good approximation to represent a hydrodynamic
shock by a discintinuity. For longitudinal tube waves we now
assume that the region where the strong bending of magnetic field
lines near the hydrodynamic shock occurs is very small compared
to the typical length scale of the acoustic waves, but is also
considerably larger than I In addition, we disregard for the
moment the occurrence of modecoupling in the near shock region;
this will be discussed in a subsequent paper. The Hugoniot
relations for longitudinal tube waves may then be derived as
follows. Consider the shock discontinuity in a frame comoving
with the shock (see Fig. 1). At the front the gas enters the shock
with velocity v,, density ¢, and pressure p,. The tube cross section
is A;. At the back the gas leaves with velocity v,, density g, and
pressure p,. The tube cross section is now A4,. Let us assume that
the longitudinal tube wave equations are written in the frame
comoving with the shock. We integrate the continuity Eq. (16) over
the discontinuity from height z, to z,. Take the time derivative of
the first term out of the integral; because 94 is bounded, we see that
this integral vanishes for z, —z,—0. From the second term of Eq.

(16) we get the first Hugoniot relation
019141 =0:0,4;, (23)

Multiplying Eq. (16) with » and Eq. (2) with ¢4 and adding, we
have

0 o, , op
— — — =0. 4
o (ovA)+ e (v*A)+ A % +04g=0 24)
From Eq. (3) and (19) we have
A=¢[8n(p.—p)]~ 7, 25
|
V2 i
< A2 Aq —
T1 P1 918
T2 P2928 1
| 1
I | |
! ! | >
e shock Z4 z

Fig. 1. Physical quantities in front of (labeled 1) and behind (labeled 2) the shock
in a frame comoving with the shock
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and
op 0 dp.
—=-2— A—=.
A% =2 A~ +47 26)
Thus the momentum conservation equation can be written
0 0 d
—(@oA)+ = [(@v* ~2p.+2p) A1+ A" +0gA4=0. @)

Integrating from z, to z, we find again that the integrands of the
first, third, and fourth term are bounded and vanish for
(z{—2,)—0. We thus have the second Hugoniot relation,

Ay (0103 —2p,+2p))=A,(0,05—2p.+2p,) . (28)

For the derivation of the energy conservation equation we
consider

gt [(1 Qv +QE+Q¢) ]

_La0) 00 0EA)

2 ot ot ot

0(09A)
ot

29

where E is the specific internal energy and ¢=¢,+gz is the
gravitational potential, with ¢, a constant. Following Landau and
Lifshitz (1966, p. 247) we use Egs. (2) and (16) as well as the
thermodynamic relations to modify the right-hand side of Eq. (29).
Assuming that ¢ is time-independent, we find after some algebra
that

0 1
at[( Qv +QE+Q¢> ]
0 1, o4

d
where W is the specific enthalpy. With Eq. (25) and % =0we have

(30)

94 02p.A) (pA)
P ™o ot GD

and with Eq. (3) obtain the energy conservation equation

011 B?
6t[<ZQv +teE+ o +pe+9¢> :l
d 1 2 —
+£|:QUA(§U +W+¢)] =

The first term on the left hand side contains the kinetic, internal
and magnetic energy densities, as well as the potential energy
densities due to the tube wall distension and to gravity. The second
term contains the energy flux, which is unchanged compared to the
plane parallel and the spherically symmetric cases. As the first term
again vanishes upon integration from z, to z, and going over to the
limit (z, —z,)—0, we have the ordinary third Hugoniot relation

(32)

i+ W =303+ W,. (33)

The three Hugoniot relations (23), (28), and (33) can be used to
connect the continuous regions, where the longitudinal tube wave
equations apply, across the shock. To transform the Hugoniot
relations into the Eulerian frame, we use

_USH’
_USH’

Uy =1y

(34
35

Uz=u2

where Ugy is the shock velocity in the Eulerian frame. The shock
velocity in the Lagrangian frame is, e.g.,

da oa
2V —(Uew— -
(at>su Usu—u) <6z)t'1 ’

where 1 labels the region in front of the shock.

(36)

3.2. Hugoniot relations for acoustic tube waves

As the tube cross section does not change across the shock for
acoustic tube waves in rigid tubes, the Hugoniot relations (23, 28,
and 33) for these waves reduce to the ordinary Hugoniot relations
(Landau and Lifshitz, 1959, p. 319). These relations can be
obtained by going to the limit of very small distensibility, e.g., £ <1
where

p
== 37
0. (37
From Eq. (25) we have to first order
A=~constp, 2(1+1¢) (38)

which, when inserted in Eqgs. (23) and (28), leads to the ordinary
Hugoniot relations in the limit £—0.

3.3. Solution of the Hugoniot relations

In the time-dependent work described in the next section it is
necessary to solve the Hugoniot relations a considerable number
of times. It thus is important to develop an efficient method of
solution. For this solution the physical variables uy, cs,, Sy, p1, 01>
W,, A4, p. in front of the shock are known in addition to the post
shock velocity u,. Together with the thermodynamic relations

W= R 39
— (39)
p

cd=v=, 40
5=7, (40)
and

2

-1 _mS2-8y)
Q—2=(Cﬁ> e & @1)
01 Cs,

valid for a non-ionizing ideal gas, Egs. (23), (25), (28), and (33)~(35)
are sufficient to determine the 9 unknows cg,, S,, p,, 02, Wa, 45, 04,
v,, Ugy. Eliminating all unknowns except 4,, one is able to derive
a third order equation for 4,,

Ey+E A,+E A5+ E3A3=0, (42)
where, by defining Au=u, —u,, one has
y—2
Eo= ] 4ioiAt, 3)
4—-3y 4n A} 8n
E1=Au29%A?|: —1 @7 “291y_11 - FVV191A§:|, (44)
E.=2Au0? A2 a2
2=24u"01A47 1_52‘41“ 0147
Y
+ 1@2 eA1‘|‘ VV1@1A1]a 45)
y 8n 4
E;= ——1?4114 eQ1A3|:¢2 Au?g A3~ I:I (46)
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Of the three solutions of Egs. (42), the first is negative and the
second is smaller than A,. They are thus both unphysical, for the
latter because of the pressure increase associated with the entropy
jump. The correct solution is the largest root 4, which is found by
Newton’s method. In cases where the shock is still weak, the two
positive solutions are very close together but can be separated by
determining the point of zero slope between the two solutions from
Eq. (42). The remaining unknowns can be found by using

0.4 A,—4
=4 lf‘m L , @7
2 t?AuzglAfA2+A1—A2
0,4,4u
= — 48
. QZAZ—QlAl’ (“48)
014, 4u
= 49
’2 QzAz—Q1A1, “9)

and Egs. (25), (34), and (39)(41).

4. Time-dependent non-linear calculations: method

The discussion of the solution of the linear longitudinal MHD
tube wave equations has already been given by Defouw (1976), by
Roberts and Webb (1978) and others. The purpose of our present
work is to make a detailed comparison with acoustic tube waves as
well as with ordinary acoustic waves both for linear and non-linear
cases and to derive the phase relations. For this reason the linear
solutions are discussed in the Appendix.

161

primarily the properties of longitudinal tube waves, and not the
global behaviour of the solar atmosphere, it is therefore advan-
tageous to start from an initial atmosphere which, in absence of
waves, does not show time dependence. This is a radiative
equilibrium atmosphere.

Following our previous work on acoustic waves (e.g.,
USKB 78) we adopt a grey radiative equilibrium atmosphere
outside the flux tube. As the regions between the flux tubes may be
quite cool (Ayres, 1981), such a model which neglects the
chromospheric temperature rise seems quite appropriate for the
external medium. With external pressure p, and temperature T,
thus given as function of height, the time independent static
versions of Egs. (2), (3), (7), and (19) with T, = T, can then be solved
for By, po and A, as functions of height if By, and 4, are specified
at the bottom of the flux tube. For the magnetic field strength B,
and the tube cross section A4, typical values are used which were
determined empirically (Zwaan, 1978; Stenflo, 1978). As costu-
mary the zero height level (z=0) at the bottom of the tube is taken
where the external atmosphere has optical depth unity at 500 nm.
The non-uniform grid spacing 4z is chosen such that the wave is
well-resolved, and such that there are enough height points per
scale height (see Ulmschneider et al., 1977). The resulting initial
flux tube model (dashed) is exhibited in Fig. 2, it is called model 4.

The crowding of the flux tubes at the (super-) granulation
boundaries does not permit an exponential horizontal spreading
of individual tubes to go on indefinitely. To take into account this
effect we have constructed model B which above a height
zo =500 km spreads only linearly with height. As the grey radiative
equilibrium atmosphere external to the flux tube has an isothermal
boundary temperature with scale height H we assume using

AO = Aooe_z/ZH (50)
4.1. Initial atmosphere, flux tube model o )
for z>z, that the tube radius increases linearly as
Time-dependent calculations can start from any initial state r
consistent with the dynamical equations. As we want to study r=ry+ ﬁ(z—zo) (51)
T N /
logBo| To loggQol logp / c o
(k) /" tkmis) | (km)
3 B
3.0 -8+ Pe
B 4 5, - 300
—5500 L \
To By
25—+  -93
B — 200
L r ‘A
5000
-2 —
20— -10- Ty
L A Fig. 2. Initial flux tube model A4 (dashed) and
- 100 model B (solid). The magnetic field strength B,
— is given in (G), the gas pressure p in (dyn/cm?)
and the density g, in (g/cm?). The other
- y quantities are defined in the text. r shows the
1.5 —-4500 -11 | | | I instantaneous tube radius of the wave of Fig. 4
0 200 400 600 800
height (km)
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1 from which the magnetic field strength B, can be calculated using
Eq. (19). For z>z, the horizontal pressure balance Eq. (3) in the
model construction is thus replaced by

¢2
p+ . 7 =Pe(2)
8n> <r0+ ﬁ(z——z&)

from which a modified external pressure p,(z) is computed which
supposedly takes into account external magnetic stresses. Model B
(drawn) is shown in Fig. 2. From this figure it is seen that the
Alfvén speed c 4 is always a factor of between 2 and 3 greater than
the sound velocity cg; for this reason the tube speed ¢y closely
follows cg. The tube spreads from a radius of r=57 km at height
z=0 to r=167km at z=500km, and r==849(663)km at
z=900km; the value in brackets is for model B. In model A4, the
gas pressure p, inside the tube is reduced by a factor of 3.5
compared to p,,, while toward the top of model B it decreases
more rapidly.

(>2)

4.2. Method of characteristics

In order to numerically solve the longitudinal tube wave equations
we follow our work on acoustic waves (Ulmschneider et al., 1977),
and select the method of characteristics. This method has been
shown (Hammer and Ulmschneider, 1978) to be much more
efficient than finite difference methods for problems of the sort we
deal with here; in addition, it allows shock finding and a detailed
shock treatment. In this method, the system of three partial
differential Egs. (1), (2), (4) in Eulerian form, or (13), (17), (18) in
Lagrangian form are written as a system of 6 ordinary differential
equations, of which 3 equations describe the three characteristics
(C*,C™, C%. After some algebra similar to that for acoustic waves
(Ulmschneider et al., 1977), we find for these ordinary differential
equations in Lagrangian form

2 T ﬂcs HKer
dut S ge Ty-1
T e ke < oD%,
ucr dp, _
— dt=0 53
+ ol dz +g) (53)

along the characteristics, which are given by
da 04
@ _ it 54
dt _CTQOAO (54)

Here the upper sign is for the C*, and the lower for the C~
characteristic. The energy equation gives

as=5

| (55)

Rad

along the C° characteristic, a=const.
For the case of acoustic tube waves with rigid walls we find
instead

2 HCs UCsg
4= 784S —1
du - desF . +( (y )

dt

Rad

ucg dAo _
- dt=
4, & ) 0 (56)
along
da 04
E = T Cg 514—0 . (57)

For constant A these equations go over to the ordinary acoustic
waves in gravitationally-stratified atmospheres. The details of the
numerical solution procedure and boundary conditions are
similar to the purely acoustic case, and are described by Ulm-
schneider et al. (1977).

4.3. Wave flux

As the energy flux in Eq. (32) is identical to that in ordinary
acoustic waves, the wave flux can be similarly derived (Landau and
Lifshitz, 1959, p. 251) as
Fy=pu (58)
where the bar denotes a time mean and the prime the difference
between the actual and the time averaged value. As for adiabatic
waves, the total wave energy flux 4yF), is conserved; we thus see
from Egs. (50), (A.2), and (A.4) that the exponential steepening
behaviour of the solution is a consequence of energy conservation.
For w>» w, or k>0 one finds from the phase relations (A.7), (A.8),
and (A.10) that the wave amplitudes are connected by

P _pobP_, @ _ 0@ Qocr

- === —=— 59
¢ ¢ O uw a4 & &)
Thus in the limit w > w, the wave flux is given by

Fy=00crt’. (60)

In the present work we used Eq. (60) and adopted a piston velocity

u=—u, sin(z—nt
- 0 P s

where P is the wave period and the initial wave amplitude is

2F, \'?
0= o)
QooCro

Here g4, and c( are values at the bottom of the flux tube.

QY

(62)

5. Time-dependent non-linear calculations: results

In this section, we discuss the nature of the solutions obtained from
our numerical simulations of compressible tube waves.

5.1. General properties
of radiatively damped longitudinal tube waves

Figures 3-6 show computed wave profiles obtained for cases of a
fixed mechanical flux F,,=1.510%erg/cm?s and various wave
periods P=20, 30, 45, 60 s. For ready comparison these figures are
plotted on the same scale. The flux tube is that of model B. A
comparison with the purely acoustic wave computations of
USKB 78 shows at first a strikingly similar overall behaviour, but
there are interesting differences in the details. First, the velocity, u,
pressure, p, and temperature, T, amplitudes increase much less
steeply with height in the tube calculations, a result which is due to
the tube spreading [cf. Egs. (A.2)(A.4)]. Second, the amplitude of

. . . N
the radiation damping function D= —|  decreases much more

d Rad
rapidly with height in the tube calculations when compared to the

results of USKB 78; this difference is due to the much lower gas
pressure in the flux tube and to the fact that in the present results,
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the weakly increasing temperature oscillations do not strongly
oppose the rapid decay of the opacity with height. This effect is
especially apparent at greater heights, where in spite of the T®
temperature dependence [cf. Egs. (6) and (9)] the radiative
emission behind the shocks is greatly decreased compared to the
USKB 78 results.

The phase shifts between the physical variables are similar to
the pure acoustic case, and are dominated by the short period
(0> w,) behaviour. The oscillations of the pressure, p, velocity, u,
and temperature, T, are in phase [cf. Egs. (A.8){A.10)], while the
damping function D is 180° out of phase with T, as is expected from
Eqgs. (5), (9) for an optically thin situation. The time-averaged
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temperature, T, behaves quite similarly to the cases of USKB 78.
At heights lower than the temperature minimum, the mean
temperature is depressed below the initial radiative equilibrium
temperature, Ty, due to the non-linearity of the Planck-function, as
explained by USKB 78. Above the temperature minimum, shock
dissipation raises the mean temperature significantly. However,

due to the weakly increasing wave amplitude and consequently
decreased dissipation rate, the chromospheric temperature rise is
much smaller for longitudinal tube waves. This again is due to the
spreading of the flux tube, which keeps the shock strength small.

The temperature minima in Figs. 3-6 occur at progressively
greater heights as the wave period is increased. This is expected
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from the increase of the shock formation height, zgy, with wave
period (cf. Sect. 5.3, below). For short period waves the increase of
T due to shock dissipation occurs at low height where small
temperature excesses generate significant radiation losses. Thus
the 20’ s wave spends most of its mechanical energy at low height.
At greater height the tube spreading and the low mechanical flux
lead to weak shocks and thus to only an insignificant chromo-
spheric temperature rise. With larger wave period and therefore
higher zgy, the amount of mechanical energy available at greater
heights is increased, leading to stronger shocks and consequently
to steeper chromospheric temperature gradients (cf. Figs. 3-6).

5.2. Wave pressure, magnetic field perturbation
and tube cross section

Another rather interesting quantity in the present calculation is
the time-averaged pressure p. Consider the case of hydrostatic
equilibrium where the first term in Eq. (17) can be neglected and
where after integrating over the appropriate atmospheric slab one
has

00409 da—

. (©3)

p=—1 ~ T eogda=po.
This shows that in the case of hydrostatic equilibrium, p at a
Lagrangian height always stays equal to the pressure of the initial
atmosphere at that height. Here p is essentially gravity times the
mass column density of the atmospheric slab above the considered
height. In our present calculation, however, where hydrostatic
equilibrium is replaced by the dynamical equilibrium, wave
pressure augments gas pressure, and consequently p<p, in the
dynamically steady state. Moreover, the mass zones are displaced
in the Eulerian frame as a consequence of heating and cooling
processes. Thus, at low heights in the Eulerian frame the effects of
the temperature depression and wave pressure combine to de-
crease p (cf. Figs. 3-6). At greater heights, shock heating expands
the atmosphere and thus p becomes larger than the initial
pressure at that height. This has also been found for purely
acoustic waves (USKB 78).

The height dependence of p helps us to understand the
behavior of the magnetic field oscillation B’. In Figs. 36
B’'=B(z,t)— By(a) is shown in the Fulerian frame; it is seen that B’
is nonsymmetric. This effect is explained by the behaviour of the
time averaged pressure p. At low heights where p < p, the magnetic
field after Eq. (3) oscillates around a value B> B, while at greater
heights where p> p, one has B< B,. As p and u are correlated, the
B’ oscillation is 180° out of phase with u.

Another interesting quantity is the tube cross section A. After
Eq. (19) the oscillations in cross section, A’, and B are 180° out of
phase with one another; but A is in phase with p [cf. Eq. (25)]. The
actual tube cross section as function of height for the same wave
and instant of Fig. 4 is shown in Fig. 2. As expected it is seen that
the tube cross section is always larger in the high pressure area
behind the shock. At greater heights, as consequence of wave
heating which leads to p> p,, the tube cross section is expanded
beyond the original configuration (cf. Fig. 2).

5.3. Shock formation heights

Figure 7 shows shock formation heights of a large number of
wave calculations for different wave energy flux F,, and period Pin
flux tube model B, obtained in cases with and without radiation
damping. In addition to the results for longitudinal tube waves
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(solid), shock heights for acoustic tube waves (dashed) and for
ordinary acoustic waves (dash-dot) are shown. All waves are
calculated for the same initial atmospheric density and tempera-
ture distribution; that is, the density gy, at the bottom of the
atmosphere was the same in all calculations. As a general rule, it is
seen that the shock heights increase with period for all wave types.
This is due to the fact that the non-linear effects, which depend on
the wave amplitude and distort the wave profile, take much longer
to produce shocks when the wavelength is large.

Let us now compare the results for the three types of waves. In
the adiabatic case (Fig. 7), the shock heights for longitudinal tube
waves and the acoustic tube waves are almost identical. The
acoustic tube wave has, however, systematically greater shock
heights because this wave has a slightly larger propagation speed,
and thus a larger wave length. In addition, the acoustic tube wave
has a smaller initial velocity amplitude for the same F,; because
cp<cg [cf. Eq. (62)]. Both effects lead to greater shock heights.

A comparison between the acoustic tube wave and the
ordinary acoustic wave shows the influence of the tube geometry.
The spreading tube decreases the mechanical flux and with it the
wave amplitude, which leads to greater shock heights. Thus, the
tube waves have systematically greater shock heights. The spread-
ing of the flux tube is small at low heights, and thus the shock
heights for high initial wave fluxes are rather similar for the three
types of waves. At greater heights, however, the geometry effect is
very pronounced, leading to a great disparity between the shock
heights of tube waves and of ordinary waves.

Radiation damping occurs only at low heights. This leads to a
considerable decrease of the wave amplitude, and thus as Fig. 7
shows to an increase of the shock heights. As the spreading of the
flux tube affects the wave amplitude further, there is an especially
large disparity between adiabatic and radiatively damped waves of
low initial wave flux. The pronounced damping of short period
waves found in earlier work on ordinary acoustic waves (Ulm-
schneider et al., 1977, and USKB 78) is not encountered in our pre-
sent calculations. In the previous work, the short period waves
were primarily affected because of the validity of the diffusion
approximation,

(64)

in Eq. (5). For short period waves the term on the right-hand side of
Eq. (64) is quite large. As the optical depth, 7, in the flux tube is
about a factor of ten smaller than that of the external medium, the
diffusion approximation is no longer valid, and thus radiation
damping is less strongly period-dependent. In addition, our tube
waves are much less affected by radiation damping than the
acoustic waves of the earlier calculation because of the low tube
density.

5.4. Tubes of different field strength and spreading

The results discussed above were for flux tube model B where for
heights greater than z,=500km only linear spreading was
permitted (cf. Fig. 2). In the interior of supergranulation cells,
however, where flux tubes are less crowded, individual tubes
usually have more room for spreading. In model 4 we have
assumed that exponential spreading continues to z,> 1000 km (cf.
Fig. 2). Here obviously the thin flux tube approximation B,<B,
becomes quite bad. Figure 8 shows waves with P=30s and
Fy=1510%erg/cm?s computed in models 4 and B, both dis-
played at the same time t = 1567 s. As the shock formation height is
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much smaller than the height z, where models 4 and B differ
mainly the chromospheric behavior is affected by the different
rates of spreading. Increased spreading distributes the mechanical
energy over a greater cross-sectional area and thus decreases the
relative wave amplitude as can be seen from a comparison of the
velocities in Fig. 8. Decreased shock strength in turn leads to
smaller dissipation and thus to lower mean temperatures T and
pressures p. Once shocks are formed spreading thus critically
influences the chromospheric temperature rise and the pressure
balance. In addition it is clear from our discussion of shock
formation (Sect. 5.3, above) that for z, much smaller than 500 km
shock formation itself could be accelerated (retarded) by a slower
(faster) rate of spreading.

So far we have only discussed flux tubes with a fixed magnetic
field strength B,,=1560 G at the base. To show how a change in
the magnetic field strength affects the non-linear behaviour of
longitudinal tube waves we have constructed two other tube
models. In model C, the field strength By,=1250G has been
chosen such that we have ¢, =cg at the bottom of the tube, that is

2

-5 (65)

Poo Peo s

while in model D the field strength is increased to By, =1670G.
From Egs. (3) and (50) it is clear that the shape and the spreading of
the flux tube in models C and D is the same as in model B. Together

with B, the values py, and g, are modified. Figure 9 shows the
effect on the shock formation heights caused by the variation of
field strength B, in the tube for two different wave energies.

In model C and cases of small B, the density g, increases in
the tube; thus, from Eq. (62), the velocity amplitude u, and the tube
speed c; decreases. This leads to shock formation at greater
heights.

For model D and cases of high field strength B,,, we have
c,—00, so that the tube becomes more and more rigid; the
longitudinal waves thus go over the acoustic tube waves. With
increasing By, and thus decreasing density g,, in the tube, the
velocity amplitude u,, of the wave [from Eq. (62)] increases, leading
to shock formation at lower height (cf. Fig. 9). On the other hand,
decreasing B, leads to greater shock formation heights, less
rigidity and thus greater disparity between longitudinal and
acoustic tube waves.

6. Conclusions

‘We have compared longitudinal magneto-hydrodynamic flux tube
waves with acoustic tube waves (which propagate in rigid tubes
defined by the magnetic field boundary) and with ordinary
acoustic waves in plane geometry. For the case of isothermal
gravitationally-stratified atmospheres, phase relations are derived
for the linear theory (Appendix A). Longitudinal tube waves

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985A%26A...145..157H

168

become acoustic tube waves when the distensibility, that is, the
time dependent breathing of the flux tube is neglected. Acoustic
tube waves in turn reduce to ordinary acoustic waves when the
tube geometry, i.e. the spreading of the tube is neglected.

The time-dependent non-linear longitudinal tube wave equa-
tions were solved with the effect of radiation damping taken into
account. We have derived Hugoniot relations valid for shock wave
propagation in magnetic flux tubes which in the limit of vanishing
distensibility go over to the ordinary Hugoniot relations.

The linear and non-linear computations both show that in the
chromosphere longitudinal tube waves relative to ordinary acous-
tic waves have much reduced wave amplitudes (Figs. 3—6 and 8).
This is due to the fact that the wave energy is spread over a with
height increasing cross-sectional area. Decreasing shock ampli-
tudes lead to smaller mechanical dissipation, but also to dimin-
ished radiation loss. Thus the time averaged chromospheric
temperatures and pressures in the flux tube are reduced relative to
the ordinary acoustic case of the same input flux. For longitudinal
tube waves we find in addition that chromospheric heating
expands the flux tube relative to its initial radiative equilibrium
configuration (Fig. 2).

Due to the spreading of the tubes both longitudinal and
acoustic tube waves form shocks at greater height than ordinary
acoustic waves do (Fig. 7). This is caused by the small non-linear
wave distortion resulting from the slow growth of the wave
amplitude. The disparity in shock formation height is greatest for
long period waves where the amount of spreading per wavelength
is largest. The delayed shock formation and dissipation in
longitudinal waves allows more wave energy to reach great heights
where the density and consequently the emission is small. Thus the
chromospheric temperature gradient steepens much more with
increasing wave period than is the case for ordinary acoustic waves
(Figs. 3-6).

Our grey LTE optically-thin method of treatment of radiation
damping is more general than methods which use Newtons law of
cooling and adopt constant values of the radiative relaxation time
(see Appendix B). Yet even this improved radiation treatment is
highly simplistic in chromospheric situations. Test calculations
(Schmitz et al., 1985) have shown that the low density in flux tubes
leads to strong non-LTE effects in the dominant H™ emitter.
Similarly effects of resonance scattering and strong non-LTE
effects are expected for the dominant Mg and Ca 11 line emission
of the middle chromosphere.

Thus a quantitative discussion of the chromospheric tempera-
ture and density stratification, as well as heating and cooling rates
must await future investigations. Nevertheless the qualitative
computations of our present work show that longitudinal tube
waves readily transport mechanical energy to chromospheric
heights and can dissipate it there through shocks. As the wave
energy generation in flux tubes is much more efficient (Ulm-
schneider and Stein, 1982) and as the tube spreading allows the en-
ergy to be transported to great heights there seems to be a good case
for longitudinal tube waves as a chromospheric heating mecha-
nism.

Finally for solar type flux tubes it was found that longitudinal
and acoustic tube waves are very similar (Fig. 7). The effect of the
distensibility thus appears much less important than the effect of
the tube spreading. If the magnetic field strength in the tube is
increased longitudinal waves become identical to acoustic tube
waves. Decreasing the field strength in the tube leads to increasing
influence of the distensibility and acts to magnify the disparity
between longitudinal and acoustic tube waves (Fig. 9).
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Appendix
A. Polarization factors in the linear theory

The solution of the longitudinal tube wave Egs. (1) to (4) for
linearized cases assuming adiabatic wave propagation in an
isothermal atmosphere with temperature T, were first given by
Defouw (1976) and subsequently generalized by Roberts and
Webb (1978). For the density-, pressure-, velocity-, magnetic field-,
and cross sectional perturbations the solutions are written, i being
an arbitrary amplitude
3z

Q/=Qoowg’e_mei(m_kz) 5 Al
= poappe ST elers0, (A2)
T'=Tyy T k) (A3)
u= wﬁe& gier—ka) A4
B’=Bootp}§e_f‘LT gtk (A.5)
A’=A001pZe:—:’ el@t—ka) (A.6)

where H is the scale height and 9¢q, Poo> Boo> Aoo are values of the
undisturbed atmosphere at the bottom of the flux tube. The values
g, p, T, 4, B, and 4 are polarization factors which following Hines
(1960) can be written as non-trivial solutions of the characteristic
equation

N y—=1c 1
_ Sy - A.
e (yH ci+4H>+k’ (A7)
. 3y—4
p=i A +yk, (A8)
= o y—1(3 ¢
T=p—§=i H <4+yc2 +@y—1Dk, (A9)
cs
—o(1+5 (A.10)
Ca
Be—d-- S5 (A1)
- el '

where 7 is the ratio of specific heats, cg is the sound velocity and c ,
the Alfvén velocity.

For the acoustic tube waves the solutions and polarization
factors may be obtained from the limit ¢, —»c0. For cases with no
gravity (H—o0), the polarization factors go over to those of
Roberts and Webb [1978, Eq. (48), note the different sign of the
propagation vector k]. For w—oo one has k—oo and the
perturbations u, o', p’, A’, T’ are in phase, while B’ is 180° out of
phase. For o—w,, where w, is the cut-off frequency, one has k—0
and the perturbations T”, p’, A"lead u by 90° in phase, while u leads
0" and B’ by 90° in phase. This situation is similar to that for the
ordinary acoustic waves (Hines, 1960) except that for w—w, the
phase of p’ is different by 180°. Phase and group velocities are
similar to those of the ordinary acoustic wave case (Hines, 1960)
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for purely vertical propagation. Like in the acoustic wave case the
cut-off frequency w, is explained as the fundamental resonance of
the entire tube, as is seen from the fact that

vp—oo for w—o,.

B. Radiation treatments using Newton’s law of cooling

The radiation treatments of Webb and Roberts (1980) and of
Roberts (1983) use Newton’s law of cooling

dQ c
il == (L=T) (B.1)
t |Rad TR
. N ag| .
and assume a constant radiative relaxation time 7. Here o is
Rad

the net radiative cooling rate (ergg~'s™!) and c, is the specific
heat at constant volume.

Using Egs. (5), (8), and (9) we have a more general law

g ds
=l T2 = _4ke(T*-T* B.2
dt |raa dt |Rag wo (T ) (B.2)
The radiative relaxation time

cl)
"R T6x0T? (B-3)

varies rapidly with height (cf. Ulmschneider 1971, Eq. (16) and
Table 2). Assuming T,~T it is seen by expanding (B.2) that
Newton’s law of cooling is a special case of the more general
formula (B.2).
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