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Summary. We describe a time-dependent eulerian hydrodyn-
amic code based on the method of characteristics which allows
the computation of radiating stellar wind flows in tube-like
structures on late-type stars. The treatment of boundaries under
sub- and supersonic conditions is discussed as is the introduction
of shock waves into the atmosphere. Ionization is taken into
account. For test and application we study the behaviour to
approach limiting shock strength.
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1. Introduction

For the investigation of stellar wind flows along coronal loops or
from coronal hole regions on late-type stars it is necessary to
adopt time-dependent methods. There are several reasons for
this. First radiation damping, ionization and population den-
sities strongly change with the wave amplitudes behind shocks.
Second it has long been recognized that momentum transfer by
waves (wave-pressure) is difficult to include in a time-indepen-
dent treatment (McWhirter et al., 1975). Third nonlinear inter-
action and overtaking of shocks create situations which can not
be described by time-independent means. For the numerical
solution of the hydrodynamic equations we have chosen the
characteristics method. This method allows an accurate treat-
ment of the shock discontinuity which in finite difference and
FCT methods is smeared because of artificial viscosity or diffusi-
vity. As the radiation losses are usually strongly peaked behind
the shock, the present method therefore improves the shock
treatment considerably. In addition in the characteristics method
it is easy to treat large numbers of shocks (we typically have 50
shocks in our test cases). Finally the characteristics method is
ideally suited for the new massive parallel computers as here each
height point is treated independently of its neighbours.
Time-dependent computations of stellar wind flows have
been made by Klein et al. (1976) as well as Kneer and Nakagawa
(1976), and Wood (1979). These authors have used finite differ-
ence methods. Innes et al. (1987) have taken a second order
Godunov technique for their radiative shock calculations. Com-
putations in coronal loops have been made by Nagai (1980), Wu
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et al. (1981), McClymont and Canfield (1983) using the finite
difference method, and by Mariska et al. (1982) with the FCT
method. The characteristics method has been used by
Ulmschneider et al. (1977) and Nakagawa et al. (1987). For a
more detailed review of time-dependent (magneto-)hydro-
dynamic wave propagation in stellar atmospheres see
Ulmschneider and Muchmore (1986) and of numerical methods
see Falle (1986).

Compared to the lagrangian hydrodynamic method of
Ulmschneider et al. (1977, 1987) the present eulerian code had to
be completely revised as now three characteristics have to be
treated explicitly. In addition the lagrangian description suffers
from well known difficulties when rapid mass motions are con-
sidered. First high speed wind flows in the outer layers of an
atmospheric slab leads to a wide separation of individual mass
points on an eulerian height scale. This results in a loss of
resolution in the lagrangian computation of the outer layers.
Second at the lower boundary of the lagrangian code the waves
are usually introduced by specifying the gas velocity at a piston.
Such a piston represents a mass element and in high speed flows a
lagrangian boundary would migrate through the atmosphere
necessitating a time- and space dependent specification of physi-
cal boundary values. In almost all cases such a specification can
not be made. Third at the outer boundaries lagrangian codes
estimate conditions as a function of time at a fixed fluid element.
To avoid migration and to permit the treatment of supersonic
out- and inflow this boundary condition has to be strongly
modified as well. The description of our eulerian code is given in
Sect. 2 while in Sect.3 we discuss the boundary conditions.
Results are presented in Sect. 4. Section 5 gives our conclusions.

2. Method of computation

In this section we describe the one-dimensional eulerian radi-
ation hydrodynamic code for high speed flows in tube-like struc-
tures in late-type stars. We neglect radiation pressure as well as
viscosity and thermal conductivity but include shocks, assuming
that the shock thickness is much smaller than the usual grid
spacing. Shocks in our approximation thus can be treated as
discontinuities.

2.1. Treatment of regular points

Between discontinuities the gas can be described by the usual
hydrodynamic equations (e.g. Landau Lifshitz, 1959)
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where as functions of radius r, p is the density, u the gas velocity,
A the area of the tube, p the pressure, g(r) is the gravity, S the
entropy, and t is the time. dS/dt|,,q is the radiative damping
function. For spherical stellar wind flows 1/4 dA/dr = 2/r and
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where g, is the gravity at the inner shell radius r,. Considering an
ionizing gas we have in addition equations relating the thermo-
dynamic variables
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where T is the temperature. We consider the physical state to be
described by the variables u, T and p. The sound speed
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and the other thermodynamic derivatives are assumed to be
given as functions of p and T. For the computation of these
quantities we use the procedure described by Wolf (1983, 1985).
From Eq. (5) we have
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with the total derivative given by
d 0 0

E = a + ua.

From Eqgs. (1) and (6) we thus find
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Equations (2), (10) and (11) are solved with the method of
characteristics. From a linear combination of these equations the
following set of characteristic equations can be derived:
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along the C* characteristic given by
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along the C~ characteristic given by
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along the fluid path characteristic C° given by

dr
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Here we have used the thermodynamic relation
(), —(5);
s), op

2.2. Radiation loss

(18)

For the radiative losses various methods can be used with grey or
non-grey non-LTE H™ continuum and Ca 1, Mg11 line emission
(Schmitz et al, 1985; Ulmschneider and Muchmore, 1986;
Ulmschneider et al., 1987) and non-LTE hydrogen Lya and Ly
continuum emission (Ulmschneider and Carlsson, 1988; in prep-
aration). In outer stellar atmospheres a simple radiation loss
formula developed in the thin plasma approximation is often
used (McWhirter et al., 1975; Rosner et al., 1978; Athay, 1981,

1986).
ds (I> nen,
= -2 = - P(T), (19)
dt rad 4 T 4 T
where @,,, is the net radiative cooling rate (erg cm ™ 3s~!). For

@, we have chosen the Cox and Tucker type radiation law
nenyPq(T) where P 4(T) is a function of temperature fitted to
computed radiation losses in the solar model of Vernazza et al.
(1973), n, is the electron, ny the hydrogen number density. As
compared to the other radiation loss formulae the RHS of Eq.
(19) does not provide radiative heating. Thus if shock heating
were missing in our calculation the cooling would lead to un-
physically low temperatures.

2.3. Treatment of shocks

In our code the hydrodynamic shocks are treated as discon-
tinuities. This is valid if the molecular mean free path is much
smaller than the typical size of the mesh used in the computation.
The radiation region around the shocks which usually is much
larger than the molecular mean free path is not treated as
discontinuity but is always resolved to ensure the correct treat-
ment of the energy balance. For the general computational
treatment of the shock we follow Ulmschneider (1977, Fig. 19). As
the presence of ionization and the Euler frame produce compli-
cations we give here a more detailed discussion of our shock
treatment.

In addition to the four compatibility relations (along the C*,
C~, C° characteristics) in front of the shock and along the C*
characteristic behind the shock there are three Rankine-
Hugoniot relations to determine the seven unknowns at the
shock. These unknowns are the pressures p,, p,, temperatures
T,, T, and velocities u,, u, at the pre- and postshock points and
the shock speed Ug. The Rankine-Hugoniot conditions are
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given by (Landau Lifshitz, 1959)

P1V1 = P2U3, (20)

pi+p107 = pa+pyvl, 21
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where E,, E, are the internal energies and v, v, are flow speeds
relative to the shock given by

(23)
24

For the numerical procedure to compute the unknowns at the
shock we derive from Egs. (20) to (24) the following relations

vy =u;—Ug,

vy =uy—Ug,.

1 1 1
E,—E; —Z(p1+p2) (-—-) =0, (25)
2 P1 P2
P+ pi(y —Ug) —p, — py(u, — Ug)? =0, (26)
U, = Pata = Pathy 27
P2—P1

With estimates of all variables we compute the shock position
and the preshock values uy, p,, T; at the new time using the three
characteristics in front of the shock. With the original estimate of
u, and U, and the updated preshock values we then solve Egs.
(25) and (26) together with the thermodynamic relations
02(p2, T>) and E,(p,, T,) using a Newton—Raphson scheme on
the variables p,, T,, p, and E,. After every cycle of that scheme
we update U, using Eq. (27). The postshock C™* characteristic is
subsequently used to update u,, after which the whole sequence is
repeated to convergence. The internal energy, the density and the
many thermodynamic derivatives needed for this procedure are
computed using the method described by Wolf (1983, 1985).

3. Boundary conditions

In this section we describe the boundary conditions used in our
time-dependent calculations. As discussed above the eulerian
code and the introduction of shocks at the lower boundary
require a modified boundary treatment in comparison with that
used in a lagrangian code.

3.1. Inner boundary condition

Figure 1 shows the run of the characteristics for the different
possible situations at the inner boundary. Solid characteristics
emanate from known and dashed from unknown physical states
at the old time level. For the physical state at the new time level
one condition can be derived by solving an ordinary differential
equation along each solid characteristic. As conditions along the
dashed characteristics cannot be computed they have to be
replaced by more or less arbitrary boundary conditions. The
state is completely described when the three quantities, the gas
velocity u and the two thermodynamic variables p and T are
specified.

Let us consider the boundary conditions for incoming shock
waves. Following the usage of our lagrangian calculations we
specify the gas velocity. For linear sawtooth waves if wq is a
steady wind veloeity, u, a given velocity amplitude and P the
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Fig. 1. Time-space plots of characteristics for the inner and outer bound-
ary cases of an atmospheric shell extending from radius r, to radius rg.
The symbols o and n label old and new time levels. Dashed characteristics
are not available

wave period we have

At 4
u(rg, t) = —2—1uqy+ wy, 0<At<—, (28)
P 2
At P
Urg, ) =2 1—— Jug+wy,, —<At<P, (29)
P 2
where
At = t — P entier (¢/P). (30)

In the time interval 0 < At < P/2 and if w, = O the fluid path C°
characteristic exists (cf. Fig. 1b, subsonic outflow) and the missing
variables can be calculated by solving the corresponding equa-
tions along the C° and the C* characteristic.

But for P/2 < At < P the fluid path is outside the known
region (Fig. 1c, subsonic inflow). Here an additional quantity must
be specified. As shock wave calculations (e.g. Ulmschneider et al.,
1978, Fig. 2) show that the thermodynamic quantities also have a
sawtooth profile we assume that when the density cannot be
computed it behaves as

At
plro, 1) = =2 _FAPO +p(ro), ) €3]

<At <P,

P 32
5 (32)

At B
plro, 1) =2{ 1 ) Apg + plro),
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where p is an arbitrary mean density. At the moment At = P/2
where the shock enters the boundary the preshock state can be
computed. The postshock values are derived from the preshock
state and the known postshock velocity by solving the
Rankine-Hugoniot relations using the procedure described in
Sect. 2.3. Thus the postshock density at the shock is known and
Ap, can be calculated using an estimate of p and Eq. (32). For
cases where the density is a linear saw tooth p is the mean density
at the boundary point. In practice p can be found from shock
waves which have completely entered the atmosphere or as
average of the density jump at the shock. In cases of appreciable
wind with subsonic speed we use Eq. (31). If we have the case
wo > u, the density must be completely specified.

In case of supersonic inflow (Fig. 1d) three characteristics have
to be replaced by boundary conditions because all three charac-
teristics emanate from the unknown region. Here in addition to
the velocity two thermodynamic quantities must be specified.
The case of supersonic outflow (Fig. 1a) does not need boundary
conditions as here all characteristics emanate from known physi-
cal states. In this case the boundary point can be computed as an
interior point.

3.2. Outer boundary condition

Except in some trivial cases in which the problem of time-
dependent dynamical flows can be solved analytically, we do not
know the behaviour of the gas velocity and the thermodynamic
quantities at the outer boundary. Hence the boundary conditions
for the outgoing waves have to be discussed explicitly. As
opposed to a lagrangian boundary an eulerian boundary does
not represent a fixed mass element. Here the C° characteristic
which indicates the fluid path must be taken into account.
Depending on the relation between the flow speed and the local
sound speed we have to distinguish four different cases. These
are: sub- and supersonic inflow and sub- and supersonic outflow.

For subsonic outflows (cf. Fig. 1f) we use a transmitting
boundary condition which extrapolates the flow velocity along
the C* characteristic (Ulmschneider et al, 1977; see also
Ulmschneider, 1986). The compatibility relations along the C*
and C° characteristics which emanate from the known region
then allow to compute the remaining two unknowns, the pressure
and temperature at the new time level. In the case of subsonic
inflow (Fig. 1g) the foot point of the fluid path is not contained in
the known region. Here we extrapolate the physical variables
across the boundary to obtain the foot point of the C° charac-
teristic. The procedure is then the same as for the subsonic
outflow case.

For cases of supersonic outflow (cf. Fig. 1e) all characteristics
needed for describing the physical state at the new time level
emanate from the known region. Boundary conditions can not be
used here because the physical variables are determined as for an
interior point. In the case of supersonic inflow (Fig. 1h), however,
all three characteristics come from outside the known region. In
most cases of physical interest one has no information on the
time-dependent behaviour of the flow speed and the thermo-
dynamic quantities in the overlying region. In our numerical
scheme we extrapolate here all physical variables across the
boundary in the old time level and derive the physical state at the
boundary point in the new time level as if all characteristics were
given.

4. Results and discussion

In this section we describe results from test calculations which
have been made to show on the one hand the validity of the code
and on the other to demonstrate why time-dependent (as
opposed to time-independent) computations are necessary if one
wants to understand the complicated relation between flow and
heating in outer stellar atmospheres. For our computations we
selected a stellar model appropriate for Arcturus (« Boo)
for which we assume the following stellar parameters, radius
R, =26 R (Johnson et al., 1977; Augason et al., 1980), surface
gravity g, = 50 cms™~ % (Martin, 1977; Ayres and Johnson, 1977),
and effective temperature 7= 4250 K (Johnson et al., 1977). An
important property of shocks in isothermal gravitational atmos-
pheres derived from weak shock theory is that the shocks have
the tendency to attain a limiting shock strength (Osterbrock, 1961;
Ulmschneider, 1970). This property explains the almost constant
strength of shocks in atmospheric wave calculations
(Ulmschneider et al., 1977, 1978). We want to demonstrate this
behaviour with our code.

4.1. Limiting shock strength behaviour in an idealized isothermal
atmosphere

We consider a plane parallel isothermal atmospheric layer with
temperature T, = 4000 K which extends by about 4.510'! cm.
An initial static model was computed assuming hydrostatic equi-
librium, a mean molecular weight appropriate for a neutral
medium, and a pressure of 10> dyncm 2 at the inner boundary
point. We reduce the gravity to 5 cmsec ™2 corresponding to an
inner shell radius of 3.16 R,. This value was chosen to ensure
that we have weak shocks. Figure 2 shows typical adiabatic
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Fig. 2. Approach of the shock strength M; to a limiting shock strength
for a series of acoustic waves of different energy and fixed period
P=1410%s in an isothermal gravitational atmosphere. The theore-
tical limiting shock strength MY™ after Eq. (34) is indicated by arrows.
The values indicate initial flow Mach numbers M,
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acoustic wave calculations where linear sawtooth shocks were
introduced at the inner boundary as given by Egs. (28) to (32).
The waves have different initial flow Mach numbers M, = u,/c,
and a period of P = 1.4 10*s which is 1/10 of the acoustic cut-off
period at the top of the convection zone (Ulmschneider et al.,
1979; Bohn, 1984). It is readily seen in Fig. 2 that the shock Mach
number M of the waves shows a limiting behaviour. The shock
Mach number is defined as

Ugp—uy

M, = (33)

€1
where U, is the shock speed, u; and ¢, the gas and sound
velocity, respectively, in front of the shock. Note that in the
atmosphere shown in Fig. 2 there are roughly 50 shocks. The run
of M, versus radius is obtained by time-averaging.

This limiting behaviour of M, is explained as the balance
between the two opposing effects of steepening of the wave due to
energy conservation in an atmosphere with a density gradient
and shock dissipation. In waves with high energy the dissipation
(amplitude decay) dominates, while in those of low energy
amplitude growth prevails. This limiting shock strength behav-
iour is well known from time-independent work (Osterbrock,
1961; Ulmschneider, 1970). Recently Hartmann and McGregor
(1980), Bohm-Vitense (1986) and Hammer (1987) have argued on
basis of such analytic shock strength properties, the latter two
authors to gain considerable insight in the behaviour of the
chromosphere-corona interface. For the limiting shock strength
one finds for an non-ionizing, isothermal, plane parallel atmos-
phere of sound speed c, under the assumptions of constant
gandy

g

Mim=14+-= P,

valid for adiabatic calculations in the limit of M -0
(Ulmschneider, 1970). Figure 2 shows that the predicted value is
closely reached, demonstrating the accuracy of our numerical
scheme.

4.2. Limiting shock strength behaviour in a realistic atmosphere

Figure 3 using the stellar data of « Boo shows a series of wave
calculations of period 1.4 10*s and various energies. Ionization
(in LTE) of hydrogen and radiation damping are explicitly taken
into account. In addition we assume a height dependent gravity
and spherical symmetry. The initial atmosphere has a tempera-
ture of 4000 K. The shocks are no longer weak. Consequently the
increase of the mean atmospheric temperature due to different
wave heating also enters the calculations. The curves are labelled
in terms of the initial velocity amplitude given by the Mach
number M,. It is interesting that the property of the wave
amplitude to reach a common limiting shock strength is still
retained. The strong decrease of the wave amplitudes in the most
energetic waves is primarily caused by enhanced radiation damp-
ing behind the shocks.

The limiting shock strength behaviour for waves of identical
initial energy but different period in a considerably extended
atmosphere is shown (solid) in Fig.4. We assume an initial
amplitude of M,=0.10 and three different wave periods. The
atmosphere extends now from 1.05 R, to 1.25 R,,. For compari-
son we have plotted two different versions of M!™ after Eq. (34).
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Fig. 3. Approach of the shock strength M; to a limiting value for acoustic
waves of fixed period P=1.4 10*s in a spherically symmetric atmosphere
model of & Boo where height dependent gravity, ionization and radiation
damping are considered. The values indicate initial flow Mach numbers
M,

The dashed lines in Fig.4 show values of M!™ assuming no
ionization, T=6000K, y=5/3 but with a height dependent
gravity. The second (dotted) version of M!™ takes c,=<c) and y
from the time-dependent model. It is seen that initially all wave
amplitudes attempt to approach the dashed values M!™ until
ionization and radiation damping leads to a rapid decrease of the
amplitudes.

For short period waves the amplitude remains small and it is
not surprising that the dotted values of M'™ valid for weak
shocks are reached. This limit however depends on the properties
of the atmosphere which suffers shock heating, ionization and
radiative cooling. For waves with larger wave periods we find a
rapidly increasing discrepancy between the numerical shock
strength and that predicted from Eq. (34). This shows that even if
¢o and 7y is given from a time-dependent model calculation the
true behaviour can only very crudely be predicted from the weak
shock formula.

5. Conclusions

We have shown that the method of characteristics is well suited
for the computation of stellar wind flows in late-type stars. In the
approximation to treat hydrodynamic shocks as discontinuities,
which is valid in cases where the molecular mean free path is
much smaller than the typical numerical grid size, the present
method allows to handle large numbers of shocks. Radiation and
ionization can be included without difficulty. The possible
boundary conditions for the cases of sub- or supersonic in- and
outflow have been discussed.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1988A%26A...193..119C&amp;db_key=AST

FTI98BARA - CT93. “I19T:

124

2.5 T T T T T T

Height (10" cm)

Fig. 4. Same as Fig. 3 however for a fixed initial velocity amplitude
M;=0.10 and different wave periods indicated in 10*s. Dashed values
refer to the prediction of the limiting strength after Eq. (34) using
T=6000K and y=5/3. Dotted values predict the limiting strength after
Eq. (34) where ¢, and y are taken from the time-dependent model

We have employed our method for monochromatic shock
wave calculations in atmospheric shell models of « Boo. Here the
procedure to admit shock waves at the inner shell boundary and
to transmit the waves at the outer shell boundary have been
discussed in detail. In a neutral, plane parallel, isothermal atmos-
pheric slab of low gravity we have investigated whether our code
reproduces the well known property of weak shocks to approach
limiting shock strength. In this limit independently of the initial
conditions a balance is reached between the dissipation related
amplitude decay and the steepening influence of the atmosphere.
In these tests we found that the theoretical weak shock strength
limit (cf. Eq. 34) was reached with high accuracy.

As found by other authors (e.g. Ulmschneider et al., 1977)
limiting shock strength is also reached in more realistic stellar
wind calculations where ionization, radiation damping, shock
dissipation and variable gravity is taken into account. In these
applications the shock strengths do not need to be small. It was
found that the limiting shock strength in these cases can not be
predicted by the simple weak shock formula (Eq. 34) but can only
be obtained by a time-dependent computation (cf. Fig. 4).
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