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Abstract. We develop a fast operator splitting (OS) method to
solve spectral line radiative transfer problems in time-dependent
hydrodynamic computations with shock discontinuities, assum-
ing complete redistribution. The convergence properties and the
results obtained with our method are compared with results ob-
tained using a modified core-saturation method and with the
A-iteration. We find that our operator splitting method is ro-
bust, accurate and fast.

Key words: radiative transfer — numerical methods — sun: chro-
mosphere — shock waves

1. Introduction

The numerical treatment of spectral line radiation transport in
the presence of shock discontinuities is difficult and requires
an efficient method of solution. Moreover, in time-dependent
calculations of stellar chromospheres or coronae, line transfer
problems have to be solved several thousand times during a typi-
cal simulation. Therefore, it is essential to have a robust and fast,
but still reasonably accurate method. We call a method robust,
if it works reliably even under extreme conditions, e.g., when
shocks closely approach regular grid-points, or when shocks
overtake other shocks, leading to large differences in optical
depth between adjacent grid-points.

In principle, the core-saturation method developed by Kalk-
ofen & Ulmschneider (1984) fulfills these requirements: it is
robust as well as fast, and it is able to treat shocks of arbi-
trary strength. Perhaps the most severe numerical problem of
the core-saturation method is that its convergence properties
depend critically on an optical depth parameter A7, which has
to be chosen by experience. Difficulties of the original version of
the core-saturation method devised by Kalkofen & Ulmschnei-
der (1984), which were found in extensive acoustic wave calcu-
lations by Rammacher & Ulmschneider (1992), can be traced
to the frequency discretization and may largely be avoided by a
modified core-saturation method. Although these improvements
(described in detail below) lead to a more reliable behavior in
our wave calculations, we find that the core-saturation method

often gives line source functions which are too large, resulting
in overestimated line intensities.

Using a large number of iterations with practically infinite
core-wing separation parameter AT, the correct line source
function can be computed with the core-saturation method.
However, in this case the core-saturation method becomes the
classical A-iteration with its extremely slow convergence rate.
The considerable discrepancy of the correct source function as
compared to the source function obtained by the core-saturation
method demonstrated the weakness of the latter method which
could not be improved by a more favorable choice of A7, with-
out increasing the number of iterations (and, correspondingly,
the CPU time) to large values.

For these reasons we consider operator splitting methods to
obtain more accurate results without increasing the number of
iterations or the CPU time for the solution of line transfer prob-
lems. This methods are also known as accelerated A-iteration
(ALI) methods (e.g. Olson et al. 1986) or as operator perturba-
tion (OP) methods (Kalkofen 1987). However, for the sake of
consistency, we will use the term “operator splitting” method
(OS) throughout this paper.

Yet, all standard operator splitting methods which we con-
sulted (e.g., MULTI [Carlsson 1986], up to the 1992 version,
Kalkofen 1990, private communication) have difficulties in
treating media with discontinuous changes of physical variables,
e.g., stellar atmospheres traversed by shocks. To overcome these
problems, we developed an OS method, explicitly accounting
for shock discontinuities, which we describe in this paper. Our
method, obtained by modifying the approach of Olson & Ku-
nasz (1987), is not only robust, but also very accurate and, more-
over, even faster in terms of CPU time than the core-saturation
method.

In Section 2, we describe our OS method in detail and give
the equations and assumptions used here. This section also
describes the modified core-saturation method used by Ram-
macher & Ulmschneider (1992). Section 3 gives a comparison
of the OS method with the modified core-saturation and A-
iteration methods. Section 4 presents our conclusions.
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2. Method
2.1. Radiative transfer in the observers frame

Consider a plane parallel atmosphere traversed by a vertically
propagating acoustic wave which causes temperature, 7', den-
sity, p, and velocity, u, fluctuations. The equation of radiative
transfer (e.g., Mihalas 1978 p. 449) is then given by

0l,,(2)
H 0z

Here z is the geometrical height, I,,,, the specific monochro-
matic intensity of the radiation field, u the angle cosine between
the direction of the photons and the outward normal and v the
frequency. The total emissivity is given by 7,,, whereas X, de-
scribes the total extinction. We consider here the case of a two
level atom with background radiation in LTE. The line emis-
sion and absorption profiles are calculated assuming complete
redistribution (CRD). Then the emissivity and the extinction
coefficient can be written as

= Muu(2) = Xop(@) Iy u(2). €))]

nuu(z) =nc(2) + UL(Z)SOW(Z) 2
and
XV/L(Z) = xc(2) + XL(z)(Puu,(Z)y 3)

respectively. Here, xL and xc are frequency-independent line
and continuum extinction, 7, and 7 are the line and continuum
emissivities and ,,,, is the absorption profile, given by the Voigt
function

_ H(a,v)
A v @
where
r
a= e ®)
v=n(1-pue)/a)
v= AI/D ) (6)

with the damping constant I, the thermal Doppler width Avp,
the gas velocity u, and the speed of light cz,. The absorption
profile satisfies the normalization condition

1 0o
/ / puudrvdp = 1. @)
-1J—-00

The background source function is defined as

Sc=X ®)
Xc

and similarly the line source function as

Sp=2 ©)
XL

The line source function Sy, for the two-level approximation
assuming CRD is given by

Su(2) = [1 = ()] J(2) + e(2) B(2), (10)
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where

2
T 1+€(2)

€(2)

and with the photon destruction probability (Mihalas 1978, p.
337)

¢(z)= D (| it 11

Ay

The line profile averaged mean intensity J(z) is given by

_ 1 o0 1

I@=5 [ o [ dwpn@iue. 12
—00 -1

If we assume that the background source function is Planckian

and constant over the line center, Sc(z) = B(T'(z)), we can write

the total source function, S,,,(z), as

Pvu(2)5L(2) + 1(2)B(2)

Sula) = (@)

(13)

with the residual strength of the continuum, 7(z), given by r(2) =
Xc(2)/xL(2). Following Mihalas (1978) we define

&(2)puu(2) +1(2)

)= ) 14
and rewrite Eq. (13) as
Suu(z) =(1- ﬁuu(z))j(z) + g,,ﬂ(Z)B(Z), (15)

which has the same form as Eq. (10).
Introducing the optical depth along a ray, specified by (vu),

1 Zmax
Tou(2) = ;/ Xup,(z)dz (16)
we can write the transfer equation for one ray as
0I,,(2)

=11, - S, . 1
(@) [Lou(2) = Suu(2)] a7

For a given source function S, Eq. (17) is readily integrated
to obtain the specific intensities for each angle, frequency and
depth point. A formal solution, i.e., the calculation of J for a
known source function, is then completed by using Eq. (12).

2.2. The operator splitting method

Formally, we write the sequence of operations needed to com-
pute J for a given source function as

J = A[S], (18)
the so-called A-operation. The operator acting on the source
function to obtain J, is called “A-operator”. Combining Egs.
(18) and (15) we find

Suu(@) = (1 = &u(@)ALSyul + uu(2)B(2). 19)
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The problem is to solve Eq. (19) for a given model atmosphere
with prescribed boundary conditions for the specific intensities
(in the following we drop the subscripts to simplify the notation).
The ordinary A-iteration proceeds by calculating the (n+1)-
th iterate of the source function, S™*!, from the n-th by means
of the expression
S = (1 — €)A[S™] +€B. (20)
The well known drawback of this iteration scheme, i.e., slow
convergence, can be avoided by splitting the A-operator accord-
ing to
A=A"+(A-A"), (21)
with an appropriately chosen “approximate A-operator”, A*.
Using Eq. (21), the iteration scheme for the operator splitting
then reads

Sn+1 — (1 _ §)A*[Sn+1] + (1 _ €)(A _ A*)[Sn] +§B, (22)

or, with the formal solution of the n-th iterate, 7FS = A[S™] and

S =(1-¢)J" +¢B,

Sn+1 —S" = [1 _ (1 _ f)A*]_l [SFS _ Sn]
= A7 [SS - 5.

(23)

Equation (23) shows that, for robust convergence, A* should
contain the essential physics of the line transfer problem and,
in order to conserve computer time, should be easy to compute
and to invert.

Starting with a first guess for the source function, S°, the
transfer equation Eq. (17) is integrated to compute a formal
solution using Egs. (12) and (15). We then solve Eq. (23) directly
and obtain an improved value for S. This new source function
is subsequently used to calculate a new formal solution. A* and
A~} can be precomputed and reused, thus greatly reducing the
number of operations required for a full iteration step. Note that
the frequency and angle dependence of the total source function
Sy, enters the problem only via §,,,, Eq.(15). Therefore, we can
solve for the frequency independent line source function,
S s =[1—(1— A" [SFS - 57]. (24)
instead of Eq. (23). The formal solution for the line source func-
tion is given by

SES =(1- 6)7FS +¢eB

where 7FS is obtained from the total source function, Eq. (13),
as

7% = ALSZ,. (25)

t itis preferable to use LU decomposition for the solution of
Eq. (23)
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2.3. Formal solution

We consider an atmospheric slab with D grid-points. The depth
dependent variables are then vectors with values at the grid-
points as components. We use N discrete frequency points
Vp,m=1,..., N in the range —oo0, . .., 00, covering the width
of the line and M discrete angle points p,,m = 1,..., M in
the range u =0, ..., 1. We put the frequency and angle points
together in rays labelled by (v, () and define a ray index as
r =m+ (n — 1)M. In this case, the discrete representation of
the A-operator is a DxD-matrix, and Eq. (18) becomes

Ja=Y AawSa .
d/

(26)

The elements gf the k-th column, Ag4y, of the exact A-matrix are
the elements J4 of a formal solution obtained using a “pulse”
like source function,

Sk =1 7Sd#k=0a 27

see also Olson et al. (1986).

We treat shocks as discontinuities in the physical variables
so that we have to deal with large differences in optical dis-
tances A7 between adjacent grid-points and, at the shock-points
themselves with vanishing optical distances, A7 = 0. Another
complication arises from the fact that density and temperature,
as well as velocity, undergo rapid variations from pre-shock
to post-shock regions, causing discontinous jumps in the ex-
tinction and the emissivity as well as in J. On the other hand,
the monochromatic specific and mean intensities are continu-
ous over the shock-points, which must be reproduced by the
numerical solution. Therefore, to compute the formal solution,
we integrate the transfer equation using a piecewise linear in-
terpolation to the source function. For such an interpolation,
Kalkofen & Ulmschneider (1984) showed that the specific in-
tensities along an outgoing ray can be written as

I:l-r = ang(t‘lﬂ)r + b;rsdr + CETS(dH)T ) (28)
with
2-6 6
+ S b =ch = ’ <
=gy V== 05! 29)
L. 1, 261 ’
“r =G = 55y Y= g5y 07
where
0 = T(gr1yr — Tdr- (30)

Here 74, denotes the optical depth at grid-point d along the
outgoing ray with index r. The superscript “+” denotes outgoing
(1 > 0) radiation. Similarly we find for the ingoing (1 < 0,

.y

superscript “—”) intensities
Id_r = a’t—i_rI(_l;—l)r + b;'rsd"' + CJTS(d"l)T ) (31)

e Sl + + +
where the values a,, b, c,. are the same as the ajy,, b3, ¢,
except that now

0 ="Tar — Td-1)r (32)
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with the optical depth along the ingoing ray. The formal solution
is then obtained by integrating the specific intensities over all
rays and directions as indicated by Eq. (12).

2.4. Choice of A*

As indicated above, the elements of the exact A-matrix can be
obtained by applying Eqgs. (28) and (31) to the unit “pulse”
source function.

Olson et al. (1986, OAB) showed, that a good choice for A*
is the main diagonal of the exact matrix. In that case, A* is a di-
agonal matrix and their method is the classical Jacobi-method
for the solution of linear equations. Using a tri-diagonal A*,
Olson & Kunasz (1987, OK) could improve the convergence
rate considerably and decrease the amount of CPU time re-
quired for the solution of line transfer problems. In addition,
they introduced the so-called short-characteristics method to
calculate the formal solution for the specific intensities. Our
approach to the solution of the transfer equation (17), using
Egs. (28)-(32) closely resembles the method used by OK, with
the main advantage that the costly calculations of exponentials
are avoided. Furthermore, our choice of quadrature coefficients,
Eq. (29), unconditionally guarantees a stable solution of the
transfer equation, even for the very irregular 7-grids encoun-
tered in our hydrodynamic calculations (Kalkofen & Wehrse
1982). In addition, this form of the formal solution gives the
correct run of the intensity over the shock points.

In our hydrodynamical wave calculations, we use the tridi-
agonal A* with Ng-Acceleration (Auer 1987, 1991). The speed
of the method is further improved by using the source function
S from the old hydrodynamic time step as starting value for the
operator splitting in the following time step. For temperature-
correction methods used to obtain an initial model atmosphere,
we found that the best choice is a A* with a bandwidth of nine for
calculations performed on an IBM 3090-180VF (see Hauschildt
[in preparation] for a discussion on the performance of the ALI
method as a function of the A* bandwidth).

2.5. The modified core-saturation method

Since the modified core-saturation method used by Rammacher
& Ulmschneider (1992) has not yet been described in detail, we
briefly outline it here. In the original core-saturation method the
source function, S, in Eq. (10) (see Kalkofen & Ulmschneider
1984) can be written

Y [JevuLudvdu+€B

i Jwing + €' B
S - wing - wing , 33
L Pe + € De + € (33)
where p, is the escape probability, given by
1
Pe = 5 // Yy dv dp (34)

wing

The crucial point of the core-saturation method is the core-
wing separation. The integrals in Eqgs. (33) and (34) are taken
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only over the line wings. Which frequencies belong to the line
core and which to the line wings depends on the optical depth
and the physical state (velocity, temperature, etc.) of the atmo-
sphere. For a given frequency point, v,,, the source function, S ,
at depth 74 belongs to the line wing if

(35)

and to the line core otherwise. A7, is a free, but fixed, pa-
rameter, usually taken equal to unity. If shocks are present, the
shock points can approach regular grid-points arbitrarily close.
In those cases the criterion Eq. (35) must be scaled in compari-
son to the optical distance between adjacent regular grid-points
(see Kalkofen & Ulmschneider 1984). As a practical conver-
gence criterion used in the core-saturation method we use, typi-
cally, the relative change of the source function in each iteration.
Note that this criterion is useful only if the convergence rate of
the method is sufficiently fast. Otherwise the well-known prob-
lems with this simple criterion in the case of the A-iteration
would also apply to the core-saturation method. Therefore, in
order to be useful in our calculations, the core-saturation method
must converge with a rate comparable to that of the operator
splitting method. In the following discussion, we assume that
the relative change of the source function versus iteration num-
ber is used as a convergence criterion (hereafter, standard cri-
terion”), typically we require that the source function does not
change by more than 0.1 % in subsequent iterations.

When this core-saturation method was used to compute a
time-sequence of spectral line features (e.g. the emission peaks
of the Ca II K line) during acoustic wave calculations (Ram-
macher & Ulmschneider 1992, Fig. 5) we found that strong
oscillations in intensity were superposed over the regular time
development of the line intensity. This is clearly caused by a too
slow convergence rate of the core-saturation method, resulting
in relatively large errors in the source function if the standard
convergence criterion was used. We discovered that this was due
to the crudeness of the criterion Eq. (35) which in one particular
situation might be easily satisfied, while in another just barely
so0. As the largest contributions to the wing integrals occur at the
innermost frequencies just adjacent to the core-wing separation,
this crudeness of the criterion translated itself into considerable
intensity variations from one time step to the next.

That this explanation indeed was the source of the un-
physical intensity oscillations could be demonstrated by com-
puting wing contributions at additional frequency points (two
frequencies v;, v on each side of the line for every depth
point d) such that Eq. (35) was always satisfied with an equal
sign (ATgjm = ATakm = ATy). Note that these frequencies
can easily be found by interpolation between neighboring fre-
quencies at the core-wing boundary (e.g. ATgnm < AT, and
ATgn+1ym > AT,). This procedure greatly improved the results
of the core-saturation method, but because of the additional 2N
frequency points, made it too slow for our time-dependent com-
putations.

After some experimentation we found the following com-
promise between convergence rate and speed which we subse-
quently used in the calculations of Rammacher & Ulmschneider

ATdnm = Tdnm — Td—1nm < ATy,
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(1992). With the frequencies v;, vy, found as described above
for every grid-point d we compute at this depth point a modified
escape probability

1 Vj VN
P =3 //cp,, dvdy + / / pydvdy |, (36)
vy Vi
from which we obtain a correction factor feor
corr = Pe 37
e/
The wing integral can then be estimated by
Jo
ving = f::f‘ (38)

Here p. and Jying are calculated using only the regular frequency
grid. This modified core-saturation method, where we replace
Pe and Jying in Eq. (33) by the values p.s and J‘fving, requires only
a small amount of additional numerical work when compared
to the standard core-saturation method. Note that f.o does not
enter the iteration process for Jj;,, and thus an error does not
get amplified, ensuring the stability of the scheme.

3. Comparison of the methods
3.1. The operator splitting method

As a typical application we consider here an acoustic wave cal-
culation in a plane parallel stellar atmosphere. In these calcula-
tions, we will normally find a few shocks travelling through the
atmosphere at any given time. The shocks eventually reach the
line forming region, where in the transfer calculation they must
be treated accurately in order to obtain realistic line profiles
and line cooling rates. As an instructive example, we show in
Fig. 1 a monochromatic acoustic wave in the solar atmosphere
(Rammacher & Ulmschneider 1992, Figs. 1&2).

A good example is the time-dependent line transfer problem
for the Ca II K line. The K line is strongly dominated by scat-
tering and an important diagnostic tool for analyses of solar and
stellar chromospheres and coronae. We use 29 logarithmically
spaced frequency points up to +10A from line center and one
angle point +|u| in a two stream approximation. For simplic-
ity, we assume complete redistribution, although more realistic
calculations will have to include effects of partial redistribu-
tion. For the atomic data used see Rammacher & Ulmschneider
(1992) as well as Kalkofen et al. (1984).

Using the methods discussed above, numerically identical
solutions can be obtained because for all methods we use iden-
tical grids and formal solution procedures. To simplify the dis-
cussion of the results, we use in the following discussion the
symbol ‘oo’ to denote solutions which have converged to ma-
chine accuracy (approximately 10~!3 for the machines used
here). If E(d) = |S(d) — S(d)so|/S(d)so denotes the relative
error of the source function at a (geometrical) grid-point d for a
given iteration number, then the maximum error can be defined
as EMAX = max(E(d)). Figure 2 shows the maximum error
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Fig. 1. Acoustic wave with period P = 45 s and initial energy flux
Far =2-10° erg em ™% s™! after Rammacher & Ulmschneider (1992).
Temperature T' (K), velocity u (km/s), pressure log p (dyn/cm?) are
shown as function of the Eulerian height z (km)
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_15- | N TR BN S ! ety
0 10 20 30 40 5 60 70 80 9 100
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Fig.2. Maximum error EMAX versus iteration number for differ-
ent methods. The operator splitting method of this paper with Ng-
acceleration is labeled Ng, without Ng-acceleration non-Ng and for
the A-iteration Lam

as function of the iteration number for the A-iteration, the OS
method, and the OS method in combination with the Ng conver-
gence acceleration (Auer 1987, 1991). The iterations start with
S(z) = B(Te(2)), where T¢(z) is the electron temperature at the
depth z.

For the OS method combined with the Ng-acceleration we
find that the source function has converged to machine accuracy
after about 80 iterations. The convergence rate is very similar
to that found by Hauschildt (1992) in the case of Lagrangian
frame line transfer in relativistically expanding spherical shells.
Convergence is considerably slower if the Ng-acceleration is not
used, and it is extremely slow if the A-iteration method is used
(the Ng-acceleration is not effective with the A-iteration, see
Auer [1987]). All methods converge, eventually, to machine ac-
curacy, for the OS method without Ng-acceleration after about
180 and in the case of the A-iteration after about 90000 itera-
tions. The convergence of the A-iteration is shown in Fig. 3. In
all three cases the identical ‘0o’ solution is finally reached.
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Fig. 3. Maximum error EMAX versus iteration number for a large num-
ber of iterations in the case of the A-iteration

From the above results it is obvious that a reasonable accu-
racy of EMAX = 0.1% is attained after about 20 ALJ iterations
if Ng-acceleration is used. The run of the source functions versus
grid-point number, for the first 18 iterations are shown in Fig. 4.
The converged solution of the line source function is marked by
‘+’ symbols. In Fig. 4 grid-point numbers are used as abscissa as
here the infinitesimally close pre-shock and post-shock points
can be plotted more clearly. The geometrical distance between
two grid-points, except near the shock points, is about 15 km
and we have used a total of 170 non-shock height points, with
2 additional points per shock.

The discontinous run of 7;(2) at the shock points is clearly
seen in the initial guess of the source function. The non-local
effects of radiation transport quickly smooth most of the dis-
continuities of the line source function. However, due to the
non-negligible coupling of the source function to the thermal
electrons via the collisional rates, smaller discontinuities in the
source function remain. Due to the shifting and broadening of
the line profile caused by the temperature and velocity jumps
across the shock front, the source function at the hot and dense
post-shock region happens to be smaller than at the pre-shock
region. The behavior of the iteration process and the conver-
gence rate in our case is similar to that found by Auer (1987,
1991) and Hauschildt (1992).

3.2. The modified core-saturation method

The basic idea of the core-saturation method is to treat the ra-
diation transport only in the optically thin line wings. Thus the
convergence rate depends on the core-wing separation, that is,
on the choice of Ar,. The idea is, that for a small value of
A, the A-iteration, which is used in the optically thin wings
only, can be brought to rapid convergence and thus the large
number of iterations necessary for a pure A- iteration can be
avoided. In principle, for an ideal method, the final results for
the source function must be independent of the choice of AT,
even if the simple standard convergence criterion is used. Fig-
ure 5 shows the rapid approach to a ‘converged’ source function
of the modified core-saturation method for the choice A7, =1
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Fig.4. Source function versus grid-point number, counted inwards
from the top of the atmosphere, for the first 18 iterations. The final
solution (machine accuracy after 100 iterations) is shown also and in-
dicated at the grid-points by + signs

log source function
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0 20 40 60 80 100 120 140 160
grid-point number

Fig. 5. Source function versus grid-point number for the modified core-
saturation method and A7, = 1 starting from S = B (upper curves)
or from S = eB (lower curves). Iteration numbers 5 to 12 are shown
together with the converged source function indicated by + signs

used extensively by Rammacher & Ulmschneider (1992). The
upper curves show the results obtained by using S = B as ini-
tial guess of the line source function, whereas the lower curves
show the results for S = €B as initial guess. In Fig. 5 only it-
eration numbers 5 to 12 are shown and the ‘converged’ source
function is indicated by the + symbols. The ’converged’ source
function is here defined by requiring that the maximum relative
change of S in two subsequent iteration is less than 0.1 %, which
corresponds in this particular case to about 20 iterations.
Unfortunately, as shown in Fig. 6, this source function shows
distinctive differences compared to the truly converged source
function S,. At the top of the atmosphere the core-saturation
method in combination with the standard convergence crite-
rion leads to a considerable overestimate of the source function
which could be improved by selecting higher values of A~,.
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log source function
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Fig. 6. Converged source functions versus grid-point number using the
modified core-saturation method with parameters A7, = 1 (labeled 1)
and A7, = 5 (labeled 5), together with the final solution obtained from
our present operator splitting method (labeled op)

Figure 6 shows the source function obtained using A7, = 5.
However, to satisfy the standard convergence criterion for this
value of the core-wing separation about 80 iterations are neces-
sary for that same termination condition. With increasing A,
the number of necessary iterations rapidly increases as we ap-
proach the case of a pure A-iteration. Here then the advantage of
the core-saturation method as a fast method is lost. This could be
improved if we use Ng-acceleration also for the core-saturation
method.

However, even for A7, = 5 we find considerable differ-
ences compared to the truly converged source function Sy.
The overestimate of the source function in the middle to high
chromosphere and particularly behind the shocks is only partly
reduced. From this we conclude that the core-saturation method,
independent of the choice of A7,, is much less accurate than
the operator splitting method. In addition, in terms of compu-
tational speed the OS method is faster than the core-saturation
method with AT, = 1 because of its faster convergence rate.

4. Conclusions

We have developed a fast, robust and accurate operator splitting
method for the solution of spectral line radiative transfer prob-
lems assuming complete redistribution. Our method allows to
simulate stellar atmospheres with shock discontinuities in time-
dependent calculations. This method is much more accurate and
even superior in speed, in particular if Ng-acceleration is used,
than the modified core-saturation method and does not depend
awkwardly on a parameter like A7, . It is easy to implement and
very reliable. This is accomplished by using a tri-diagonal ap-
proximate A*-operator which results in an enormous increase in
the convergence rate of the OS iteration when compared to the
A-iteration or even the OS method using a diagonal A*-operator.
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Appendix

As indicated in Chap. 2 we solve the discretized transfer equa-
tion, Eqs. (28)-(31) for a pulse like source function S, =
1,84 = 0. The resulting specific intensities are integrated
over frequency and angle using Eq. (12), to obtain the formal
solution J. The elements of J are the elements of the k-th col-
umn of the A-matrix. The frequency quadrature is performed
with a trapezoidal rule whereas the angle integration uses Gaus-
sian quadrature scheme. We combine the appropriate quadrature
weights

Wp = WpWm , T=1,..., R=NM

to obtain the integration weights for one ray, w,.. We thus have
for the first column:

R
1
An=3 > wirgt, b,

r=1

R
1 -
Ao =3 r§—1 WarP3,Cop

R l
1 _ _ _
A>3y = 5 Zwlr‘PlT . Ha’jr o | s (D
r=1 7=3
for the k-th column:
k-2

R
1
Aask-2k = 5 > wief,

=1 =1

+
X(a?k—l)rbir + c(k—l)r))

R
1
A-1k = 5 > W1y Py

r=1

X(@—1yrDr + Cl—1yr)

R
1 g,
Agi = 5 Z((p‘lg'rbZT + (pkrbkr)
r=1
| B
Ak = 2 Zw(kﬂ)rw(_lm)r

r=1

X (a(_k+1)rb;r + C(—k+l)r)

R
1 -
Az = 5 > wiy,

r=1

l
X H a;r (a(_k+1)rbl;r + c(-;c+1)'r) (2)
j=k+2
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and for the D-th column:

R
1
Ai<p-1yp = 3 Zwlrﬁr

r=1
D-2
X @G | o1y
J=l
| &
Awp-np = 3 Zw(D—l)rSOZ'D_l)rC?D-m
r=1
| &
Ao =32 Db, - ®

Again, the superscripts*“+” and “—" denote the coefficients and
profile functions of outgoing and ingoing rays, respectively.
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