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Dynamics of Flux Tubes
in the Solar Atmosphere: Theory

B . Roberts! and P . Ulmschneider''

1 School of Mathematical and Computational Sciences, University of St Andrews,
St Andrews, Fife KY16 9SS, Scotland

2 Institut fiir Theoretische Astrophysik, Universitiit Heidelberg, Tiergartenstr. 15,
D-69121 Heidelberg, Germany

Abstract. The modes of oscillation of a photospheric magnetic flux tube are re-
viewed, taking into account both linear and nonlinear aspects. Analytical and com-
putational developments are discussed, beginning with the basic characteristics of
linear wave propagation and progressing to a consideration of nonlineari ty and the
question of the generation of tube waves and the energy flux they transport.

1 Introduction

The concept of a magnetic flux tube, which goes back to Michael Faraday,
has proved to be particularly fruitful for solar studies. In the Sun's photo-
sphere observations show that isolated small-scale magnetic flux tubes occur
in the downdraught lanes between supergranules; these tubes are magneti-
cally strong, with fields of about 2 kG confined to radii of about 100 km (see
the reviews by Stenflo 1989, 1994; Solanki 1990, 1993, 1997; Schussler 1991).
Larger tube-like concentrations occur in the form of pores and sunspots,
though the detailed internal structure of a sunspot is presently uncertain: a
sunspot may be described as a uniform plug of magnetic field (a monolith) or
alternatively as a conglomeration of individual small-scale magnetic tubes,
assembled to form a sunspot, that retain their separate identities in the layers
below the visible surface (see the reviews in Thomas & Weiss 1992). Obser-
vations of the absorption of p-modes in sunspots are likely to shed light on
this question in due course (see the review by Bogdan 1992).

There are no isolated flux tubes in the corona, which is completely filled
with magnetic field. But flux tubes still exist, corresponding to magnetised
plasma regions that are delineated from their surroundings, appearing in the
form of coronal loops. A coronal flux tube is primarily a region of high plasma
density, although temperature and magnetic field differences may also arise.

Magnetic flux tubes are communication channels, linking one part of the
Sun's atmosphere or interior with another. Their essential one-dimensionality
means that the linkage is likely to be efficient. As such they are important
conduits for momentum and energy transport, carrying flows or waves from
one site to another. Although there are a number of similarities between pho-
tospheric and coronal flux tubes, there is an important distinction: whereas
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2 B. Roberts and P. Ulmschneider

a photospheric tube is a region of enhancement in Alfven speed, a coronal
flux tube is a region of low Alfven speed. Finally, it is interesting to note that
there are a number of similarities in the basic structure of waves in isolated
photospheric magnetic tubes and the waves in extragalactic jets (Roberts
1987; Bodo et al. 1989; Hardee 1995).

In this review we concentrate on the photospheric flux tube. Waves in
magnetic flux tubes have also been reviewed in Roberts (1980, 1981, 1985a,
1986, 1990a, b , 1991a, b, 1992a, b), Spruit (1981a, b), Spruit & Roberts
(1983), Thomas (1985,1990), Hollweg (1986, 1990a), Edwin & Roberts (1987),
Ryutova (1990a, b), and Edwin (1991, 1992).

2 Basic Modes of Oscillations

The basic modes of oscillation of an isolated magnetic flux tube are now well
understood. Geometrically, there are sausage modes, kink modes and fluting
modes. These geometrical forms are defined in terms of the patterns that
the boundary of the flux tube makes when it is disturbed (see equation (13)
below). If the displaced tube remains a circle centred on the axis of symmetry
of the undisturbed tube, then this is the sausage mode; if the displaced tube
remains circular, but is no longer about the axis of symmetry, then this is
the kink mode. The various higher order distortions of the tube boundary,
ranging from elliptical to highly castellated, are the fluting modes. The modes
may be classified further according to their nature in the radial coordinate r:
disturbances that inside the tube are oscillatory in r are referred to as body
waves, and those that are exponential (or evanescent) in form are the surface
waves. Basically, in a wide tube the surface waves are confined to near the
boundary of the tube and do not penetrate far into the centre of the tube,
whereas body modes disturb the centre of a wide tube; however, in a thin
tube, the centre is disturbed for both modes. In addition to the modes that
are trapped within a tube, disturbing the tube's environment only slightly,
there arise leaky waves. Leaky waves are generated by motions within the
tube that result in an outflow of wave energy: the tube is a generator for
waves in its environment. These classifications may be applied to both fast
and slow magnetoacoustic waves, so the description becomes complicated.
Additionally, a tube may support torsional Alfven waves.

The characteristic speeds that govern wave propagation in a magnetic flux
tube are readily established. Consider a plasma of density Po and pressure
Po within which is embedded a magnetic field Bo of strength B«. The sound
speed cs and Alfven speed CA are defined by

Cs = (':00 r/2 CA = (B02 )1/2
J.loPo '

(1)

where J.lo is the magnetic permeability and I the adiabatic index of the gas
(taken to be 5/3). From these two speeds we may construct the fast magne-
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Dynamics of Flux Tubes in the Solar Atmosphere: Theory 3

toacoustic speed, CJ, and the slow (or tube) magnetoacoustic speed, CT:

2 2 + 2 -2 -2 + -2 (2)cJ = Cs cA, cT = Cs cA·

The fast speed cJ is super-sonic and super-Alfvenic, and the slow speed CT

is sub-sonic and sub-Alfvenic; the slow speed is particularly significant for
waves in a thin magnetic flux tube (Defouw 1976; Roberts & Webb 1978).
We may illustrate these speeds as follows. In a photospheric flux tube with
magnetic field strength Bo = 2 kG and plasma density po = 2.2 X 10-4 kg
m-3, the Alfven speed is CA = 12 km S-I; for a sound speed of Cs = 8 km
s-1 we obtain CT = 6.7 km s-1 and cJ = 14.4 km S-I.

A speed equivalent to CT is in fact common to a variety of elastic tubes,
with the role of the Alfven speed being played by the appropriate elastic
speed of the physical situation. For example,· in the case of a blood vessel
the speed equivalent to CA is the elastic speed in the membrane of the blood
vessel. In this case, the speed of sound Cs in blood is much larger than the
elastic speed, so effectively cs ~ CA giving CT ~ CA; wave propagation in a
blood vessel proceeds with a speed that is close to the elastic speed of the
membrane walls. For water in a pipe, the relative magnitudes of the two basic
speeds depends upon the material of the pipe. In a metal pipe, the elastic
speed of the metal membrane is much larger than the speed of sound in water,
and so the effective propagation speed is close to the sound speed in water
(about 1.4 km S-I). In a plastic pipe, the orderings in the two speeds are
reversed and the effective propagation speed is close to the elastic speed in
plastic (about 10 m s-I), lying far below the speed of sound in water.

The kink mode disturbs both the tube and its environment, and so the
characteristic speed for this wave involves both the density Po of the gas inside
the tube and the density Pe of the gas in the environment. The kink mode
is principally a result of the magnetic tension force, BZ / J.lo, in the magnetic
field and so its speed of propagation, Ck, is given by (Ryutov & Ryutova 1976;
Parker 1979; Spruit 1982)

2 BZ / J.lo (po ) 2
Ck= PO+Pe = PO+Pe CA·

(3)

This speed too is sub-Alfvenic; for Pe = 2po (consistent with a sound speed
in the tube's environment of 9.6 km s-l) we obtain Ck = 6.9 km S-I, roughly
60% of the Alfven speed.

To progress further it is necessary to consider the linear equations of ideal
magnetohydrodynamics in some detail. Consider an equilibrium magnetic
field Bo = Bo(r)z aligned with the z-axis of a cylindrical polar coordinate
system r, (), z. To begin with we will ignore the effects of gravity (see Section
4). Then the equilibrium gas pressure po(r) and density po(r) are structured
by the magnetic field so as to maintain total pressure balance: the sum of the
gas pressure and the magnetic pressure is a constant,

:r (po(r) + B}~~»)= O. (4)
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4 B. Roberts and P. Ulmschneider

Small amplitude motions v about the equilibrium (4) satisfy the wave
equation

{)2V 2 {)2v 2 _ {). 1 ({)PT)
-- - CA-- = -cAz-dIVV - -grad -- .{)t2 {)z2 {)z Po {)t

Equation (5) follows from the time derivative of the momentum equation
combined with the magnetohydrodynamic induction equation for an ideal
medium. The total pressure, PT(r, (), z), the sum of the gas pressure pertur-
bation P and the perturbation in the magnetic pressure, BaBz/f.1.a, satisfies
the evolution equation

(5)

{)PT _ 2 {)V z 2 2·
{)t - PaCAfu - pa(cs + cA)dlV V. (6)

Equation (6) is a combination of the isentropic and induction equations.
For a flow v(r,(),z) = (vr,va,vz), the components of equation (5) give

(Roberts 1986, 1992a)

(
{)2 {)2) {)2pT

pa(r) {)t2 - c~(r) {)z2 Vr + {)r{)t = 0, (7)

(
{)2 {)2) 1 {)2pT

pa(r) {)t2 - c~(r) {)z2 Va + -;{)(){)t = 0, (8)

and

(
{)2 2 {)2) (c~(r») 1 {)2PT
{)t2 - cT(r) {)z2 Vz = - cJ(r) pa(r) {)z{)t'

with the evolution in PT(r, (), z) described by equation (6).
It is evident from the form of (7)-(9) that an inhomogeneous medium

supports the phenomena of phase-mixing (Barston 1964; Heyvaerts & Priest
1983) and resonant absorption (Chen & Hasegawa 1974; Ionson 1978). Phase-
mixing describes the process by which wave fronts become increasingly more
corrugated as they propagate, in response to the fact that the Alfven speed
is different on different field lines. Resonant absorption occurs whenever the
phase speed of an Alfven wave matches the local Alfven speed CA or the
phase speed of a slow wave matches the local slow speed CT. Both processes
produce small spatial scales across the magnetic field, the direction in which
neither the Alfven wave nor the slow wave is able to propagate in a uniform
medium. Since both processes depend upon nonuniformity in the equilibrium
state, they are are likely to occur preferentially where inhomogeneities are
most pronounced, such as on the boundaries of isolated flux tubes.

Phase-mixing is evident when {)/{)()= 0, so that motions are symmetric
about the axis of the tube. Then equation (8) decouples from (7)-(9) to give

(9)

{)2va 2 {)2va
{)t2 = cA(r) {)Z2 . (10)
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These are torsional Alfven waves (e.g., Spruit 1982; Hollweg 1988, 1990b,
1991). Symmetric motions va(r, z , t) take place independently of motions in
the rand z-directions. The r-dependence in the torsional Alfven wave satisfy-
ing (10) is arbitrary, being fixed by the means by which the wave is generated.

To illustrate the implications of the wave equation (10) consider the tor-
sional oscillation

Va = Va sin[kzz - kzcA(r)t}. (11)

Initially (at t = 0), this gives a disturbance of amplitude Va and wavelength
27r/kz. According to (11), the initial shape propagates forward with speed
CA, but its radial gradient, given by

{)V9 (dCA)a;: ::::-kzva -;J; t cos[kzz - kzcA(r)tJ, (12)

grows secularly on a timescale of (dcA/dr)-I. This is phase-mixing; cross-
field gradients are rapidly built-up, making any dissipative processes more
efficient (Heyvaerts & Priest 1983; Ireland 1997). The phase-mixing timescale
can be surprisingly short: for an isolated tube with CA changing from about
10 km s-l in the tube to zero outside it, over a distance of 10 km (one-
tenth of a tube radius), it is 1 second. This suggests that any such modes, if
generated, would rapidly be dissipated by non-adiabatic processes enhanced
by phase-mixing (or resonant absorption), and so the edges of isolated flux
tubes ought to be excessively hot, producing locally a bright ring around the
tube. Much the same effect should operate on the edge of sunspots (Hollweg
1988; Roberts 1992a) or throughout the body of a spot, if spots are strongly
inhomogeneous (Ryutova & Persson 1984). However, no such bright ring has
been observed, either for thin tubes or for sunspots. Also, on theoretical
grounds, we must note that unless there exists an ignorable coordinate (so
that the assumption {)/{)()= ° is valid), then the waves are coupled, through
equations (7)-(9), and no simple phase-mixing occurs (Davila 1987, 1991;
Parker 1991), though resonant absorption then takes place (eg., Goedbloed
1975, 1983; Rae & Roberts 1981; Lee & Roberts 1986; Poedts et al 1990).
Resonant absorption would seem to be particularly important for coronal
loops. The topic is reviewed by Hollweg (1990a, b) and Goossens (1991); see
also Goossens, Ruderman & Hollweg (1995).

It is convenient to introduce the Fourier form of equations (7)-(8). Write

vr(r,(),z,t) = vr(r)expi(wt - n() - kzz), (13)

with a similar form for PT. The integer n(= 0,±1,±2,···) describes the
geometrical form of the perturbations. The case n = ° gives the sausage mode,
and corresponds to symmetric motions of the tube. These are compressional
oscillations (PT =1= 0), in addition to the torsional Alfven waves. The kink
mode of the tube is given by setting n = 1 (or n = -1); in such modes the
instantaneous motion of the tube resembles a snake, with the boundary of
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6 B. Roberts and P. Ulmschneider

the tube a displaced circle. Finally, waves with [n] 2: 2 are the fluting modes
of the tube.

With the Fourier form (13) for Vr and other variables, equations (6) - (9)
yield ordinary differential equations. It proves convenient to work in terms of
the total pressure perturbation, PT, which satisfies (Edwin & Roberts 1983)

2 2 () 2 1 d { 1 dPT } (2 n
2
)po(r)(kzcA r - W )~ dr po(r)(ktc~(r) _ w2)=z: = m (r) + r2 PT,
(14)

where
? (k2c2 (r) - w2)(k2c2 (r) - w2)m-(r) - z S z A

- (cHr) + c~(r))(kt4(r) - w2)'
The radial velocity component follows from (7):

(15)

po(r)(k;cA(r) - w2)vr = -iw d:; . (16)

Equation (14) is singular at w2 = k;cA(r) and at w2 = k;cT(r) (Appert,
Gruber & Vaclavik 1974; Goedbloed 1975,1983); the first singularity is asso-
ciated with the Alfvenic continuous spectrum and the second with the slow
mode continuous spectrum. Both spectra have been investigated in detail
for a number of equilibria (see the review by Goossens 1991), especially in
connection with coronal heating (see the reviews by Narain & Ulmschneider
(1990, 1996) and Browning (1991)).

Now we are interested in the solution of equation (14) appropriate for a
magnetic flux tube. Consider, then, a uniform magnetic field Boz confined to
a tube of radius r = a, embedded in a field-free environment:

{
Bo, r < a,

Bo(r) = 0, r :» a. (17)

The interface r = a is a current sheet across which conditions change dis-
continuously, while preserving total pressure balance with the external gas
pressure Pe of the environment:

B2
Po+ _0 =Pe'

2J.LO

Combined with the ideal gas law, pressure balance implies a connection be-
tween the density Po, sound speed Cs and Alfven speed CA of the tube and
the density Pe and sound speed CSe in the environment:

(18)

Pe c~+ hc~
Po = c2Se

(19)

The temperature structure of an isolated tube in the photosphere is com-
plicated (Schussler 1990; Solanki 1997), and temperature differences between
the interior of a flux tube and its surroundings may arise (and in fact are
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required to reproduce observed chromospheric canopy heights (Solanki &
Steiner 1990), as suggested by carbon monoxide observations (Ayres et al.
1986; Solanki et al. 1994)). But it is evident from (19) that we may expect
Po < Pe: the tube is partially evacuated by the magnetic field.

Now the media inside and outside the flux tube are uniform, and this
affords us some simplification. In a uniform medium, equation (14) for PT
inside the tube reduces to

2d2pT dPT (2 2 2)
t: dr2 +=z: - mor + n PT = 0, (20)

where m~ is the value of m2 inside the tube. (We have cancelled a fac-
tor (k;c~ - w2) corresponding to Alfven waves.) Equation (20) is a form
of Bessel's differential equation, with has solutions in form of the modified
Bessel functions In(mor) and Kn(mor). The solution Kn(mor) is singular at
r = 0 and so is rejected. Accordingly, we take

PT = AoIn(mor), r < a, (21)

"

where Ao is an arbitrary constant.
In the field-free environment of the flux tube, where the sound speed is

CSe and the Alfven speed is zero, solutions PT ex: In(mer) and Kn(mer) arise;
here m~ is the value of m2(r) outside the tube,

2 2 w2
me = kz - -2-'

CSe
(22)

If now we assume that m; > 0, corresponding to selecting waves that decay
(in r) outside the tube, then the solution that is bounded for r -> 00 is

PT(r) = AeKn(mer), r> a, (23)

where Ae is an arbitrary constant.
It remains to match PT and Vr across r = a. The result is the dispersion

relation (Roberts & Webb 1978, 1979; Spruit 1982; Edwin & Roberts 1983;
Cally 1985, 1986; Evans & Roberts 1990)

_l __ mo I~(moa) + _I_me K~(mea) = 0,
po(ktc~ -w2) In (moa) Pew2 I<n(mea)

(24)

where a prime (') denotes the derivative of a modified Bessel function (e.g.,
I~(moa) == dIn(x)/dx evaluated at x = moa, etc.). This is the dispersion
relation governing magnetoacoustic waves in an isolated magnetic flux tube.

Equation (24) is valid whatever the nature of mo, but it is written in
a form that is particularly suitable for surface waves (m5 > 0). For body
waves (m5 < 0) an alternative form is more convenient, obtained by writing
n5 = -m~:

1 J~(noa) 1 I<~(mea) _ 0
(k2 2--2)no-J ( ) + --2me}~ ( ) - .Po zCA -w n noa PeW \on mea

(25)
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8 B. Roberts and P. Ulmschneider

Here In denotes the Bessel function of order n. Both (24) and (25) are subject
to the constraint that me > O.

Solutions of the transcendental dispersion relations (24) and (25) are best
obtained numerically (Edwin & Roberts 1983; Evans & Roberts 1990) or
graphically, or analytically in certain limits. Their structure depends upon the
ordering of the various speeds, Cs, CSe and CA. For an isolated photospheric
tube we take Cs < CA and CSe < CA. Then there are slow body modes (sausage
and kink) with phase-speeds w/kz that lie between CT and Cs; these modes
may be viewed as waves that are constrained within the tube, bouncing from
side to side as they propagate along its interior. There are also slow surface
waves with phase-speeds that are less than CT. Finally, there are fast surface
waves which have phase-speeds between Ck and CSe·

Having established the basic structure of the linear modes of a flux tube
in as simple a circumstance as may be envisaged, namely a uniform tube in
the absence of gravity or flow, we turn now to a consideration of some of the
complications that add to our picture.

3 Nonlinear Analytical Aspects

The case of most interest for photospheric tubes is the long wavelength limit,
namely kza « 1. This restriction corresponds to longitudinal wavelengths
211'/ kz ~ 211'a,which for a tube of radius a = 100 km means wavelengths much
greater than 600 km. Granules have dimensions ranging from a few hundred
km to 2000 km, with 1000 km being typical, and so tube waves generated by
a typical granule just about satisfies this extreme. Supergranules, with scales
of 3 x 104 km, certainly give long wavelength modes.

Consider, then, the long wavelength limit of the dispersion relation. For
CSe = cs , the slow sausage mode (n = 0) gives (Roberts & Webb 1978,1979;
Edwin & Roberts 1983; Roberts 1985b)

w - kzCT [1 - ~ G:) G:) \;a2 Ko P1kz1a)] (26)

where). = CT/CA, and the kink mode (n = 1) gives (Edwin & Roberts 1983)

w - kzCk [1+ ~Ce ~ pJ ft2k;a2 Ko(ftlkzla)] (27)

where ft = (c~e - CDl/2/CSe.

These approximate formulae for the wave speeds are important in nonlin-
ear theories. Indeed, it has been shown that weakly nonlinear, weakly disper-
sive slow sausage surface waves have motions v(z, t) along a thin tube which
satisfy the nonlinear integrodifferential equation (Roberts 1985b)

8v . 8v 8v 83 JOO v(s, t)ds
8t + CT 8z + (3ov8z + 0'0 8z3 -00 [).2a2 + (z _ s)2)1/2 = O. (28)
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The constant 0'0 is directly connected with the dispersive correction in (26),
and the coefficient (30 of the nonlinear term is

(30 = [(-y + l)c~ + 3c~lc~
2(c1 + C~)2

Equation (28) is sometimes referred to as the Leibovich-Roberts equation;
it has been solved numerically (Weisshaar 1989) and exhibits solutions that
are soliton-like in character. However, no analytical solution of equation (28)
is known, though a number of its properties have been found (Bogdan &
Lerche 1988). The derivation of (28) given by Roberts (1985b) rests upon the
thin tube approximation (see below), but an alternative approach, directly
from the full set of magnetohydrodynamic equations, yields the same result
(Molotovshchikov & Ruderman 1987).

An equation of similar form to (28) arises in a magnetic slab (Roberts &
Mangeney 1982; Roberts 1985b; Merzljakov & Ruderman 1985):

8v 8v 8v 82 J=
8t + CT 8z + (3ov8z + 0'1 8z2 -00

v(s,t) ds = O.
s-z (29)

This is the Benjamin-One equation; it has been studied extensively and has
a soliton solution. The constant 0'1 is a measure of dispersion.

Many other aspects of tube waves have recently been explored, in attempt
to describe analytically the nonlinear behaviour of the rich spectrum of non-
linear waves that an isolated flux tube or slab may support; see Ferriz-Mas
(1988), Ruderman (1993), Zhelyazkov et al. (1994) and Nakariakov, Zhugzhda
& Ulmschneider (1996).

4 Gravitational Aspects

Stratification, so far ignored in our account, is in fact important in the pho-
tosphere. The pressure scale height at the temperature minimum falls to its
lowest value, of about 100 km, and this is comparable with the radius of a
tube. So stratification effects are important. (In the corona, where the scale
height is large, such effects are of Jess consequence.) The addition of gravity
to the description of modes given in Section 2 has not so far proved possible,
mainly because the flux tube expands with height in a stratified atmosphere
and this seriously complicates the description. Progress has been made by
considering either a thin tube or a uniform unbounded field.

The case of a thin tube has been investigated by use of the so called thin
tube equations. The sausage and kink modes are treated separately. Gravity
renders an isolated flux tube non-uniform in height. The fall-off of the con-
fining gas pressure in the environment of the tube forces the tube to expand
outwards. Consider the thin tube equations for the sausage mode:

8 8
8tPA + 8zpvA = 0, (30)
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ov ov lop
-+v-=---+g,ot OZ p oz

op +vop = IP(OP +vOp),
ot oz P at OZ

BA = constant,
B2

p+ -2 =Pe'
J1.o

(31)

(32)

(33)

(34)

In the above thin tube equations, B(z, t) is the field-strength of a thin
tube with cross-sectional area A(z,t), v(z,t) is the longitudinal flow speed
within the tube, where the gas pressure and density are given by p( z, t) and
p(z, t). The external gas pressure Pe(z, t) is calculated on the boundary of the
tube, with equation (34) embodying a boundary condition namely that the
total pressure inside the tube is balanced at all times by the external pressure
field Pe, which itself may vary in z and t in response to waves in the tube or to
externally imposed motions. The z-axis is aligned with gravity gz, pointing
downwards. A derivation of equations (30)-(34) has been given by Roberts
& Webb (1978), based upon expanding all dependent variables in Taylor
series about the central axis (r = 0) of the tube, assuming symmetry and
no motions in the It-direction. Special cases of these equations were written
down on physical grounds by Parker (1974), for an incompressible fluid, and
by Defouw (1976) for an isothermal gas.

In equilibrium (v = O,%t = 0) the thin tube equations yield

po(z) = po(O)eN, po(z) = poCO)Ao(O) eN
Ao(z) ,

Bo(z) = Bo(0)eN/2, (35)Ao(z) = Ao(0)eN/2,
where

1z dz
N(z) = 0 Ao(z)

is the integrated pressure scale-height Ao(z) (= po(z)/gpo(z)) inside the tube.
For simplicity, we have taken the temperature inside the tube to be equal to
that in the environment, assumed to be in hydrostatic equilibrium.

The linear form of the thin tube equations is readily found for the equi-
librium (35). Consider first the 9 = 0 case, for which the equilibrium state is
a uniform tube (N = 0). The linearised form of (30)-(34) with 9 = 0 yields
(Roberts 1981):

02v 2 02v 1 4 02Pe
ot2 - CT oz2 = - Po c~ ozot' (36)

To progress further requires consideration of Pe(z, t), the external pressure
field on the boundary of the oscillating tube. The simplest assumption to
make is that the external pressure remains at its equilibrium value, a constant
Pe(z), in which case the above equation immediately yields w2 = k;4, giving
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Dynamics of Flux Tubes in the Solar Atmosphere: Theory 11

the slow sausage mode as expected. A more refined analysis, though, is to
allow for disturbances in the environment of the tube, and then the external
gas pressure satisfies the wave equation in r, z and t. By solving this equation
for disturbances that decline exponentially as r -> 00 we may recover the
approximate dispersion relation (26), showing that the dispersive correction
is due to the tube wave disturbing the environment of the tube (Roberts &
Webb 1979; Roberts 1985b).

Returning to the stratified flux tube (g 1= 0), we progress by again as-
suming that Pe is simply the unperturbed external gas pressure, a function
of z but not of time. Then, after some algebra, we obtain the Klein-Gordon
equation (Roberts 1981; Rae & Roberts 1982; Roberts 1992b)

a2Q 02Q
Bt2 - 4(z) oz2 +.a2(z)Q = 0, (37)

where Q(z,t) is related to the flow v(z,t) through

Q(z, t) = [po(z)Ao(z)4(z)] 1/2
po(0)Ao(0)4(0) v(z, t) (38)

and .a2 is given by

n2( ) _ 4 [3A1 9 2 4c} (' - 1 AI)]•• Z -- +---+---+ 0 .4A6 0 4 1 IC~ 1
(39)

Here a prime denotes differentiation with respect to depth z.
In an isothermal atmosphere we obtain some simplification in the above:

Ao, CT and .a2 are constants, with .a2 reducing to (Defouw 1976; Roberts &
Webb 1978)

.a2 = .fli- == 4 [(~_~)+ 4c} (1 _ .!.)] .
4A6 4 1 IC~ 1

(40)

The presence of constant coefficients in the Klein-Gordon equation (37)
applied to an isothermal atmosphere leads to a familiar dispersion relation,

w2 = k;c2 + .ai-, (41)

where here the propagation speed c is the slow speed CT. Equation (41) shows
that .a, given by (40), is the cutoff frequency for sausage modes in a thin tube.
Much the same equation arises in the vertical propagation of sound waves in
the absence of a magnetic field, where (41) applies with the c being the sound
speed cs and the cutoff frequency being cs/2Ao. For the sausage mode, .a2

may be viewed as made up of two contributions, the first (corresponding to
the first term on the right-handside of (40)) arising from the geometrical shape
of the tube and the second (corresponding to the second term on the right of
(40)) being determined by the tube's elasticity. A rigid tube (CA ~ cs), with
exponential cross-sectional area determined according to the equilibrium (35)
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with Ao constant, has cutoff frequency (9/4-2h)1/2cS/2Ao. A straight and
vertical rigid tube has cutoff cs/2Ao, the same as a vertically propagating
sound wave. See also the discussion in Campos (1986).

In general the cutoff frequency for the sausage mode in a tube is less than
the cutoff frequency of a rigid tube. In accordance with (41), an impulsively
generated sausage wave results in a wave-front propagating with the tube
speed CT, trailing an oscillating wake which rises and falls with the frequency
a (Rae & Roberts 1982).

The Klein-Gordon equation also describes the kink mode (Spruit & Roberts
1983; Roberts 1986). The linearised form of Spruit's (1981) thin tube equa-
tions for the kink mode lead to the wave equation

cPE, 2 cPE, (PO - pe) aE,
at2 =Ck(Z)az2+g PO+Pe az (42)

for transverse displacement E,(z,t). It is easy to cast equation (42) into an
equation of the form (37), for suitable Q related to E,; such a procedure allows
us to compare acoustic waves, sausage tube waves and kink tube waves all
in the one frame-work (Rae & Roberts 1982; Roberts 1986). With (42) cast
in the form of (37), the speed C becomes the kink speed Ck and the square of
the cutoff frequency becomes

il2 _ c~ 1
- 4A6(4+A~). (43)

We can now compare the sausage and kink modes, and also a vertically
propagating sound wave, by reference to the Klein-Gordon equation in an
isothermal atmosphere, simply by noting their differing propagation speeds,
cutoff frequencies and e-folding distances. Suppose that CA = 12 km s-1,
cs = 8 km S-1, Ao = 140 km. The sound wave has propagation speed 8 km
S-1 and cyclic cutoff frequency, (cs/2Ao)/27r, of 4.5 mHz (period 220 s), and
the wave e-folds once in 280 km (two scale heights). By contrast, both the
sausage and kink modes take 560 km to e-fold once (four scale heights), the
sausage wave propagating with a speed CT = 6.7 km S-1 and the kink wave
with a speed Ck = 6.9 km s-1. As noted by Spruit (1981b), the two waves
have entirely different cutoff frequencies: the cyclic cutoff frequency (il/27r)
for the sausage wave is 4.2 mHz (period 240 s), close to the sound wave,
whereas the kink mode has a cyclic cutoff frequency of 2 mHz (period 500 s),
about a factor of two different.

5 Nonlinear Numerical Computations

Using Eqs. (30) to (33), nonlinear time-dependent solutions for longitudinal
wave propagation in thin magnetic flux tubes may be obtained numerically,
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through the method of characteristics. Radiation effects may also be included.
For this, Eq. (32) is written in an entropy conservation form,

~~ = ~ +v~: = ~~IRad '
(44)

where (dS/dt)!Rad is the radiative damping function. Eq. (33) follows from
(44) on assuming dS/dt!Rad = 0 and using the thermodynamic relations

dp _ 2 dcs J.L dS
p-l-l~-jR ,

dp _ ~ dcs _ !!:.dS .
P - 1-1 cs ~

(45)

Here ~ is the gas constant and J.L the mean: molecular weight. For one-
dimensional computations it is convenient to use a Lagrangian frame (which
follows the motion of a parcel of fluid) as this, when replacing differential
equations by difference equations, permits us to more easily ensure mass
and energy conservation in the numerical scheme. In place of the Eulerian
scheme, which considers a fixed location, namely the height z, one now uses
the Lagrangian height a as independent variable; a is the Eulerian height at
time t = 0, the start of the calculation. Consider a mass element contained
initially in the height interval da at height a which at a later time moves to
the Eulerian height z(a, t) and expands to the size dz. If Ao(a) and po(a)
are, respectively, the cross-section and density of the element at time t = 0,
while A(a,t) and p(a,t) are the same quantities at a later time, then mass
conservation in a tube gives

po(a)Ao(a)da = pea, t)A(a, t)dz , (46)

from which one obtains the scale factor

la = (az) = poAo .
aa t pA

(47)

Using the transformation equations between the Eulerian and Lagrangian
frames,

(~)a (Of) + v (Of) (Of) -la (Of)m. az t' aa t- az t'
(48)

Eqs. (30) and (31), with the help of (34), are written in the forms

~ (av) + 2cs ~ (acs) _L (C~ +1) (as) _-;.. dpe = 0 (49)
la aa t I - 1cT m a I~ CA at a pcA dz

(
av) 1 [2Cs (acs) C~J.L(as) ]_ +- -- -- -- - +g-O
at a la I - 1 aa t I~ aa t -.

(50)
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We have used Eq. (45) to eliminate the thermodynamic variables p and p in
favour of the sound speed Cs and entropy S. Suitably combining Eqs. (49)
and (50) with help of (44) brings these equations into characteristic form

2 cs J.lC~ [J.lCT dS I VCT dPe]dv±---dcs=F--dS=F -(-y -1) - + -- dt+gdt = 0,
"( - 1 CT "()RcT "()R dt Rad pc~ dz

(51)
along the two characteristics C+, C- given by

(
da) CT- -±-
dt ± - la'

where the upper sign in these two equations is for the C+ characteristic and
the lower sign for the C- characteristic. Instead of the two partial differential
Eqs. (49) and (50) we now have four ordinary differential equations (51) and
(52).

The numerical solution proceeds as follows. From a height point P at the
new time level t + L1t, where one assumes preliminary values of the three un-
knowns cs(P), S(P) and v(P), one constructs the characteristics (52) in the
t -a plane and their intersection points with the old time level t at which the
solution is assumed to be given everywhere. From these intersection points
using the finite difference forms of Eqs. (51) along the two C+ and C- char-
acteristics, two of the three unknowns can be computed. The third unknown
is obtained by integrating Eq. (44) along the fluid path a = const. using
dS = (dS/dt)IRaddt. In this way new estimates of cs(P), S(P) and v(P) are
obtained and the process can be repeated until convergence.

This procedure is very accurate and stable and allows also one to treat
the formation and propagation of shocks. Extensive longitudinal wave prop-
agation calculations using this procedure have been performed by Herbold
et al. (1985) and Rammacher & Ulmschneider (1989). In these calculations
H- continuum radiation was included in the optically thin approximation,
while Mg II k and Ca II K line radiation were treated as optically thick.
For these non-grey radiation treatments the NLTE statistical rate equations
where solved together with the radiative transfer equations.

For the problem of coupled transverse and longitudinal tube waves the set
of equations (30) to (34) have to be augmented by the transverse components.
The tube is now considered to be inclined to the vertical. Let el be the unit
vector along the tube, with direction cosines lx, Iy and Iz with respect to the
coordinate axes; the direction cosines are related by

(52)

t; + I; + I; = 1. (53)

Then the longitudinal Eqs. (30) and (31) together with (34) can be written

el . (av) +~..!-. (acs) _.L (c~ +"() (as) _ ~ dpe _ 0
la aa t "( - 1 c} at a "()R c~ at a pc~ dz -

(54)
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el . (av) +.!. [~ (acs) _ C~J.l(as) ] + gl. = 0 . (55)
at a 10 "( - 1 aa t "(lR aa t

These equations should be compared with (49) and (50). Combining the two
equations together with (44) into characteristic form one obtains

_ 2 cs J.lC~
er : dv ± ---dcs =F --dS

"(- 1CT "(lRcT

[
iJ.CT ss I V.CT dPe]=F - ("( - 1) - + -, - dt + gl.dt = 0
,lR dt Rad pCA dz

(56)

along the two characteristics ct, C1 given by

(
da) CT .
dt ± = ±t;; ,

where the top sign in the last two equations is for the ct and the bottom
sign for the C1 characteristic. Note that for purely vertical propagation,
when I. = 1, Eq. (56) reduces to (51).

The system (56) and (57) describes the longitudinal wave, where the signal
propagation speed, as observed from the moving mass element, is dz/ dt =
lada/dt = ±CT·

For the kink mode the transverse components of the equation of motion
and of the combined induction and continuity equations must be considered.
. From the equation of motion

(57)

dv 1
P- = -'ilp - -B x ('il x B) + pg ,dt J.lo (58)

we take the transverse component

(dV).L B2
P dt = J.lo/ee2+ el x [pg - 'il (p+ ~2J]x el. (59)

Here e2 is the unit vector in direction to the local center of curvature and
/ee2 = (aedlaaak Assuming horizontal pressure balance, and outside the
tube hydrostatic equilibrium ('ilPe = Peg), Eq. (59) is written

( )

.L
dv ? _ .L

P dt = pCA/ee2 + (p - Pe)g . (60)

This equation does not include forces due to the backreaction of the external
medium. The complete Eq. (60) thus reads

( )

.L
dv 2 - .LP dt = pCA/ee2 + (p - Pe)g + fext . (61)

In recent years there has been an extensive discussion about the cor-
rect form of the back-reaction force term fext (Spruit 1981; Choudhuri 1990;
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Cheng 1992; Fan, Fisher & McClymont 1994; Moreno-Insertis, Ferriz-Mas &
Schussler 1994; Moreno-Insertis, Schussler & Ferriz-Mas 1996). Osin, Volin
& U1mschneider (1996) take

fext = -Pe (d1.d:1.) 1. (62)

Then, with Eqs. (61) and (62), the transverse component of the equation of
motion can be written (Osin et al. 1996)

(8V) _ el' (8V) el _ (pc~ - Pevll2) (8el)
8t a 8t a (p + Pe)la 8a t

~ (8el) _ (p - Pe) g1.= 0 ,
(P+Pe) 8t a (P+Pe)

(63)

where vII = el .v.
The transverse component of the combined induction and continuity equa-

tion (30) is given by

(8el) = 2- [(8v) _ el' (8v) el]'
8t a la 8a t 8a t

Combining Eqs. (63) and (64) into characteristic form one finds (after some
algebra) the two equations

(64)

(1 - I;) dvx -Ixlydvy -Ixlzdvz - c;dlx
P - Pe- --glxlzdt = 0 , (65)
p+ pe

(1 - I;) dvy - Ixlydvx - Iylzdvz - c;dly
P - Pe- --glylzdt = 0,
p+ Pe

both along the characteristics ct, C:; given by

(~;) ±

±
~
la

(66)

Here the kink speed c;, the propagation speed of the pure transverse wave
mode, is given by

±-_~vll±
ck - P + Pe (

~)2 vll2+ pc~ - Pevl12.
P + Pe P + Pe

(67)

Note that the pure longitudinal wave propagates with the tube speed
CT and in the above approximation is not affected by the back-reaction of
the external medium, whereas the propagation of the transverse mode is
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strongly affected by the back-reaction of the external fluid. Propagation of the
transverse mode is in general asymmetric, ck =P -ct. Symmetry is restored
when the longitudinal flow speed vII is negligible, and then

C; = ±Ck , (68)

the kink speed introduced in Eq. (3). The square root in Eq. (67) points to
the possibility of hyperbolicity violation and hence to the development of a
wave instability. This will happen when the longitudinal fluid velocity vII is
large enough:

vII> Jp+ pe
Pe CA, (69)

defining the threshold of the fire-hose instability, so-called because the tube
experiences a kink-like disturbance driven by the flow (much as for water in
a fire-hose).

In contrast with the case of purely longitudinal wave propagation, one
now has 8 unknowns cs, S , v, el in the coupled longitudinal-transverse
tube wave problem. To solve for these unknowns we have the two relations
(56) along the ct, Cj characteristics given by Eq. (57) and two relations (65)
each along the ct. C:; characteristics given by Eq. (66), the entropy conser-
vation relation (44) along the fluid path and Eq. (53). Using this procedure,
longitudinal-transverse wave computations have been performed by U1m-
schneider & Zahringer (1989), U1mschneider, Zahringer & Musielak (1991)
and Osin et al. (1996). Moreover, as shown by Zhugzhda, Bromm & Ulm-
schneider (1995), the above procedure also allows to compute shock formation
and propagation.

Although presently a procedure which incorporates all three coupled modes,
the longitudinal, transverse and torsional wave propagation using the thin
flux tube approximation, has not yet been described, the problem of a com-
bined time-dependent longitudinal-torsional wave propagation has been in-
vestigated numerically by Hollweg, Jackson & Galloway (1982) and Ferriz-
Mas, Schussler & Anton (1989).

An attractive feature of the method of characteristics is that it automati-
cally leads to the wave propagation speeds, and allows one to derive relations
between the ampitudes of the various fluctuating physical quantities in the
waves. Similar to the well known relations

v p' p' 2 c'_ = _ = __ 2-
P "(P "( - 1Cs "(-IT

1 T'
(70)

Cs

for acoustic waves, Eqs. (45) and (56) allow us to derive the amplitude rela-
tions for longitudinal tube waves:

v cs p' cs p' 2 Cs c~ 1 Cs T' c~ B'
Cs = CT P = CT iP = "(- 1CT Cs = "(- 1 CT T = CSCT Ii' (71)

Here a prime indicates perturbations, considered small.
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6 Magnetohydrodynamic Wave Generation

6.1 Analytical methods based on Lighthill's approach

The generation of different types of Alfven waves and magnetoacoustic waves
in the solar atmosphere has been studied primarily by using analytical meth-
ods based on the theory of sound generation by Lighthill (1952). In terrestrial
applications for acoustic sound generation, Lighthill's theory is in excellent
agreement with observations. Kulsrud (1955) and Osterbrock (1961) extended
Lighthill's theory by including magnetic field effects, and Musielak & Ros-
ner (1987, 1988) improved it by accommodating the presence of stratification
and an embedded uniform magnetic field in the wave generation region (see
also Rosner & Musielak 1989). More recently, Collins (1989a, b, 1992) has
modified this type of wave generation theory to explore the excitation of
MHD waves by periodic velocity fields in diverging magnetic flux tubes. The
common feature of these studies is that they look at the magnetic field in a
non-local way to obtain mean generated wave fluxes.

A further advance occurred when a detailed local flux tube geometry
was considered. Musielak, Rosner & Ulmschneider (1989) and Musielak et
al. (1995) have investigated the interaction between turbulent motions in the
solar convection zone and thin magnetic flux tubes. They have considered
vertically oriented magnetic flux tubes and restricted their approach to the
linear regime. For a magnetic flux tube in the solar convection zone the
external pressure can be written as

Pext = Pe + PtUTh, (72)

where Pe is the external gas pressure and

PtuTh == Pe (vx(r, t)2 + vy(r, t)2 + vz(r, t)2) (73)

the external turbulent pressure. Here Vx, vy, Vz are the turbulent velocities
in x, y, z-directions, functions of position r and time. Upon time averaging
one gets

Uxt = Vvx(r, t)2, Uyt = Vvy(r, t)2, Uzt = V~z(r, t)2 . (74)

For the case of homogenous isotropic turbulence there is no longer a de-
pendence on r due to the assumed homogeneity, and for the three spatial
components isotropy implies that

Ut == Uxt = Uyt = Uzt· (75)

Here Ut is the rms velocity amplitude in one spatial direction, taken to be
the same in the x, y and z-directions; it is independent of space and time.
Note that here Ut is defined differently from in Musielak et al. (1995). From
the above equations one has a time-averaged turbulent pressure

PtuTh = 3Peu~ , (76)
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and a fluctuating turbulent pressure

, 3 ,2 3 (2 2)PtuTh = PeUt = Pe Vx - Ut . (77)

Here one has used the fact that the velocity fluctuations in the three spatial
directions are uncorrelated. For the generation of longitudinal tube waves
external pressure fluctuations have to be translated into fluctuations inside
the tube. From the horizontal pressure balance (34) one has for the internal
pressure perturbations

, BoB' _ ,
P + -- - PtuTh .

110
(78)

The Lighthill approach starts with an inhomogeneous wave equation

[
82 82 ] .
8t2-c}az2+D~ P1(Z,t)=St(z,t),

where P1 = P' / v'PoBo, Bo the undisturbed field strength of the tube and
DT the tube (Defouw) frequency defined by Eq. (40). The source function is
given by

( ) _ 3pe 4 (a2 2) ,2 ( )
St z, t - 2v'PoBo c~ at2 + DBV Ut , 80

where DBV is the Brunt- Viiisiilii frequency. For the time-averaged longitudi-
nal tube wave flux one has

(79)

_ ( a ) -1 ( 8 ) [ ( 8 ) -2] -2F(z, t) = -Bo (1+ 6)P1 at 8z + kh 1+ D1v 8t pi,
(81 )

where 6 = 5c~/2,c~, kh = (4 - 3,)/4,Ao for pressure scale height Ao, and
complex conjugate pi of Pl· By using Fourier transforms Eqs. (79) to (81)
can be solved and the mean wave energy generation rate for a given flux tube
can be written in the form (expressed in cgs units, erg cm-3 S-l Hz-l, the
choice of the original authors):

a2 ( ) 2 ( 2--F z w - ~ Pe Vi Pow(1 + 6) 2 2
8z08w (0' )zo,to - 32 Po vJ V;3 vw - DBVJc(ko,w),

(82)
where the convolution integral Jc is given by

1 1+00 1+00

Jc(ko,w)= 27r2 -00 dr -00 dr(2R;x(r,r) +R;z(r,r)) exp-i(koT-WT) .

(83)
The averages extend over a suitably large height Zo and time to interval.

Here the correlation tensors Rxx(r, r) and Rzz(r, r) can be expressed in terms
of second order correlations averaged over Zo and to. These correlation tensors
can be written in terms of the turbulent energy spectrum E(k,w),

Rxx(r, r) = Ryy(r, r)=
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i" l" (Sin kr cos kr sin kr)Jo dWCOSWT Jo dk E(k,w) --r;:- + k2r2 - Pr3 (84)

and

l" l" (Sin kr cos kr)Rzz(r, T) = 2 J
o

dw COSWTJ
o

dk E(k,w) Pr3 - k2r2 (85)

where

E(k,w) = E(k)t:. (k:J ; (86)

the mean velocity of a turbulent eddy with wave number k is given by

[
2k ] 1/2

Uk = 1 E(k')dk' (87)

The computation of the longitudinal tube wave flux thus reduces to the
specification of the turbulent energy spectrum. The turbulent energy spec-
trum appropriate for the solar convection zone has been discussed in detail by
Musielak et al. (1994). These authors argue on the basis of observations and
numerical convection calculations that a realistic turbulent energy spectrum
should be reasonably well described by an extended Kolmogorov spectrum,
E(k), and a modified Gaussian frequency factor, t:.(W/kUk). The extended
Kolmogorov spatial component is given by

{

0, 0 < k < 0.2kt,
E(k)= 0.758i(t), 0.2ktS:k<kt,

2 ( k ) -5/30.758~ Ii; , kt s: k s: kd,
(88)

where kt = 271"/ .!lo, and the modified Gaussian frequency factor by

t:.( W ) _ 4 w2
-(J<i-;Y

kUk -..fi Ikuk 13 e Uk •
(89)

Using the above, Musielak et al. (1995) have computed longitudinal tube
wave fluxes. Their results indicate fluxes of the order of several times 107 erg
cm-2s-1, which seem relatively low to account for the observed enhanced
heating in the chromospheric network. In a similar treatment for transverse
tube waves, Musielak, Rosner & U1mschneider (1997) show that the wave
energy flux carried by these waves can be of the order of 108 erg cm-2s-1.
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6.2 Numerical methods based on the direct perturbation
of flux tubes

There are also methods of MHD wave generation which are not based on
the Lighthill approach. In these methods solar magnetic flux tube models are
perturbed from the outside with velocity or pressure fluctuations which in
magnitude and spectral shape are consistent with observations.

To perturb the flux tube one assumes that V:z; can be written as a spectrum
of N partial waves

N

V:z; = L Un sin(wnt + 'Pn) ,
n=1

where 'Pn = 271Tn is an arbitrary but constant phase angle, rn a random
number in the interval [0, 1]. The partial wave amplitude Un is determined
by the turbulent energy spectrum as follows. Time averaging v; one finds
(Huang et al. 1995)

(90)

N
- 21",2
v~ = ut = 2 ~ Un .

n=1

(91 )

As is customary (e.g. Musielak et al. 1995) the turbulent energy spectrum
is normalized to

00 00 00

~u; = j dw j dk E(k)t:. (k:J = j E'(w)dw . (92)
o 0 0

From this one obtains

N°ON

~U; = ~L U~ = j E'(w)dw =L E'(wn)t:.w,
n=1 0 n=1

(93)

which allows to determine Un

Un = J~E'(wn)t:.w , (94)

where

E'(wn) = J E(k)t:. (::J dk ;
o

for E(k) and t:. (W/kUk), the extended turbulent energy spectrum and the
modified Gaussian frequency factor of Eqs. (88) and (89) are taken.

For a transverse wave generation calculation the velocity V:z; can be directly
applied as a boundary condition, representing the horizontal shaking velocity
acting on the magnetic flux tube. A similar un correlated shaking arises from
vy. For values of Ut = 1.0 to 2.0 km s-1 and shaking at various heights, Huang
et al. (1995) with a correction described by U1mschneider & Musielak (1996)

(95)
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obtain total transverse wave fluxes (shaking in both horizontal directions) of
6.109 to 3· 1010 erg cm-2s-1.

In the process of longitudinal tube wave excitation, the tube is compressed
symmetrically by the external turbulent pressure. This turbulent pressure
consists of the time averaged term Pturb which augments the external gas
pressure Pe and the fluctuating term which gives rise to longitudinal tube
waves (cf. Eqs. (76) to (78)). For the generation of longitudinal tube waves
these external pressure fluctuations have to be translated into fluctuations
inside the tube. From the horizontal pressure balance one has gas pressure
and magnetic field variations inside the tube (cf. Eq. (78)). Using the relations
among the amplitudes for longitudinal tube waves one has

BI c2 pI_-....2.._
Bo - c~ ,po' (96)

where Po the undisturbed gas pressure in the tube. From this one obtains

I 1 I

P = 2Pturb , (97)

which shows that the external pressure fluctuations are divided equally into
an internal gas pressure fluctuation and a magnetic pressure fluctuation. As
the tube wave code normally uses a velocity boundary condition one trans-
lates the gas pressure fluctuations into longitudinal velocity fluctuations VII
by using the amplitude relations for longitudinal tube waves, finding

C~ pI P;urb
VII = CT ,Po = 2POCT '

with po the undisturbed density in the tube.
Finally, the normalized flux of longitudinal tube waves is

(98)

- _ A 2
F - A/ovllcT

while that of transverse tube waves is

(99)

F = -~ Bo e«,
Ao J.lo

where Vr is the transverse velocity and BI the transverse magnetic field per-
turbation.

Using this procedure Ulmschneider & Musielak (1996) have computed
various longitudinal wave energy fluxes and find values of the order of several
times 108 erg ern -2s-1. Note that due to the nonlinear treatment, which uses
the partial wave synthesis after Eq. (90), a very spiky velocity perturbation
results which leads to much larger fluxes both for the transverse and the lon-
gitudinal wave fluxes as compared to the linear results. We have the suspicion
that due to the lack of cancellations when shaking simultaneously at several
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heights, the time-dependent nonlinear treatments tends to overestimate wave
fluxes, while the linear analytical treatment tends to underestimate the fluxes.

Finally, we note that detailed studies of the various waves excited by
footpoint motions of flux tubes and slabs have also been recently carried
out; see, e.g., Murawski & Roberts (1993), Berghmans & De Bruyne (1995),
Murawski et al. (1996), and Cargill, Spicer & Zalesak (1996). But so far such
studies are aimed more at coronal conditions and as such lie outside the scope
of the present review.

7 Concluding Remarks

It is evident from the above discussion that many aspects of flux tubes in the
solar atmosphere are now understood. However, a number of important theo-
retical questions remain unanswered. For example, we note that the basic set
of thin tube equations for the sausage mode presented earlier were derived
under the assumption that there were no motions in the O-direction. This
has the effect of losing the torsional Alfven waves given for a finite tube by
equation (10). As recently stressed by Zhugzhda (1996), it is clearly impor-
tant to extend our understanding so as to include the coupling of motions.
Zhugzhda (1996) has considered such an extension of the thin tube equations
to include Vo terms, using the Taylor series expansion about r = 0 as orig-
inally employed by Roberts & Webb (1978). (The expansion approach has
also been adopted by Ferris-Mas, Schiissler & Anton (1990).) All extensions
of this form are in principle capable of being tested against the known linear
results for a finite radius tube, and thereby to examine how successful the
approach is in describing the dispersive behaviour of the waves.

The standard derivation of thin tube equations for the kink mode makes
use of the assumption that the kink mode displaces an equal proportion of
fluid in the environment of the tube as is contained by the tube (Parker 1979;
Spruit 1981). This has the effect of augmenting the gas density Po with Pe,
so that the characteristic speed of the kink mode is c» (Eq, (3)). However,
to describe properly the motions in a nonlinear theory it is necessary to
describe also the dispersive influence of the tube's surroundings, as given in
linear theory by the long wavelength result (27). As discussed earlier, there
have been a number of attempts (Choudhuri 1990; Cheng 1992, 1994; Fan,
Fisher & McClymont 1994; Moreno-Insertis, Schussler & Ferriz-Mas 1996;
Osin et al. 1996) to extend Spruit's (1981) thin tube theory of the kink
mode, to take proper account of inertial effects, but the matter is currently
unresolved. Again, we note that it is a test of any approximate description
that it is able to describe properly the dispersive influence of the tube's
environment, evident in (26) and (27); this proved possible in the derivation
of the Leibovich-Roberts equation for the sausage mode, but the kink mode
remains to be fully treated.

We should note too that the presence of flows in the regions externally
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bordering isolated photospheric tubes has an effect on the waves a tube sup-
ports. Nakariakov & Roberts (1995) have shown that if an external steady
flow of magnitude U, exists outside a uniform magnetic slab, then the fast
surface wave propagating against the direction of the flow becomes leaky if
Ue > CSe - Cs and the slow body waves leak if Ue > CSe - CT. Such flows may
be met in the photosphere: from our earlier illustration of speeds, we see that
CSe - Cs = 1.6 km S-l and CSe - CT = 2.9 km S-l, so downdraughts of 3 km
s-l might cause strong leakage from the tube.

In summary, then, while many aspects of flux tube dynamics are now
understood, there remain a number of important fundamental questions for
theoretical investigation. But above all, it is to be hoped that observational
evidence of flux tube behaviour will point out the most important features
of flux tube dynamics that require our greater study and understanding.
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