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Abstract. By means of a 3D numerical code we investigate
the response of magnetic flux tubes to transverse perturbations.
Various tubes with plasma β ranging from 0.1 to 10 embed-
ded in a uniform nonmagnetic atmosphere are considered. High
spatial resolution was obtained by the application of a multiple
nested grid strategy. Various kinds of internal longitudinal and
transverse body waves as well as surface waves were found in
addition to the external sound wave.

A great advantage of our 3D treatment is that it allows to
treat energy leakage and mode conversion. We investigated the
efficiency of wave energy leakage from the magnetic tube to the
external medium and found leakage rates ranging from 0.07 for
the β = 10 tube to 0.43 for the β = 0.1 tube. This shows that
leakage is an important process particularly for low β tubes and
should not be ignored in studies of transverse wave propagation.

As already found in 1D calculations, the purely transverse
excitation generates longitudinal body waves of twice the fre-
quency. This mode conversion process is not very efficient. A
very important result of our computations, however, is the effi-
cient generation of a non-axisymmetric longitudinal body wave
which does not derive from magnetic tension forces, but is due
to an inertial pile-up effect inside the tube produced by the trans-
verse motions. Particularly in low β-tubes, the mode conversion
rate for the longitudinal waves was found to be as large as 90%
of the total kinetic tube energy most of it is going into the sur-
face wave. This may be very significant for the heating of flux
tubes and thus for the chromospheric and coronal heating.
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1. Introduction

At the photospheric level, the solar magnetic field is found to
be concentrated in isolated flux tubes of different size. So called
intense magnetic tubes typically have field strengths of order 1.5
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kG and their diameters are about 100 km. A whole network of
such intense tubes exists embedded in an almost nonmagnetic
plasma (Stenflo 1978; Zwaan 1978). Sunspots on the other hand,
possessing even stronger magnetic fields of a few kG and reach-
ing diameters of several 1000 km, represent the largest members
in the hierarchy of tubes.

Flux tubes on the solar surface are thought to play an impor-
tant role as carrier of mechanical energy from the convection
zone to the above lying atmospheric layers. Some of this en-
ergy transport takes place in the form of magnetohydrodynamic
(MHD) waves which propagate along the tube. These MHD
waves are excited in the convection zone as a consequence of
the interaction between the flux tube and the field of turbulence.
In the chromosphere and corona, the upwards transported wave
energy is converted into heat by dissipative processes. Wave
excitation, wave propagation, and wave energy dissipation are
therefore the building blocks involved in this AC-type mecha-
nism of chromospheric and coronal heating. The details of this
wave heating picture and its relation with non-wave heating
(DC-mechanisms) is presently unclear and is subject of intense
research (Narain & Ulmschneider 1996).

In the present series of papers we study the dynamical re-
sponse of magnetic flux tubes with various diameters to different
kinds of wave perturbations. It should be noted, however, that it
is only by convenience that we presently picture these tubes in a
solar environment. Actually, we are interested in the basic three-
dimensional behaviour of flux tubes subject to wave excitation
in general and have in mind applications to stellar atmospheres
and to situations in the atmospheres of accretion disks.

Due to our 3D numerical code, these investigations are not
restricted to linear (small-amplitude) perturbations but allow
disturbances of arbitrary amplitude. In this first paper we con-
sider the propagation of MHD waves in thick flux tubes excited
by transverse oscillations. Here, ‘thick’ does not necessarily
mean, that the tube radius R0 is large. It rather means that the
quantityα = kR0, where k denotes the characteristic wavenum-
ber of a disturbance, is not assumed to be much smaller than
unity as is usually the case in the so called thin flux tube ap-
proximation (see e.g. Spruit 1981ab, Cheng 1992, Ferriz-Mas
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& Schüssler 1993). In our present numerical computations, α
ranges from 0.8 to 1.8.

A proper nesting of numerical grids with successively higher
resolution towards the flux tube allows to explore the structure
of internal tube motions as well as to account for the possibil-
ity of the excitation of external waves due to the interaction of
the tube with its surroundings. Thus, important processes like
the conversion of tube wave energy via nonlinear mode cou-
pling and by leakage to the environment can be addressed and
damping rates for the flux tube waves estimated.

In a subsequent paper, numerical experiments are extended
towards thin flux tubes (with small α). In the traditional thin
flux tube approximation, cross-sectional variations of all phys-
ical quantities are neglected and external pressure fluctuations
are ignored. These may be critical points in the validity of the
approximation which deserve special attention.

In Section 2 we discuss the basic equations and our three-
dimensional numerical method. Section 3 briefly outlines the
analytical investigations and Section 4 presents our results. Here
the initial model, the external and internal waves, the energy
leakage from the tube and the mode coupling of the tube waves
are discussed. Section 5 gives our conclusions.

2. The method

2.1. Initial conditions and basic equations

We consider a vertically oriented magnetic flux tube embed-
ded in a nonmagnetic medium. The effects of an atmospheric
stratification due to gravitational forces are ignored. The neglect
of stratification is rather unrealistic but considerably simplifies
the problem. Inclusion of gravity will be the subject of future
investigations.

The tube is assumed to be initially cylindrical with a circular
cross section of radiusR0. The physical state of the tube and the
atmosphere is characterized by constant values of the internal
gas density ρ0, gas pressure p0, magnetic field strength Bz,0,
and external density ρe. For ease of presentation, despite of a
missing gravity, we picture the tube as directed along a ‘vertical’
z-axis and consider the perpendicular x- and y-directions as
‘horizontal’. The z-coordinate is also referred to as ‘height’.

Horizontal pressure balance implies

p0 +
B2
z,0

8π
= pe (1)

which fixes the external pressure pe. Furthermore, the gas is
assumed to be initially isothermal, so the internal and external
density cannot be chosen independently from one another but
are related by

ρe
ρ0

= 1 +
1
2
γ
c2
A

c2
S

, (2)

where cS = (γp0/ρ0)1/2 and cA = Bz,0/(4πρ0)1/2 are the sound
and Alfvén speeds inside the tube. γ = 5/3 is the ratio of specific
heats. The equilibrium state is thus written as:

[ρ(R), p(R), Bz(R)] =

{[
ρ0, p0, Bz,0

]
R ≤ R0

[ρe, pe, 0] R > R0
(3)

where R =
√
x2 + y2 is the (cylindrical) radial coordinate and

v = 0 as well as Bx = By = 0 everywhere.
The entire bottom boundary including the embedded mag-

netic flux tube is perturbed by a purely transverse sinusoidal
oscillation in x-direction. This perturbation is expressed by a
sinusoidal shaking velocity

vx(x, y, z, t) =

{
v̂ sin

(
2πt
P

)
near z = 0

0 otherwise
(4)

where v̂ denotes the velocity amplitude of the perturbation and
P is the period of the oscillation. In the numerical realization,
the layer of prescribed vx is reduced to two grid points in height
at the lower z-boundary.

The use of Eq. (4) is idealized for two reasons: First, the con-
finement of the shaking to a narrow layer is artificial. In reality,
the flux tube will be excited in a stochastic manner on a broad
z-range. Second, convective motions are not purely sinusoidal.
From observations (Muller 1989, Muller et al. 1994), one has
a turbulence spectrum with a given distribution of amplitudes
and frequencies. In more advanced simulations the mechanism
of wave generation itself must be included which, however, is
beyond the scope of the present paper.

The periodic disturbance in vx gives rise to MHD waves
propagating along the flux tube, which may interact with the
surrounding gas. The time-dependent behaviour of the excited
motions is described by the following equations assuming the
evolution to be adiabatic and the magnetic field to be frozen into
the gas:

∂ρ

∂t
= −∇ · (ρv), (5)

∂

∂t
(ρvx) = −∇ · (ρvxv)− ∂p

∂x

+
1

4π

(
Bz

∂Bx

∂z
+ By

∂Bx

∂y
−Bz

∂Bz

∂x
−By

∂By

∂x

)
, (6)

∂

∂t
(ρvy) = −∇ · (ρvyv)− ∂p

∂y

+
1

4π

(
Bx

∂By

∂x
+ Bz

∂By

∂z
−Bx

∂Bx

∂y
−Bz

∂Bz

∂y

)
, (7)

∂

∂t
(ρvz) = −∇ · (ρvzv)− ∂p

∂z

+
1
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(
By
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, (8)
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Fig. 1. Graphical representation of the multiple grid system used to
improve the numerical resolution around the flux tube.

∂e

∂t
= −∇ · (ev)− p∇ · v, (9)

p = (γ − 1)e ; γ = 5/3, (10)

∂Bx

∂t
=

∂

∂y
(vxBy − vyBx)− ∂

∂z
(vzBx − vxBz), (11)

∂By

∂t
=

∂

∂x
(vyBx − vxBy)− ∂

∂z
(vyBz − vzBy), (12)

∂Bz

∂t
=

∂

∂x
(vzBx − vxBz)− ∂

∂y
(vyBz − vzBy). (13)

In addition, the magnetic field B has to fulfill the constraint

∇ · B = 0. (14)

Here ρ, e, p, and v are the gas density, thermal energy density,
pressure, and velocity, respectively.

2.2. Numerical method

The set of magnetohydrodynamic Eqs. (5)-(14) is solved with
an Eulerian, time-explicit computer code using the method of
finite differencing. The basic properties of the code have been
described in detail in a series of papers by Stone & Norman
(1992ab). The differencing scheme is second-order accurate in
space using the interpolation formula of van Leer (1977) for the
advection part of the code and somewhat greater than first-order
accurate in time. In particular, the magnetic field is treated nu-
merically using the so called Constrained-Transport algorithm
which guarantees the divergencelessness of the magnetic field
during the time evolution. Here Maxwell’s equation (14) is auto-
matically fulfilled to machine accuracy (Evans & Hawley 1988).

A multiple nested grid version of the code is applied to
resolve the internal structure of tube modes. To reduce the nec-
essary CPU time to a minimum in order to keep the problem
tractable, only three nested grids are set up. A sketch of the

grid system is shown in Fig. 1. The basic grid covers the do-
main−1000 km ≤ x ≤ 1000 km,−1000 km ≤ y ≤ 1000 km,
0 ≤ z ≤ 1000 km adopting 100,100,50 mesh points in x,y,z-
direction, respectively. For the numerical resolution one has
δ = 1/∆ = 0.05 km−1 with a constant grid spacing of ∆ = 20
km. The so called subgrid and subsubgrid is centered around the
flux tube. The subgrid doubles the resolution of its spatial do-
main compared to the basic grid. The subsubgrid again doubles
the resolution leading to an improvement of a factor of 4 relative
to the basic grid. The flux tube lies entirely inside the finest grid.
With a typical radius of R0 = 50 km, the cross-sectional area of
the tube is represented by ≈ 300 grid points which allows for
an accurate description of the internal dynamics. The physical
domain, number of mesh points, and resolution of each grid is
summarized in Table 1. A typical run comprised out of 700 time
steps needs about 14 h CPU time on a Cray supercomputer.

Multiple nested grids have not been widely used so far to
model magnetohydrodynamical flows in 3D. Thus, a brief dis-
cussion of the basics is given below. A detailed description of
the method can also be found in Ziegler & Yorke (1996). Like
any other grid refinement technique, the multiple nested grid
scheme attempts to minimize the amount of computer time nec-
essary to maintain a given accuracy in the numerical solution
locally. The key parts of the nested grid refinement technique
are the integration cycle and grid interaction processes. The in-
tegration cycle must be understood as a prescribed sequence of
integrations of the individual grids necessary to evolve every
grid forward in time to the same time level. Here, the subgrid
is integrated twice as often as the basic grid and 4 integrations
are needed for the subsubgrid in a cycle. The reason for this is
that the Courant-Friedrich-Lewy criterion has to be fulfilled in
explicit codes on stability grounds, which restricts the integra-
tion time step by the grid spacing. I.e. the time step allowed in
the subgrid (subsubgrid) integration is just 1/2 (1/4) that of the
basic grid 1.

To retain the underlying conservative character of the model
equations, the individual grids cannot be regarded as indepen-
dent from each other but mutually interact: Numerical fluxes
of mass, thermal energy, and momentum are conserved at the
coarse/fine grid interfaces forcing the differencing scheme to be
conservative on the whole integration domain. In more detail,
the fluxes for the coarse grid at interfaces have to be taken from
the previous fine grid integration. In addition, the electromo-
tive force in the induction equation, v × B, has to be modified
to keep the magnetic field divergence free everywhere. On the
other hand, the coarse grid solution is replaced by the more
accurate solution of the finer grid on its subdomain.

Apart from the time dependence in the variable vx (Eq. 4),
the lower z-boundary at z = 0 is assumed to be a rigid wall. No
flow is allowed through that plane. At the upper z-boundary, a
simple outflow condition is adopted. Since the outflow bound-
ary condition is not perfectly wave transmitting, the calculations

1 Actually, the time steps of the grids are not exactly a power of 2 of
the finest grid time step, because the numerical solutions slightly differ
for each grid.
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Table 1. Characteristic properties of the grid system.

grid domain [km] mesh points Nx ×Ny ×Nz grid spacing ∆ [km] / resolution δ [km−1]

basic
x ∈ [−1000, 1000]
y ∈ [−1000, 1000]

z ∈ [0, 1000]
100× 100× 50 20 / 0.05

subgrid
x ∈ [−300, 300]
y ∈ [−300, 300]
z ∈ [0, 1000]

30× 30× 100 10 / 0.1

subsubgrid
x ∈ [−150, 150]
y ∈ [−150, 150]
z ∈ [0, 1000]

30× 30× 200 5 / 0.2

have been stopped when the fastest wave mode was about to
leave the top of the computational domain to avoid partial re-
flection. There is another reason for proceeding in this manner.
One major aim of this work is to estimate the energy leakage
rate from the tube. For this purpose any loss of wave energy
due to the interaction with the boundary should be prevented.
Periodic boundary conditions are used in x- and y-direction.

3. Analytical investigations

The nature of the wave propagation in thick magnetic tubes is
very complex. This is even true for geometrically simple cylin-
drical tubes, immersed in a nonmagnetic, uniform atmosphere.
Analytical studies of the problem are in most cases limited to
linear perturbations of the tube equilibrium state by means of a
Fourier analysis. There are no general results for the nonlinear
regime at present.

The Fourier method is able to describe the wave propagation
in the flux tube as well as in the external medium. Both media are
separated by a discontinuity but may mutually interact. Because
of energy conservation, the energy carried away by an external
wave excited by the tube movement is taken from the tube itself,
which inevitable leads to a damping of the internal motions. This
damping is not a dissipative process but has to be understood
analogously to the phenomenon of acoustic damping of a vi-
brating string. Mathematically, ‘damping by acoustic radiation’
can be included in a Fourier analysis by a proper matching of the
internal solution to the external solution at the tube boundary.
However, in this procedure damping rates can only be deter-
mined for the unrealistic case of small-amplitude perturbations.
In addition, further approximations are often necessary in such
analytical calculations. So far, the problem of the energy leakage
has received little attention. Knowledge about the total energy
loss, however, is of vital importance because it defines an upper
limit for the energy fraction transferred through magnetic tubes
from the convection zone to the overlying atmospheric layers.

A rather complicated dispersion relation describes the set
of isolated wave modes (normal modes) which are allowed to
propagate along the flux tube and defines their phase speeds.
A lot of work has been devoted to the evaluation of the disper-
sion relation under different aspects (see e.g. Roberts & Webb
(1979), Spruit (1982), Edwin & Roberts (1983)). We do not
intend to review the details found in these numerous investi-

gations. Basically, the general solution supports body waves as
well as surface waves. Body waves are oscillatory waves prop-
agating inside the flux tube. Surface waves propagate along the
magnetic discontinuity having a significant energy density only
near the flux tube boundary. The surface wave solution exponen-
tially decreases perpendicular to the tube axis with a horizontal
penetration length of order k−1, where k is the characteristic
wavenumber of the surface wave.

Three classes of internal modes can be distinguished ac-
cording to the type of perturbation. These are torsional Alfvén
waves, axisymmetric magnetoacoustic waves and their non-
axisymmetric counterparts. The latter two are compressive.
There is only one axisymmetric mode, called sausage mode,
where the wave motion is analogous to a pulsating pipe. Con-
trary, an infinite number of non-axisymmetric modes exist called
kink modes. Kink modes are transverse waves having a polari-
sation perpendicular to the tube axis. The sausage mode on the
other hand is a longitudinal wave i.e. the polarisation is in the
direction of propagation. Generally, there is a slow and a fast
compressive mode. Which of the two (or both) actually appears
depends upon the physical conditions. The phase speed of the
torsional waves is given by the Alfvén speed cA.

The Fourier description has considerable disadvantages: As
mentioned above, it supplies only normal modes. Actually, tube
waves are excited by convective motions and thus in character
are not free oscillations. A kind of forced oscillator mechanism
is most likely to operate. What kind of modes then are excited
can only be answered by a fully time-dependent calculation.
Furthermore, Fourier analysis is not able to describe the effect of
the so called mode conversion. Mode conversion means that due
to a nonlinear coupling between different modes, energy may
be transferred from one mode to another. For the chromospheric
and coronal physics of particular interest is the mechanism that
leads to a conversion of transversal and torsional wave energy
to longitudinal wave energy because of its great importance
for shock heating: longitudinal waves steepen on their upward
propagation and eventually form shocks which easily dissipate
the wave energy.

For the study of processes which are beyond analytical treat-
ment such as the nonlinear mode coupling, wave damping and
shock formation, one relies upon numerical models. Our present
work is a natural extension of the Fourier approach dealing with
the nonlinear wave propagation and should be understood as a
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Table 2. Summary of the calculated cases.

β Bz,0 ρ0 p0 cA tend
[G] [10−8 g/cm3] [104 dyn/cm2] [km/s] [s]

0.1 1632 1.77 1.06 34.7 55.3
0.5 1400 6.50 3.90 15.7 62.4
1 1214 9.75 5.86 11 84.7
2 991 13.0 7.81 7.8 115.0
5 700 16.3 9.76 4.9 171.0

10 516 17.7 10.6 3.5 223.0

pioneer work in numerical modeling of this complex subject.
Nonlinearities are automatically included by solving the full set
of MHD equations (5)-(14). Because of the immense compu-
tational effort of 3D calculations, however, not all situations
which may be of interest can be addressed at the present time.
Our work is rather focused on a discussion of the wave struc-
ture, the efficiency of transverse-longitudinal mode conversion,
and an estimation of the tube damping rate by leakage into the
environment.

Unfortunately, there is no well developed theory which
could serve as comparison for our calculations. From a mathe-
matical point of view, it makes little sense to relate the numerical
results to those obtained by previous Fourier analyses. However,
it may be fruitful to point out the differences arising from the
forced excitation and the nonlinearities in the dynamical evolu-
tion.

4. Results

4.1. The initial model

For our initial model we recall, that the effects of stratification
have been ignored. The external values of the gas density and
pressure are chosen to be ρe = 1.95 · 10−7 g/cm3 and pe =
1.17 · 105 dyn/cm2, respectively. These are values at the optical
depth τ5000 = 1 taken from Vernazza et al. (1981). Since the gas
is assumed to be isothermal initially, the external and internal
sound speeds are the same with cS = 10 km/s.

The initial radius of the flux tube is R0 = 50 km in all
calculations. Tubes of different magnetic field strength are con-
sidered. The ratio of the internal gas pressure to the magnetic
pressure, the plasma β, is defined by β = p0/(B2

z,0/8π). In our
work, β is varied from 0.1 (magnetic pressure dominates) to 10
(gas pressure dominates). From the condition of pressure bal-
ance (Eq. (1)) and from Eq. (2), the internal values p0 and ρ0 are
derived. A summary of all calculated models is given in Table
2 including the initial physical state of the tubes (β, ρ0, p0), the
Alfvén speeds cA, and the stopping times of the calculations
tend.

It remains to specify the characteristic properties of the per-
turbation. For all cases summarized above, we take a velocity
amplitude of v̂ = 2 km/s and a wave period of P = 50 s. v̂ de-
fines the energy flux introduced into the tube. The energy fluxes
of the order 108 to 109 erg cm−2 s−1 (depending upon the phys-
ical state of the tube) are comparable to those which have been
computed for transverse tube waves generated by the turbulent

motions in the solar convection zone (Huang et al. 1995, note
that their values should be corrected upwards by roughly a factor
of 3 as discussed by Ulmschneider & Musielak 1997).

4.2. The external waves

Figs. 2 and 3 show snapshots of the excited motions for a tube
with plasma β = 1. The full computational domain is shown
(recall, that there is much more detailed information available
for the inner parts of the physical domain than Figs. 2 and 3
indicate, this internal structure is discussed below). The snap-
shots show the velocity field at time tend = 84.7 s (see Table 2).
Fig. 2 refers to a horizontal plane at height z = 160 km, while
Fig. 3 shows a vertical plane through the tube axis in swaying
direction given by y = 0. At least two different types of waves
can be distinguished: a predominantly transversal internal body
wave, which propagates upwards along the tube and an external
wave (indicated by dots) which propagates into the surrounding
medium. For the sake of completeness, we remark that there is
a third kind of wave present but not emphasized in the figures,
namely a surface wave which is confined to the flux tube bound-
ary. A single contour line defined by either B(x, y) = Bz,0/2
(Fig. 2) orB(x, z) = Bz,0/2 (Fig. 3) is overlaid in both figures to
visualize the tube boundary. Similar definitions for tube bound-
aries will be used later in the other figures without mentioning
it explicitly. We now discuss the external wave in more detail
and later in Section 4.4 turn to the internal dynamics of the flux
tube.

Since the surrounding medium is assumed to be nonmag-
netic, the external wave is a pure sound wave where the relevant
phase speed is given by the sound speed cS . The external ‘acous-
tic radiation field’ shows a degree of anisotropy in space (cf. Fig.
2) which is due to the preferred direction of the velocity per-
turbation. The appearance of the external acoustic field may be
thought of as a superposition of isotropically propagating ele-
mentary sound waves excited by each surface element of the
flux tube. Note, that external to the tube there is no direct exci-
tation by the perturbation at the lower z-boundary. The induced
pressure fluctuations are seen to be largest where the gas is com-
pressed most strongly by the tube boundary. This is expected to
be the case in the direction of the perturbation, leading to the
asymmetry seen in Fig. 2.

From a linear Fourier analysis, the criterion for the existence
of an external oscillatory mode has been found to be cph > cS
i.e. the phase speed cph of the internal mode exceeds the (exter-
nal) sound speed cS (Spruit 1982). Actually, the phase speeds
of our tube waves are found to be less than cS (cf. Table 3). Fol-
lowing Spruit’s argument, the external wave ought to be evanes-
cent in contradiction to the results of our nonlinear simulation.
Clearly, his analysis is only valid for small-amplitude pertur-
bations far away from any switch-on phase. In addition, the
derivation of the above criterion has been carried out for the
marginal limit of vanishing damping rate of the tube (i.e. the
fraction of energy lost to the surroundings tends to zero) which
correctly describes only the idealized situation of an infinitesi-
mal thin flux tube in his analysis. If a significant transfer of tube
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Fig. 2. Snapshot of the horizontal velocity field in the plane z = 160
km (vmax = 0.55 km/s). The flux tube boundary is indicated (drawn).
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Fig. 3. Snapshot of the vertical velocity field in the plane y = 0
(vmax = 0.80 km/s). The flux tube boundary is indicated (drawn).

energy to the surroundings is expected, however, the criterion
may break down. This is because in general, the damping rate
itself enters the dispersion relation through the imaginary part
of the (tube) wave frequency ω which was not considered by
Spruit. As will be shown later, damping rates up to 0.43 are
obtained (depending on β) which means that almost half of the
total wave energy is used to feed the external mode.

Fig. 4 shows the variation of vx, Bx, ρ, and p in a 1D cut
along the x-axis in the vertical plane going through the tube
axis, y = 0, at height z = 160 km. Here the external velocity
(vx ≈ 0.02 km/s), which is typical for the external velocity
amplitude v̂sound, is seen to be less than the internal velocity
amplitude (vx ≈ 0.4 km/s) by a factor of about 20. For the
relative fluctuations of the external gas density and pressure,
we find within an order of magnitude δρ/ρ = δp/p ≈ 10−3.
These values have to be compared with the fluctuations occur-
ring inside the tube, namely δρ/ρ = δp/p ≈ 10−2. Although
the external wave energy density is shown to be small, the total

wave energy stored in the external field is not. This is because
the outside medium represents a much larger space than the
tube itself. As already mentioned, the energy carried away by
the external wave originates from the tube motions. To what
extent internal waves are influenced by this damping process
thus depends on the amount of energy leakage discussed in a
subsequent section below.

Dependence on β

Our numerical results show that there always exists a propagat-
ing external wave for the β-range (0.1 to 10) considered here.
The main difference is in the amplitude of the fluctuations. We
found it to decrease with increasing β. This may be explained in
terms of the ‘relative compressibility’ of the external medium.
A quantity appropriate to describe this term is given by the ra-
tio of the Alfvén speed to the (external) sound speed, cA/cS .
It expresses the fact that the external gas (characterized by cS)
is the more compressed the more resistance the swaying tube
puts up. A high resistance corresponds to a high magnetic field
strength inside the tube (low β or high cA) which means that
the tube is more ‘rigid’ pushing the outer gas harder. From this
point of view, the external gas is expected to be less perturbed
for increasing β which results in a lower v̂sound.

4.3. Damping rates by leakage

In order to investigate the leakage of energy from the flux tube
we have to list carefully the relevant energies inside and outside
the tube. The total wave energy (internal plus external) is given
by the sum

Etot(t) = Ek(t) + Em(t) + Eth(t), (15)

where Ek = Ek,x + Ek,y + Ek,z , Em, and Eth are the time-
dependent contributions of the total kinetic wave energy, total
magnetic wave energy, and thermal wave energy, respectively.
Let us denote the perturbed quantities in the usual manner by a
prime: ρ′ = ρ− ρ(0), e′ = e− e(0), v′ = v, B′

x = Bx, B′
y = By ,

and B′
z = Bz −B(0)

z , where the superscript (0) refers to unper-
tubed values of the equilibrium state. Expressions for the various
forms of energy valid for arbitrary perturbation amplitudes are:

Ek,x(t) =
1
2

∫
ρv′x

2
dV, (16)

Ek,y(t) =
1
2

∫
ρv′y

2
dV, (17)

Ek,z(t) =
1
2

∫
ρv′z

2
dV, (18)

Em(t) =
1

8π

∫ [
B′
x

2 + B′
y

2 + B2
z − (B(0)

z )2
]
dV, (19)

Eth(t) =
∫

e′dV. (20)
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Fig. 4. One-dimensional cut in swaying direction (y = 0) through the tube axis at height (z = 160 km) showing the variation of ρ (dashed line),
p (dotted line), vx (solid line), and Bx (dash-dotted line) with horizontal position x.

For later use, it is helpful to define time-averaged quantities
according to

〈E〉(t) =
1
t

∫ t

0
E(t′)dt′, (21)

where E stands for any of the wave energies above. Eqs. (16) to
(20) can be written for the internal region of the tube or for the
external medium alone. In the following, the internal energies
are denoted by a superscript ‘i’ and the external quantities by
‘e’. We now define the damping rate by leakage D(t) from the
tube as the ratio of the mean values of the total external wave
energy to the sum of both the total external and internal wave
energies. It is a quantitative measure for the amount of energy
which leaks out of the tube. This ratio can be written as

D(t) =
〈Ee

tot〉
〈Ee

tot〉 + 〈Ei
tot〉

. (22)

This definition also includes that part of the external wave en-
ergy which may be reabsorbed by the tube (see eg. Goossens &
Hollweg 1993, Stenuit et al. 1993). To simplify the notation, the
dependence of the mean quantities on time has been dropped.
For t � P i.e. the time is much larger than the period of the
oscillation, it is intuitively expected that D(t) tends to a con-
stant value D. This is because averaged over many periods, the
switch-on phase of wave excitation has decayed and a steady
state develops with D being dependent only on the physical pa-
rameters (β). However, the condition t� P cannot be reached
in our present numerical setup of the problem and t is limited
by tend which amounts to at most a few periods (cf. Table 2).

We have numerically calculated D(t) using the above for-
mulae. The time evolution is illustrated in Fig. 5 with β as pa-
rameter. Note that after an initial violent phase, the damping rate
tends towards a steady state most prominent for the high β tubes

Fig. 5. Damping rate by leakage D as function of the dimensionless
time t/P for different β (The actual calculated values are indicated by
‘*’ connected by lines).

although the condition t � P is not yet satisfied. If the value
at tend is taken, then D is a monotonically decreasing function
of β. The magnitude of the energy loss varies from D ≈ 0.4
for the β = 0.1 tube (magnetic pressure dominates) to a value
of D ≈ 0.07 for the gas pressure dominated β = 10 tube. For
the low β tubes this is a significant portion of the generated
energy and, therefore, for these cases energy leakage cannot be
ignored in studies of magnetic tube waves. As already indicated,
the reason for the decline in the leakage is the decrease in the
amplitude of the external fluctuations (resulting in a lower total
external wave energy) because the relative compressibility of
the surrounding gas drops.

Xiao (1988) and more recently Huang (1995, 1996) have ex-
plored the (non)linear wave propagation in magnetic slabs. In
their 2-dimensional adiabatic simulations, they have estimated
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Fig. 6. a v-field in the plane y = 0
(vmax = 1.32 km/s), b v-field in the plane
x = −22.7 km (vmax = 0.48 km/s), c v-field
in the plane x = 22.7 km (vmax = 0.33
km/s), and d One-dimensional cuts through
the tube illustrating the z-variation of vx
(solid line: cut through (x, y) = (0, 0)) and
vz (dashed line: cut through
(x, y) = (−22.7, 0) km, dash-dotted line: cut
through (x, y) = (22.7, 0) km, dotted line:
cut through (x, y) = (0, 0) - in this last case,
vz is multiplied by a factor 2).

the damping rate by leakage for transverse perturbations as-
suming an environment with similar thermal properties than we
applied. Huang found rates which are higher than ours by a fac-
tor of ≈ 2 for the β = 1 tube and ≈ 5 for the β = 10 tube.
We explain the discrepancy between our and their results as
due to the geometry of the magnetic structure. The impact of
a slab on the surroundings is much larger than that of a cylin-
drical tube, because the effective area of the tube interacting
with the environment, is smaller. Therefore, slab models are not
very good means to estimate the energy loss of waves prop-
agating along tube-like magnetic structures. In doing so, one
significantly overestimates the energy loss.

4.4. The internal waves

We now consider the motions inside the tube and near its surface
in more detail. As in the discussion of the external wave, we
start with the case β = 1. In Figs. 6, the velocity structure taken

from the subsubgrid is shown in form of 2D vector fields in
different planes parallel to the tube axis. For ease of presentation
we distinguish in the swaying x-direction between the forward
direction (+x) and backward direction (−x). Fig. 6a is a cut
through the tube axis in swaying direction. Figs. 6b and 6c are
cuts parallel to the tube axis and perpendicular to the swaying
direction, 22.7 km backwards and forwards of the tube axis,
respectively. Finally, Fig. 6d shows 1D cuts in vertical direction
illustrating the variation of the componentsvx andvz with height
z taken at fixed points of the cross section.

Although the perturbation is purely transverse, various types
of waves are excited: a transverse body wave, longitudinal body
waves, and a surface wave. Most likely, all types of waves seen
belong to the family of slow waves. Their faster counterparts
are not observed and may be prohibited because of the assumed
isothermal environment or perhaps because they are too weak
to be visible. The absence of fast modes agrees with Fourier
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results obtained for thin flux tubes (Spruit 1982). There, it was
found that fast waves only occur if the tube plasma is cooler
than the surrounding gas. But this is not the case here.

Transverse body wave

The transverse body wave is clearly seen in Fig. 6a as well as in
Figs. 8. Owing to the purely transverse shaking in x-direction
the tube at heights z = 160, 500 km (Figs. 6a, 8b) shows flows
in +x and at heights z = 0, 340 km (Figs. 6a, 8d) flows in −x
across the entire tube cross-section. Due to these flows, Fig. 6a
shows maximum excursions of the tube boundaries in the x-
direction at the heights of z ≈ 60, 220, 400 km. This transverse
body wave can be easily understood as a direct result of the
applied swaying perturbation. Its frequency ω is related to the
oscillation period P . However, in analogy to a damped forced
oscillator, ω is not precisely given by the relation ω = 2π/P ,
but is modified due to the damping rate of the tube. The phase
speed cph of the transverse body wave cannot be given in terms
of a single number because there is no unique phase speed.

From the numerical data, a value of cph ' 7.6 km/s (7.0
km/s, 6.8 km/s) is measured from the wave peaks (nodes,
troughs). For comparison, linear kink-type body modes propa-
gate roughly with a phase speed cT valid for long-wavelength
disturbances i.e. α � 1 (Edwin & Roberts 1983), where cT is
the well-known tube speed given by

cT =
cScA√
c2
S + c2

A

. (23)

More generally, tube waves are dispersive i.e. their phase speeds
depend on the wavelength. For α not too large, dispersive ef-
fects are small (cf. Fig. 3 in Edwin & Roberts 1983). Thus, to
a first approximation one has cph,linear ' cT for the α-regime
considered here. For the β = 1 tube, a value of cT = 7.4 km/s is
derived. This has to be compared with the measured values cph
given above. We attribute the discrepancy between cph and cT
to the nonlinear character of the propagation, to the switch-on
effects and to uncertainties regarding the influence of the forced
excitation. For the latter, note that at time tend the transverse
wave has just propagated for two wavelengths.

Longitudinal waves

As we did not excite it by direct perturbation, the longitudi-
nal wave seen in Figs. 6b and 6c is generated as a consequence
of the transverse motion. This wave, indicated by longitudinal
velocities vz , is clearly seen to be a body wave. It results from a
coupling between the transversal and longitudinal wave modes.
Transverse-longitudinal mode coupling is a universal property
of wave propagation in flux tubes. That is, a transverse wave
is always accompanied by longitudinal motions i.e. part of the
transverse wave energy has been used to feed the longitudinal
mode.

The generation of a longitudinal wave can easily be under-
stood in the thin flux tube limit: The restoring force for horizon-
tal displacements is the magnetic tension force which always
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Fig. 7. Left: Occurrence of a longitudinal mode in thin flux tubes due to
a vertical component of the magnetic tension force. Right: pressure con-
tour lines in the plane y = 0. Contour lines are chosen non-equidistant
to indicate pressure variations inside the flux tube which otherwise
were not visible due to the strong gradient at the surface.

acts in the direction to the local center of curvature of the tube
(Fig. 7, left panel). This force possesses a vertical component
which gives rise to rarefactions and compressions along the
tube. From the figure it is clear that a sausage-type fundamental
longitudinal wave mode is excited with a dominant frequency
twice as large as the frequency ω of the prevailing transverse
wave. The doubling of the frequency is due to the sign rever-
sal of the vertical force component. It changes its sign twice
while the horizontal component does only once in a transverse
wavelength (Ulmschneider et al. 1991).

The prominent longitudinal wave observed in Figs. 6b and
6c, however, is not of the fundamental sausage-type but shows
a non-axisymmetric velocity pattern. Note e.g. that at a height
z = 500 km the backward y-slab (Fig. 6b) shows everywhere
positive vz velocities, and the forward y-slab (Fig. 6c) negative
vz velocities at the same height, while at the tube axis (Fig.
6a) one has longitudinal velocities close to zero. Clearly, this is
not the fundamental longitudinal body wave mode which would
be expected to show similar velocities vz across a given cross-
section.

The non-axisymmetric structure cannot be explained by the
action of magnetic tension forces, responsible for the sausage-
type wave in the case of a thin flux tube. The reason for the
departure from axisymmetry are variations in the total (gas plus
magnetic) pressure ptotal across the tube which in the thin flux
tube approximation are ignored and which become important
and play a major role in our dynamical computations. More pre-
cisely, a gradient in the direction of the perturbation develops
while ∂ptotal/∂y approximately vanishes. Moreover, the gradi-
ent of the gas pressure is found to dominate over the gradient
of the magnetic pressure which has the opposite sign.
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Fig. 8a-e. Velocity structure in slices perpendicular to the tube axis.
The planes z = 75 km (a), z = 163 km (b), z = 250 km (c), z = 338
km (d), and z = 425 km (e) are shown, respectively. The maximum
velocity is given by 0.50 km/s.

We believe that the reason for this behaviour lies in the
inertia of the tube plasma resisting transverse accelerations. This
explanation is supported by the sign of the induced gradient. It is
found to be anticorrelated with the sign of ∂vx/∂t. If ∂vx/∂t >
0, a gradient ∂ptotal/∂x < 0 exists while ∂vx/∂t < 0 involves
∂ptotal/∂x > 0. Thus the variations in ptotal over the tube
cross-section are generated by the transverse motion.

A transverse gradient of the gas- or magnetic pressure, how-
ever, involves a vertical gradient of the same quantity. This can
be seen from Fig. 7 (right panel) which shows the gas pressure
distribution at tend in the vertical plane given by y = 0. From
the shape of the contour lines inside, it is obvious that there are
pressure gradients both in x- and z-directions. This means that
a compressional restoring force operates in addition to the mag-
netic tension force which influences motions in a drastic way:
Longitudinal waves develop on both sides of the tube separated
by the plane x = 0. However, the neighboring waves suffer a
phase difference of ≈ π (see Fig. 6d) which manifests itself in
a non-axisymmetric velocity pattern.

Together, the vertical component of the magnetic tension
force and the induced vertical gradient of the total pressure are
the basic driving mechanisms for the internal longitudinal mode.
Which of the two processes actually predominate, depends upon
their relative strengths and their variation with position across
the tube. There is a fundamental difference between both mecha-
nisms worth to emphasize regarding the frequency of the excited
wave. Mode-coupling due to the magnetic tension force leads to
a frequency 2ω while the inertial pile-up mechanism discussed
above to a dominant frequency ω. We find that the restoring
force due to the inertial compression is by far more powerful,
except near the plane x ≈ 0. A special situation arises there:
The vertical pressure gradients induced by transverse pile-up
are seen to be negligible and longitudinal wave excitation is
exclusively caused by the vertical component of the magnetic
tension force. The expected 2ω-type longitudinal sausage wave
is indeed observed in the numerical computations and can be
seen from Fig. 6d which shows the velocity vz (dotted) at the po-
sition (x, y) = (0, 0) close to the tube axis. Note that compared
to the transverse velocity vx (drawn), vz indicates a doubling of
the frequency.

Surface wave

The surface wave can be best seen from Figs. 6b and 6c where
the velocity vectors are strongly concentrated at the tube bound-
aries. It is also seen in all of the Figs. 8, where it shows itself as a
distinct motion close to the tube boundary. Note that despite of
the shaking purely inx-direction, the velocity has y-components
which change in direction along the z-axis. Moreover, it is seen
in Fig. 6a, as well as by comparing Figs. 6b and 6c, that the sur-
face wave has a phase delay between the forward and backward
sides of the tube. This is also seen in the cross-section (Figs.
8a, 8e). Fig. 8a taken at height z = 75 km, shows an instant
of time, where the tube after considerably swaying in forward
direction at the forward part of the tube has come to rest with
a maximum excursion, while the backward part of the tube be-
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Fig. 9a-d. Similar to Figs. 6 forβ = 10, how-
ever, a vmax = 0.72 km/s, b vmax = 0.48
km/s, and c vmax = 0.40 km/s.

ing delayed, still moves in forward direction. Fig. 8e shows the
same situation at height z = 425 km. In Fig. 6a it is seen that
at the backward side the maximum +x excursion of the tube
boundary is still at z = 60 km, and thus will arrive at the height
displayed in Fig. 8a at a later time. The phase delays thus lead to
different heights of the maximum tube excursions at the forward
and backward sides of the tube.

From these discussions and particularly from Figs. 8 it is
clear that the surface wave is generated by the interaction of the
internal body waves with the tube surface and by the backre-
action of the surrounding compressible medium onto the tube.
The penetration distance of the surface wave at the tube bound-
ary can be estimated from Figs. 6b, 6c and 8. We find roughly a
value of 15 km which is much less than the tube radius. Outside
this distance, the surface wave energy density is negligible.

Note that the originally cylindrical shape of the tube cross
section changes into a more oval shape with the short diameter
in swaying direction. Note also that the horizontal displacement
of the tube boundary trails vx by≈ π/2 in phase, and that vx = 0
appears where the bending of field lines is strongest (Fig. 6a).
This has already been found by Ulmschneider et al. (1991) for
thin flux tubes.

4.5. Tubes of different magnetic field strength

Up to now we have considered the internal behaviour of a tube
with β = 1. In this section we discuss how this behaviour
changes when the magnetic field strength varies. The way by
which the variation of the magnetic field strength influences the
external medium when a transverse wave is excited, has already
been discussed in Sections 4.2 and 4.3, so we concentrate here
on the internal structure of the tube. Figs. 9 and 10, similar
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Fig. 10a-d. Similar to Figs. 6 for β = 0.1,
however, a vmax = 0.60 km/s (Note that
even larger velocities (up to 3 km/s) occur
at the surface in a height z ≈ 500 km which
were cutted to give a better description of
the internal velocity pattern), b vmax = 0.90
km/s, and c vmax = 0.65 km/s.

to Figs. 6, show wave calculations for the cases β = 10, and
β = 0.1, respectively. In addition, in Figs. 11 we display tube
cross sections at various heights for these calculations. These
figures show major differences in the internal structure.

a. In the β = 10 tube magnetic forces are weak and thus the
phase speed is reduced compared to that of the β = 1 tube.
Since the wave frequency is prescribed as a boundary condition,
one obtains a shorter wavelength (Figs. 9a, 9d). Similarly for
the β = 0.1 tube a longer wavelength is found (see Figs. 10a,
10d). Here a stronger magnetic field leads to a higher phase
speed, resulting in a longer wavelength. Table 3 summarizes
the measured phase speeds together with the computed tube
speed cT . It is seen that the phase speed is essentially equal to
cT for high β. This shows that the phenomena in the tube are
dominated by cT .

b. Similarly to the β = 1 case, the β = 10 tube shows even more
pronounced non-axisymmetric longitudinal flows which in Fig.
9a take on almost the appearance of a sequence of cylindrical
rolls successively rotating clock- and counterclockwise around
a y-axis. This cylindrical roll-like appearance is also seen in the
cross sections, where the originally circular tube cross section
has been modified into an oval shape. These motions imply that
with increasing β the magnetic resistance to circulatory flows
decreases. Note that despite of weaker magnetic field in this
tube there is a distinctly different surface wave behaviour of the
region near the tube boundary. In this boundary region the flow
inside the tube is very similar to that outside the tube.

c. While going from the β = 1 to the β = 10 tube increases the
roll-like appearance, the opposite is true when going to β = 0.1.
Here, the strength of the non-axisymmetric longitudinal body
wave appears to be much reduced. These flows in Figs. 10b
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Fig. 11a-c. Similar to Figs. 8 for
the cases β = 10 (left pannel) and
β = 0.1 (right pannel). Left, the planes
z = 100 km (a), z = 140 km (b), and
z = 180 km (c) are shown, respectively
(vmax = 0.48 km/s). Right, the planes
z = 150 km (a), z = 275 km (b), and
z = 400 km (c) are shown, respectively
(vmax = 0.40 km/s).

and 10c are noticeably smaller particularly at lower height. On
the other hand, the strength of the surface wave appears to be
considerably increased compared to the high β cases. This can
be explained by the fact that the tube becomes more rigid leading
to a harder interaction with the external gas. In addition, the
parts of the wave above z > 380 km indicate a strong switch-
on effect.
d. A comparison of the cross sections of the cases β = 10 and
β = 0.1 shows that the low β tube largely retains its original
circular shape. This is due to the fact that the compressibility of
the tube decreases, which makes low β tubes much more rigid.
Note that this increase in rigidity is also seen in the decreased
amplitude of the excursions of the tube boundary in x-direction
in Fig. 10a as compared to Fig 9a.
e. The complexity of internal motions increases as the domi-
nance of the magnetic field grows. The surface phenomena be-
come relatively more important at the same time. Figs. 9a and

9d show that clear wave patterns are found for the β = 10 tube
while for the β = 0.1 tube the longitudinal wave, for instance,
does not have a simple periodic structure. But here very likely,
the switch-on effect is still at work.
f. A strong surface feature is observed for the β = 0.1 tube at
height ≈ 500 km (see Fig. 10a, but also Figs. 10b, 10c). Here a
strong longitudinal pulse is concentrated near the tube boundary
which propagates upwards with velocities of up to 3 km/s. We
believe that this pulse is the result of the initial violent switch-on
phase. It is expected that for decreasing β due to the decreasing
ratio tend/P the switch-on effects become more pronounced
but also, because the rigidity of the tube is increased.

4.6. The efficiency of mode conversion

We now want to estimate the amount of mode-conversion from
the transverse to the longitudinal mode. This mode conversion
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Table 3. Basic properties of the transverse body wave: phase speeds
(measured), wavelength (calculated using the phase speed measured
for the node and the period P ), thinness parameter α, and tube speed
cT . The case β = 0.1 is missing because cph could not measured. The
external sound speed is cS = 10 km/s.

β cph [km/s] λ [km] α = 2πR0/λ cT [km/s]
peak/node/trough

0.5 8.4/8.0/7.7 400 0.79 8.4
1 7.6/7.0/6.8 350 0.88 7.4
2 6.5/6.1/6.0 305 1.01 6.2
5 4.6/4.7/4.8 235 1.32 4.4

10 3.4/3.4/3.4 170 1.82 3.3

can be treated in a similar manner as the damping rate by leakage
before. A suitable quantity describing the mode conversion is
given by

Mz(t) =
〈Ei

k,z〉
〈Ei

k〉
, (24)

that is, the ratio of the kinetic energy put into vz-motion relative
to the total kinetic energy, both measured inside the tube. We
remark, that it is also possible to define a quantity describing
the amount of kinetic energy stored in internal motions in y-
direction. However, this effect is found to be small compared
with Mz .

Fig. 12 shows Mz as a function of the dimensionless time
t/P with β as a parameter. For β >∼ 1 at tend,Mz is roughly con-
stant, yielding a value of ≈ 0.4. Thus, almost half of the total
kinetic energy is fed into longitudinal motions. Comparable cal-
culations using the thin flux tube approximation provide much
lower conversion rates (Ulmschneider et al. 1991). For β <∼ 1,
Mz increases, reaching a value ≈ 0.9 for the β = 0.1 tube.
However, the low β cases have to be considered with reserva-
tion because first the condition t >> P is not satisfied and
second we suspect that these cases show severe switch-on ef-
fects, where a major fraction of the longitudinal kinetic energy
here comes from the strong surface feature mentioned above.

To demonstrate that for decreasingβ an increasingly amount
of longitudinal mode conversion comes from the region near the
tube boundary, we have devided the tube in an inner cylinder
given by R < 0.8R0 and an outer region 0.8R0 < R < R0.
For both regions, Mz is calculated separately and shown in Fig.
12 for the cases β = 1 (dashed lines) and β = 0.1 (dash-dotted
lines). The results for the inner cylinder are denoted by an ‘i’,
those for the outer region by an ‘o’, respectively. Clearly, mode
conversion in the β = 0.1 tube is dominated by the dynamics
near the boundary while a significant fraction of mode conver-
sion results from the inner part in the case β = 1. This fraction
is even higher for the β = 10 case not shown in Fig. 12.

5. Conclusions

We performed adiabatic time-dependent fully compressible 3D
magnetohydrodynamic computations in a magnetic flux tube,

Fig. 12. Mode conversion Mz as a function of dimensionless time for
different β. Mode conversion for the inner cylinder is marked by ‘i’
and for the outer region labeled by ‘o’. β = 1 cases are shown dashed,
β = 0.1 dash-dotted.

embedded in a nonmagnetic non-gravitational homogenous at-
mosphere. High spatial resolution (permitting ca. 300 grid
points over the cross section of the tube) was obtained by the
application of a multiple nested grid strategy. Tubes of various
field strengths Bz , where the plasma β = 8πp/B2

z varied from
0.1 to 10, were investigated. We considered purely transverse
excitation by shaking sinusoidally the tube and its surroundings
at the bottom of the atmosphere. Similar velocity amplitudes
(v̂ = 2 km/s) and shaking periods (P = 50 s) were used in
all computations. From our calculations we draw the following
conclusions.

1. In all cases (β = 0.1 to 10) the swaying tube generated ex-
ternal acoustic waves with a characteristic geometrical pattern
resulting from swaying purely in x-direction and from the fact
that the external acoustic wave is excited only by the tube and
not by the external boundary condition. Low β tubes, because of
their greater rigidity cause greater external velocity fluctuations.

2. Inside the tube various kinds of longitudinal body waves and
a transverse body wave as well as surface waves were found.
While a weak sausage-type body wave of twice the frequency of
the transverse body wave was detected, a very important result of
our computations is the appearance of a non-axisymmetric lon-
gitudinal body wave which does not derive from magnetic ten-
sion forces, but is due to an inertial pile-up effect inside the tube
produced by the transverse motions. This non-axisymmetric
longitudinal wave was most pronounced for the β = 10 tube,
where the flow pattern looked like horizontally oriented rolls
with an axis perpendicular to the swaying direction.

3. The generated surface waves were more dominant in low
β tubes, where the tubes are more rigid and interacted more
strongly with the external medium.

4. The leakage rates from the flux tube into the external medium
range from 0.07 for the β = 10 to 0.43 for the β = 0.1 tube.
This shows that leakage is an important process particularly for
low β tubes and should not be ignored in studies of transverse
wave propagation.
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5. For lowβ tubes the switch-on effects where more pronounced
and resulted in surface wave pulses which are caused by the
increased rigidity of these tubes.
6. Transverse-longitudinal mode coupling are found to be a very
efficient process. Conversion rates up to 90% are found. Thus,
mode conversion may be an important mechanism for the heat-
ing of flux tubes and consequently for the chromospheric and
coronal heating (Hollweg 1982, Sterling & Hollweg 1988). For
low β tubes essentially the entire mode conversion energy goes
into the surface wave.
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