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Abstract. The dynamical response of magnetic flux tubes due
to local transverse periodic perturbations is investigated by nu-
merical means. Our aim was to check the applicability of the thin
flux tube approximation for vertically oriented flux tubes with
moderate magnetic field strength (plasma β = 1) and diameters
100 km, 50 km and 25 km immersed in an otherwise homoge-
neous nonmagnetic environment. All tubes has been subject to
the same driver. To resolve the flux tube in a 2000×2000×1000
km3 computational domain, a multiple nested grid version of a
3D MHD code is used.

We find that a description as ideally thin flux tube becomes
more and more questionable if the diameter of the tube de-
creases. For the thinnest tube we found eg. an almost complete
split up into a fork–like geometry with two counterrotating legs.
This can be explained by a more rigorous interaction of the tube
with the ambient medium: Geometrically thinner flux tubes are
less inert than corresponding thick tubes and therefore expe-
rience stronger backreaction forces because thinner tubes are
easier to displace horizontally. As a consequence of this, their
cross sections are significantly deformed contradictory to the
assumptions made in the thin flux tube approximation. The en-
ergy loss from the internal tube motions to the surroundings by
acoustic radiation is found to be anticorrelated with the tube
radius ie. thinner tubes loose more wave energy than thicker
ones.
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1. Introduction

Due to its mathematical simplicity, the so called thin (or slen-
der) flux tube approximation refered shortly as TFA has gained
a great popularity in modelling the dynamics of magnetic flux
concentrations. In this approximation, flux tubes are thought of
as essentially one–dimensional objects which do not possess
much structure perpendicular to their characterizing axis. In a
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very simple picture, a thin flux tube may be considered as a
sequence of individual mass elements which mutually commu-
nicate via hydrodynamic forces and the Lorentz force.

What are the criteria that a flux tube can be regarded as thin?
Intuitively, one would propose geometrically thin flux tubes as
promising candidates. By definition, in these tubes the local
radius R0 is much smaller than the length scale L0 at which
variations along the tube occur. L0 may be given by the scale–
height of the temperature or pressure profile if the flux tube
is embedded in a stratified atmosphere, or by the wavelength
of a disturbance propagating along the flux tube. Defining a
thickness parameter α = R0/L0, the criterion for a thin flux
tube may be formulated as α� 1.

Generally, α� 1 is not a sufficient condition for the appli-
cability of the TFA. This can be seen as follows. The fundamen-
tal variables ρ, p, e, v and B (notation as usual) may be expanded
into a Taylor series perpendicular to the tube axis according to

f (s, x, y) = f0(s) + xf10(s) + yf01(s) +
1
2
x2f20(s)

+
1
2
y2f02(s) + xyf11(s) + ... (1)

Here, f stands for any of the variables just mentioned. f0 de-
notes its value on the tube axis. fij(s) = ∂i+jf/∂xi∂yj |axis and
higher–order derivatives are indicated by dots. The tube axis is
characterized by the arc–length s measured from an arbitrary
starting point s0. (x, y) are Cartesian coordinates perpendicu-
lar to the axis in a local frame given by the tangential, nor-
mal, and binormal unit vectors of the curve (Fig. 1). Of course,
the uniqueness of the coordinate set (s, x, y) should be guaran-
teed excluding eg. the possibility of reconnection phenomena in
which flux tube sections with opposite field orientation collide.

With the help of Eq. (1), the very complicated 3D problem
can be reduced to the 1D problem in the TFA. The fundamental
variables are then replaced by its ‘moments’ f0(s) and fij(s) up
to certain but small order i+j. If the expansion written down for
ρ, p, e, v and B is inserted into the MHD equations (transformed
to the coordinates (s, x, y)), one formally ends up with a set of
equations for the respective order of approximation. Thus, the
problem (the environment of the flux tube is excluded for the
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Fig. 1. The local frame of reference at arc–length s measured from a
starting point s0.

moment) no longer depends on all space coordinates but only
on the parameter s at the expense of an increase in the number
of variables, namely the moments. Of course, this procedure
only makes sense if higher–order terms in the expansion can be
neglected.

The TFA supposes that cross–sectional variations are small
ie. R0|∇⊥f | � |f0|, where ∇⊥ is the transverse part of the
gradient. The longitudinal length scale L0 may be defined by
L0 = |f0/∂sf |, where ∂s denotes the derivative in direction of
the tube axis. Eliminating f0 yields as sufficient condition for
the applicability of the TFA:

R0

L0

∣∣∣∣∇⊥f∂sf

∣∣∣∣� 1. (2)

Defining δ = |∇⊥f |/|∂sf |, this inequality can be written as
αδ � 1. If δ <∼ 1, the condition simply reduces to α � 1.
If, however, δ � 1 ie. |∇⊥f | � |∂sf |, then α � 1 is not
sufficient for the application of the TFA. Thus, geometrically
thin flux tubes (α� 1) may not be thin in the sense of the TFA
violating condition (2). On the other hand, thick tubes (α>∼ 1)
may be describable within this theory, if δ � 1 ie. transverse
gradients are relatively small compared to longitudinal ones.

The TFA concept has only been worked out in cases with
various degrees of simplifications. This is because first the gen-
eral transformation of the MHD equations to the new variables
(s, x, y) is not easy to perform: Inertial forces appropriate for
the local coordinate system have to be added and the time–
dependence of the arbitrarily chosen s0, fixed eg. at a fluid el-
ement, must be described. Second, the resulting moment equa-
tions are not closed because eg. of the artificial exclusion of
the environment. One needs a closure relation in addition. Usu-
ally, the moment equations are complemented by a prescribed

time–independent external pressure function which relates the
behaviour of the tube plasma to that of the ambient gas by de-
manding instantaneous pressure equilibrium at the tube surface.

The governing equations of the so–called traditional
(zeroth–order) thin flux tube approximation (TTFA) are de-
rived formally by taking the limit αδ −→ 0. This corresponds
to the simple picture of stacked mass elements mentioned ear-
lier. The TTFA has been applied in numerous investigations to
study the nonlinear propagation of transverse waves (Roberts
& Webb 1978, Spruit 1981ab, Choudhuri 1990, Ulmschneider
et al. 1991, Cheng 1992, Schramkowski & Achterberg 1993,
Fan et al. 1994, Moreno–Insertis et al. 1996, Osin et al. 1997).
Actually, it has been used up to geometrical thickness α ≈ 1
and more. In the way the TTFA is constructed mathematically,
however, their application is dubious in this case. Indeed, in
Ziegler & Ulmschneider (1997) hereafter refered to as Paper I
it has been shown that the TTFA does not represent an accurate
method for ‘thick’ tubes, if excited by transverse oscillations.
Eg., thick tubes develop a nonaxisymmetric longitudinal wave–
like motion not explainable within the framework of the TTFA.

For the special situation of vertically oriented axisymmetric
flux tubes, Ferriz–Mas et al. (1989) have extended the TFA up
to second order in the expansion. In this case, cylindrical Eu-
lerian coordinates (z,R) can be used which due to symmetry
properties considerably reduce the complexity because a lot of
moments fij in (1) vanish as shown by Ferriz–Mas & Schüssler
(1989). However, this approach is not able to describe the ex-
citation of transverse waves in which we are interested, but is
restricted to deal with longitudinal excitation.

The basic assumptions involved in the TFA are twofold. The
first point is that cross–sectional variations are considered small
so that higher–order moments can be neglected in the dynamical
equations. The second important point concerns the interaction
between the tube and the ambient medium not discussed so far.
The assumption of pressure equilibrium at the tube surface may
not be sufficient if the flux tube moves in a gaseous medium.
Then, an external force taking into account the backreaction
of the ambient medium has to be added. However, it is still
not clarified with final certainty, how such a force term has to
be incorperated even in the TTFA equations. In any case, it is
assumed that the backreaction of the environment is moderate so
that the cross section of the tube does not change significantly,
thus, allowing an expansion of the form (1) with higher–order
moments to be negligible.

It is our intention to shed more light on the applicability of
the TFA for the special case of transversely and periodically
perturbed cylindrical flux tubes viewed as 3D objects. We start
our numerical investigation with a geometrically thick flux tube
and move into the regime of geometrically thin tubes holding
fixed the thermal and magnetic properties. In Paper I, we have
studied the excitation of MHD waves in flux tubes of fixed di-
mension but with different magnetic field strength. We are now
interested in the question to what extend the dynamics of wave
propagation is influenced by the interaction between the flux
tube and its ambient medium and whether a treatment within
the theory of thin flux tubes can be justified or not. For this pur-
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Fig. 2. Representation of the nesting of grids used in the numerical simulations. The 3–(4–,5–)level grid system is applied in the C50 (C25, C12.5)
case. The flux tube cross section is illustrated as shaded area.

Table 1. Properties of the nested grid system.

level domain [km] # grid points resolution [km]
basic −1000 < x, y < 1000 0 < z < 1000 100× 100× 50 20

1 −150 < x, y < 150 0 < z < 1000 30× 30× 100 10
2 −75 < x, y < 75 0 < z < 1000 30× 30× 200 5
3 −37.5 < x, y < 37.5 0 < z < 1000 30× 30× 400 2.5
4 −18.75 < x, y < 18.75 0 < z < 1000 30× 30× 800 0.125

pose a multiple nested–grid 3D MHD computer code is used
which takes into account both the flux tube and the surrounding
medium.

As our fully time–dependent 3D simulations are extremely
demanding in computer time our present work discusses only
cases with moderate magnetic field strength, the so called β = 1
cases. Hereβ = 8πp/B2 is the plasmaβ. Our conclusions on the
applicability of the TFA given in Sect. 4 are therefore restricted
to this case and may not apply to cases with β � 1 or β � 1.

2. Numerical model

The general equations governing adiabatic flow in a perfectly
conducting, inviscid gas permeated by a magnetic field are given
by:

∂ρ

∂t
+∇(ρv) = 0, (3)

∂ (ρv)
∂t

+∇ (ρv ⊗ v) = −∇p−∇
(

B2

8π

)
+

1
4π

(B · ∇) B, (4)

∂e

∂t
+∇(ev) = −p∇v, (5)

∂B
∂t

= ∇× (v × B), (6)

p = (γ − 1)e (7)

∇ · B = 0. (8)

In the above equations ρ, p, e, v, and B are the gas density,
pressure, thermal energy density, velocity, and magnetic field,
respectively. γ is the ratio of specific heats taken as 5/3. Note
that the equation of motion (Eq. (4)) is written in a compact form

where v ⊗ v denotes a dyad. These equations do not take into
account physical processes such as radiation transfer, heat con-
duction or magnetic diffusivity which all may be more or less
important in modelling the dynamics of magnetic structures in
atmospheres of stars, galactic disks or accretion disks. In addi-
tion, gravity is ignored. Instead, a flux tube model is constructed
analogous to that in Paper I suitable for the problem of wave
propagation in a uniform cylinder of magnetic field embedded
in a uniform nonmagnetic background medium. The tube axis
is oriented in z–direction, refered to as vertical direction subse-
quently. The variables inside and outside the tube are denoted
by subscripts ‘0’ and ‘e’, respectively.

The horizontal component of the equation of motion (with
v = 0, ∂/∂t ≡ 0) leads to

pe = p0 +
B2
z,0

8π
(9)

which balances the external pressure pe and the total (gas +
magnetic) pressure inside the tube. Introducing β, Eq. (9) can
also be expressed in the form

p0

pe
=

(
1 +

1
β

)−1

(10)

which relates the ratio of gas pressures with the plasma β. The
surrounding gas and tube plasma is taken to be isothermal ini-
tially ie. pe/ρe = p0/ρ0, so that

ρ0

ρe
=

(
1 +

1
β

)−1

. (11)

Throughout the calculations, we assume β = 1. To have a
concrete situation in mind we specify external values ρe =
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1.95 · 10−7 g/cm3 and pe = 1.17 · 105 dyn/cm2 taken from
model calculations of the solar atmosphere (Vernazza et al.
1981). From Eqs. (10) and (11) the internal gas density and
gas pressure is derived. One obtains ρ0 = 9.75 ·10−8 g/cm3 and
p0 = 5.86 · 104 dyn/cm2. From this the initial magnetic field
strength is Bz,0 = 1214 G.

The equilibrium state constructed this way is perturbed by
a sinusoidal oscillation in vx at the lower z–boundary (z = 0).
Assuming that the whole z = 0 plane is disturbed we write

vx(x, y, z = 0, t) = v̂ sin(2πt/P ) (12)

where v̂ = 2 km/s is the amplitude and P = 75 s is the period
of the disturbance. The periodic driver specified by (12) gives
rise to MHD waves propagating along the flux tube. The lower
z–boundary is otherwise assumed to be a rigid wall for the flow,
ie. vz = 0 and the derivative of ρ, e, vy , and Bz with respect to
z vanishes. The transverse components Bx, By of the magnetic
field change its sign by reflection at z = 0. Note that we do
not explicitely specify the magnetic field as a function of time
similar to vx. Thus, the magnetic bundle does not follow the
attachedx–motion and the frozen–in condition is violated at this
boundary. Nevertheless, the computational domain excluding
the plane z = 0 remains divergence free due to the numerical
scheme used. In particular, there is no divergence transported
into it. Instead, the boundary conditions are in such a way that the
tube cross section at z = 0 is identical to that just above which
is subject to the backreaction of the surrounding gas. We find
this type of boundary condition more relevant for our problem
than keeping the cross section circular at z = 0 throughout the
evolution in conjunction with the frozen–in assumption. Latter
would mean that the layer z = 0 is artificially unaffected by the
outer medium which we believe to be rather unrealistic. The best
choice of boundary conditions would be to deal with a model
of the excitation itself which is, however, beyond the scope of
this paper.

The prescribed velocity vx cannot be compared with the
velocity at which mass elements move as a whole in a classical
thin flux tube. So, v̂ does not define the velocity amplitude of
the displaced mass elements. In our case, vx just excites internal
body waves with an a priori unknown amplitude.

At the top (z = 1000), a simple outflow boundary condi-
tion is adopted. For the lateral boundaries of the basic domain,
periodic boundary conditions are used.

Like in Paper I, we apply a nested grid strategy to take care
of both an ‘accurate’ description of the internal motions of the
tube as well as of the propagation of an external acoustic wave
generated by the tube/environment interaction. Here, ‘accurate’
means that the diameter of the tube will be represented by about
20 grid points independent of the tube’s radius. To retain the
numerical resolution inside the tube for a fixed size of the basic
computational domain this means that even more nested grids
must come in use when the radius is decreased. We performed
calculations for three different radii, namely R0 = 50, 25, 12.5
km (refered in the following as C50, C25, and C12.5 case). For
this a 3–,4–, or 5–level grid system is used, respectively. Per-
pendicular to the tube axis, the nesting of grids looks as shown

in Fig. 2. In all cases, the basic physical domain (on the coars-
est grid) is given by −1000 < x, y < 1000 and 0 < z < 1000
measured in units of km. Some properties of each grid level are
summarized in Table 1.

The set of Eqs. (3)–(8) is solved numerically with the code
NIRVANA – a finite difference multiple nested grid code for
3D MHD. It is based on the method proposed by Stone & Nor-
man (1992ab) but in addition to that has implemented a multiple
nested grid algorithm to allow for a grid refinement. The basics
of the refinement technique can be found in Berger & Oliger
(1984) and Berger & Colella (1989). Its use in radiation hydro-
dynamical problems is discussed by Yorke & Kaisig (1995), and
in magnetohydrodynamical flows by Ziegler & Yorke (1997).

Finally, some remarks about the computational effort of this
investigation: Especially, the 5–level grid calculation is expen-
sive in CPU time. About 130 h were necessary on a Cray su-
percomputer for the run C12.5. Nevertheless, this time is much
less than the time required for a comparable single grid calcu-
lation assuming the same spatial resolution as the finest grid in
our nested grid calculation. In the single grid case an enormous
number of grid points, namely 2 · 109, and a factor ≈ 2000
more CPU time would be needed to do such a calculation. This
is by far beyond what is at present possible even with the best
computers.

3. Numerical calculations

We performed numerical calculations for different flux tube
radii. In all calculations, the thermal properties of the flux tube
and those of its environment were kept fixed. The calculations
can then be characterized by a single parameter eg. the thickness
parameterα. Characteristic wave speeds cS and cA occurring in
the problem are the same in all cases. To estimate the wavelength
λ of the excited MHD waves, we take the tube speed

cT =
cScA√
c2
S + c2

A

(13)

as approximate phase velocity (at least for longitudinal tube
waves; Paper I, Edwin & Roberts 1983), where the sound speed
cS is given by cS = (γp0/ρ0)1/2 = 10 km/s and the Alfvén
speed cA = Bz,0/(4πρ0)−1/2 = 11 km/s. Thus, one expects with
P = 75 s a wavelength of 550 km. Three different flux tubes
with thickness α = (2π/λ)R0 ' 0.6, 0.3, 0.15 corresponding
to the casesC50,C25, andC12.5 mentioned earlier are discussed.
We start the numerical experiments with a geometrically thick
flux tube (α ' 0.6) and move into the regime of geometrically
thin tubes (α ' 0.15). Our discussion is focused on the resulting
geometrical structure of the flux tube and the excited wave pat-
tern inside and outside the tube. Special attention is drawn to the
tube/environment interaction which may lead to cross–sectional
deformations of the flux tube. If these deformations turn out to
be strong, the application of the TFA would become senseless
for these cases. We mention in this context that the TFA has of-
ten been applied in the literature for wave propagation studies in
the solar atmosphere under very similar conditions as regarded
here.
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3.1. Flux tube dynamics

3.1.1. Case C50

Similar to the results obtained in Paper I, we find an external
sound wave which has an appearance in space characteristic
for the transverse excitation. This external acoustic field is a
consequence of the interaction between the tube surface and
the surrounding gas. The latter is compressed by displacements
of the tube which give rise to fluctuations. These fluctuations
propagate into the nonmagnetic environment carrying various
amounts of wave energy. Because there is no direct excitation of
sound waves from the periodic driver, the energy fed into the ex-
ternal acoustic field is taken solely from the tube motions. This
inevitably leads to a damping of internal waves due to energy
conservation. The amount of energy loss from the tube depends
on the strength of interaction. Leakage rates by ‘radiation damp-
ing’ are quantitatively estimated as a function of the thickness
parameter in a separate section.

A snapshot of the evolution is presented in Fig. 3 given
at a time t = 102 s. At this time, the footpoint disturbance
has travelled about 1.5 wavelength along the tube. Only slices
through the computational domain of the innermost grid (level–
2 grid in Table 1) are presented. The left panel shows the plane
y = 0 while on the right panel several cross sections are given at
different heights. In both figures, the projected velocity fields are
shown and a single (solid) contour line defined by |B| = Bz,0/2
is displayed to visualize the flux tube surface. Generally, the
evolution and excited motions are quite similar to the β = 1
case of Paper I. The only difference arises from the period of
oscillation which here was chosen as 75 s compared to 50 s in
Paper I. This leads to waves with longer wavelength.

We now summarize the basic results. A well–defined trans-
verse wave propagates upwards as clearly seen in the plane
y = 0 but also in the sequence of cross–sections. This wave
is confined to the interior of the flux tube, thus representing a
body wave. The wavelength can be estimated from Fig. 3 to be
about λ ≈ 500 km consistent with our estimate given above.
The wavelength can also be measured from Fig. 4 which shows
the z–profile of the vx–component (solid line), averaged over
the tube cross section. In addition to the transverse wave which
directly results from the footpoint perturbation, a longitudinal
internal wave–like motion is observed. It can be identified in
Fig. 3 by recognizing the variation of the vz–component with
height. The corresponding averaged quantity is shown in Fig. 5.
Note that for a fixed height, vz changes its sign when going
from the (−x) side (backward side) to the (+x) side (forward
side) of the tube which is the manifestation of a nonaxisym-
metric velocity structure in (x, z)–planes. We suggested in Pa-
per I, that this nonaxisymmetric appearance probably results
from the resistance of the tube plasma to transverse acceler-
ations: A gradient in total pressure across the tube develops
triggered by the transverse motion and gives rise to compres-
sions and rarefactions in z–direction. There is a phase difference
of approximately π between both sides. A compression of the
backward side corresponds then to a rarefaction on the forward
side and vice versa. This nonaxisymmetric velocity pattern can-

Fig. 3. Slices through the computational domain: the plane y = 0 (left)
and a sequence of cross sections perpendicular to the z–axis (right) is
shown. vmax = 1.20 km/s (0.46 km/s) for the left (right) plot.
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Fig. 4. z–profile of the transverse velocity component vx averaged over
the tube cross section. The cases C50 (solid), C25 (dashed), and C12.5

(dash–dotted) are shown.

not be explained within the theory for ideally thin tubes. Its a
phenomenon due to the true 3D structure of the magnetic tube
suppressed in thin flux tubes. Note the turnover in the velocity
profile at (x, z) ≈ (50, 650) km which is likely to be an initial
switch–on effect.

A quite distinctive motion is observed in a narrow layer of
≈ 15 km around the tube boundary which separates the inter-
nal body wave from the flow outside (see the cross sections in
Fig. 3). In particular, note in the displayed cross–section the ex-
istence of two pairs of vortices at z = 400 km rotating clockwise
and counterclockwise around the z–axis. The boundary layer
flow may be interpreted as a transverse surface wave propagat-
ing in positive z–direction and accompanying the internal body
waves.

The interaction of the flux tube with the environment leads
to a small but visible distortion of its cross section. The mag-
netic field bundle is compressed in x–direction (the direction of
perturbation) giving the appearance of a more oval shape most
prominent at lower heights.

3.1.2. Case C25

Fig. 6 displays the velocity structure excited in a flux tube with
radius R0 = 25 km half that of case C50. The time of evolution
is t = 99 s. The figures shown correspond to those in Fig. 3.
Compared to the previous case, the cross section of the tube
is much more deformed which indicates a stronger interaction
between the flux tube and the ambient medium. Recall that the
z = 0 plane in all three tube cases is excited with the same
velocity amplitude. This constitutes a much larger excitation
relative to the tube diameter here. The stronger interaction is also
perceptible in the energy leakage rate which is a factor ≈ 2.5
higher than in the C50 case (see Sect. 4.2 for more detail). Up to
height z ≈ 300 km, the tube is considerably compressed in the
direction of perturbation and somewhat stretched perpendicular
to it. For the ratio of major to minor axis of the magnetic bundle
one gets a value of≈ 2. However, compared to the thicker tube,

Fig. 5. Same as Fig. 4, however, for the vertical velocity component
vz .

surface phenomena are less striking giving the appearance of
a more continuous velocity transition at the tube surface (cf.
Fig. 3 and 6 at z = 400 km).

Two types of external forces act on the flux tube which
are completely different in physical nature. These are the drag
force and ‘acceleration force’. The drag force is a viscous force
depending on the tube velocity relative to the external fluid. Be-
cause we are dealing with inviscid fluids, the drag force has been
ignored in our calculations. Thus, the feedback of the external
medium is exclusively due to acceleration reaction.

In contrast to the drag force, the acceleration force only oc-
curs when the tube is accelerated. This kind of backreaction
may be understood as a result of an asymmetry in the pressure
distribution developing between the backward and forward side
during the acceleration. In case of a circular cross section and
assumed external potential flow the effect can be described in
terms of an increase of inertia of the tube as was first introduced
by Spruit (1981a) in the TFA theory. However, as shown here in
our β = 1 case, the assumptions of a circular cross section and
potential flow are too restrictive so that concerning our calcu-
lations such a simple description would not be justified under
general circumstances.

At first sight it looks surprising that the geometrically thin-
ner tube suffers larger deviations from the ideally thin flux tube
state than the thicker one does. This means that geometrically
thin tubes are not necessarily thin in the sense of the TFA theory
which has often been assumed to be trivially true. We attribute
this contradictory result to the fact that thinner tubes are less
inert than thicker ones. Since the driving force is identical for
all our flux tube models, cross–sectional mass elements of the
thinner tube experience a higher acceleration. Thus, the backre-
action force of the environment due to ‘acceleration reaction’ is
enhanced in thinner tubes. A very important point noteworthy to
recall here is that we used the same numerical resolution in all
cases due to the way our experiments has been set up. Therefore,
this result is definitely not caused by non–comparable numerical
representations.

The excited wave pattern looks similar to that of the previ-
ous case but the velocity structure is more complex. Because
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of the deformations, the tube plasma moving eg. in positive
x–direction is deflected giving rise to a significant internal vy–
component which was less important in the case C50. As a con-
sequence of the deviations from cylindrical geometry, the wave
properties, eg. the phase velocity, are modified relative to those
in C50 (and even more so relative to the modes propagating in a
circular cylinder). This is due to the fact that the tube displaces
now a larger external volume relative to the internal volume.

3.1.3. Case C12.5

Our third calculated flux tube model with a tube radius of
R0 = 12.5 km which corresponds to a thickness parameter
α ' 0.15 shows the most spectacular behaviour. Like in the
other cases, the structure of the velocity and the tube bound-
ary is monitored (Fig. 7). We show slices on the level–3 grid
(x = 0 plane) and level–4 grid (cross sections) taken at a time
t = 96 s. Unfortunately, these two–dimensional plots give only
a poor impression of the true 3D structure. When viewed in
3D, the topology of the magnetic field of the flux tube might be
imagined as a tree trunk which is almost split at lower heights.

On average, we can still identify a transverse body wave.
Its velocity amplitude, however, is significantly damped when
propagating upwards (see Fig. 4). The horizontal motion associ-
ated with the body wave leads to the appearance of a plume of ex-
ternal material into the tube which creates strong displacement
flows in the tube. At the bottle–neck of the tube (z ≈ 200−300
km), where an almost complete separation into two counterro-
tating legs occurs, strong vertical velocities arise. Magnitudes
of these velocities are found to be twice as large as for the vx–
component. In Fig. 5, the corresponding averaged vz–profile
shows a clear maximum at this height. Note that vertical veloc-
ities are larger at the forward side of the tube than backwards
which is indicated by the peak in Fig. 5.

Although the flux tube with R0 = 12.5 km is the thinnest
one considered (α smallest), it shows a behaviour at variance to
that of a perfect thin tube. All wave quantities for a given cross
section are far away from a representation by a single space
coordinate s (a curve parameter) like in a thin flux tube. Gra-
dients perpendicular to the tube axis develop which cannot be
neglected compared to those occurring along the axis (see eg.
the velocity structure at z = 400 km). Thus, higher–order mo-
ments in an expansion of the form (1) become important which
invalidate a description within the framework of the TTFA. The
development of transverse gradients obviously is a consequence
of the even more intensified interaction with the surrounding
gas. In the TFA theory it is assumed that this interaction does
not have an influence on the shape at all and, therefore, on the
dynamics of the internal plasma. Here, the interaction process
is found to be of essential importance.

The strong deformations of the cross section are accompa-
nied by a very large loss of tube energy by leakage into the
nonmagnetic environment by radiation of accoustic waves. As
discussed in more detail in the following section more than 75%
of the tube wave energy is fed into the external wave. Conse-
quently, the energy flux carried by the tube body waves is con-

Fig. 6. Same as Fig. 3 for R0 = 25 km, however, vmax = 1.11 km/s
for the left plot respective vmax = 0.65 km/s for the right plot.
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siderably reduced at greater heights which can be seen by the
drastic decay of the velocity amplitude in Fig. 4 (dash–dotted
line).

3.2. Energy leakage

The loss of tube wave energy to the surroundings by acoustic
radiation is seen to be inherently coupled with the strength of
interaction between the flux tube and the ambient medium. A
stronger interaction means high energy losses and vice versa.
We have calculated energy leakage rates (or damping rates) ex-
pressed by D(t) using the formulae given in Paper I. Relevant
wave energies are summed up inside and outside the tube to
define a leakage rate according to

D(t) =
〈Ee

tot〉
〈Ee

tot〉 + 〈Ei
tot〉

(14)

where 〈Ee
tot〉 and 〈Ei

tot〉 denote the total wave energies outside
and inside the tube integrated over time. Defined in this manner,
D(t) quantitatively describes the amount of energy which on
average leaks out of the tube.

For the calculated cases C50, C25, and C12.5, the time evo-
lution of D(t) is illustrated in Fig. 8. After an initial phase of
adjustment, the tube with R0 = 50 km quickly reaches a sta-
tionary state with a leakage rate of D ≈ 0.2. This happens
after t>∼P/2. In the case C25, the leakage rate monotonically
increases up to a maximum value of ≈ 0.75 at t ≈ 0.7P and
then falls down to D ≈ 0.5 at the end of the calculation. Yet,
most probably it has not quit reached its final stationary value
which would be expected for t� P .

The behaviour of the caseC12.5 is quite similar to that ofC25.
However, due to the stronger tube/environment interaction the
thinner tube leaks relatively more energy than the thicker one
does. Moreover, the C12.5 curve falls down less steeply yielding
a final value of D ≈ 0.8. Like in the case C25, stationarity is
not reached. From all this we conclude that energy loss from
the tube to the ambient medium monotonically increases with
decreasing tube diameter. This has to be confronted with the
TFA which totally ignores energy losses. Up to now no attempt
has been made to include radiation damping within the concept
of the TFA, although it may be possible in principle. As seen
here, energy leakage in transversely excited geometrically thin
flux tubes is an important effect which cannot be ignored.

4. Conclusion

Our numerical computations in 3D geometry were performed
to gain more insight in the applicability of the TFA for geo-
metrically thin flux tubes with moderate magnetic field strength
(β = 1) when excited by means of a periodic transverse driver.
The basic findings of these computations are:

1. Within the framework of our model, we conclude that the
TFA would get worse if applied to geometrically thin flux
tubes ie. flux tubes with a small thickness parameter α. For

Fig. 7. Same as Fig. 3 for R0 = 12.5 km, however, vmax = 0.99 km/s
for the left plot respective vmax = 0.74 km/s for the right plot.
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Fig. 8. Energy leakage rate D(t) as a function of dimensionless time
t/P for the calculated cases C50, C25, and C12.5. Stars denote the ac-
tually computed values which are connected by lines.

the validity of the TFA it is therefore not sufficient to sup-
pose just geometrical thinness of the tube. The main rea-
son for that is the following: Thinner flux tubes while less
inert when subject to a prescribed driving mechanism, ex-
perience stronger backreaction forces than corresponding
thicker ones. Relatively large variations of all wave quanti-
ties across the tube occur which do not justify a description
as ideally thin flux tube.

2. For excitations where more external volume relative to the
tube volume is displaced, the deformations of the cross sec-
tions become larger and the dynamics of the internal plasma
is more affected. This would imply that the TFA is restricted
to only very small transverse excursions of the tube. In the
C12.5 case we found an almost complete split–up of the tube
in two counterrotating legs (cf. Fig. 7). Larger excitation
amplitude or alternatively a weaker magnetic field would
probably lead to a complete splitting of the tube at lower
heights with the magnetic field taking on a fork–like topol-
ogy.

3. Tube deformations are accompanied by high energy losses
to the surrounding gas by radiating away acoustic waves.
Energy leakage rates range from ≈ 0.2 for the flux tube
with a radius of 50 km up to ≈ 0.8 for the tube with radius
12.5 km. Thus, the energy loss increases monotonically with
decreasing tube diameter.

4. An interesting question concerns the role of the magnetic
field strength which we did not vary in our calculations.
We believe that low β–tubes (with stronger magnetic fields)
are stabilized against lateral deformations whereas high β–
tubes (with weaker magnetic fields) experience an even
stronger interaction with the ambient gas. A relatively
weaker magnetic field means that the flux tube can more
easily be compressed by the surrounding flow. Thin high
β–tubes are therefore still worse candidates for the applica-
bility of the TFA. On the other hand, very low β–tubes may
be good candidates.

5. A quite different situation may exist when tube waves are
excited purely longitudinally which we also have not con-
sidered. In this case, tube displacements lead to an inter-
action with the surroundings because of compressions and
rarefactions analogous to that in a pulsating pipe. In contrast
to transverse shaking, however, shape deformations are usu-
ally moderate and axially symmetric. Therefore, the internal
plasma would not be influenced much, ie. transverse gradi-
ents would be small compared to longitudinal ones. For this
reason, we speculate that the TFA may be much more accu-
rate in cases of longitudinal wave excitation even for tubes
with thickness parameter α ≈ 1.
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