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Abstract. The behavior of MHD waves propagating in mag-
netically structured plasmas has been extensively investigated
in the literature. In most of these studies, the wave treatment was
restricted to the linear regime. This paper presents the results of
time-dependent and nonlinear numerical simulations of MHD
body and surface waves propagating along magnetic slabs. Both
longitudinal and transverse waves are computed, and the wave
behavior in the linear and nonlinear regime is compared. Two
physical processes are investigated in detail. The first is the en-
ergy leakage from the magnetic slab to the field-free external
medium. It is found that the energy leakage is62% for transverse
slab waves, which means that the efficiency of energy transfer
along the slab by these waves is significantly reduced. The sec-
ond process is the excitation of MHD waves in two adjacent
magnetic slabs by large amplitude acoustic waves from the ex-
ternal medium. The slabs have physical parameters typical for
photospheric magnetic flux tubes. It is shown that only1−3% of
the energy carried by these acoustic waves is transferred to the
slabs, and that the efficiency of this process strongly depends
on the location of the slabs relative to the source of acoustic
waves and on the amplitude of these waves. Both physical pro-
cesses are important for the problem of heating of magnetically
structured regions in the solar and stellar atmospheres.
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1. Introduction

Magnetohydrodynamic (MHD) surface and body waves are
known to be important in laboratory plasmas, in magnetospheric
physics and in astrophysics (Lanzerotti et al. 1973; Chen &
Hasegawa 1974; Lanzerotti & Southwood 1979; Takahashi &
McPherron 1984; Bertin & Coppi 1985; Musielak & Suess
1988; Roberts 1991; Goedbloed & Halberstadt 1994; Goossens
1994; Narain & Ulmschneider 1996; Poedts & Goedbloed 1997;
Poedts et al. 1997). The observations of solar magnetic field
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structures, such as magnetic flux tubes, sunspots, coronal loops
and coronal holes, indicate that discontinuities exist on the Sun
(Stenflo 1978; Zwaan 1989; Solanki 1993). These discontinu-
ities can support MHD surface waves; the role of these waves
in chromospheric and coronal heating has been extensively ex-
plored in the literature. It has been suggested that propagating
MHD body and surface waves may supply large amounts of
energy from the subphotospheric layers (generated there by tur-
bulent convection) to the upper atmospheric layers. This wave
energy is thought to be dissipated in the coronal plasma by
mode-coupling, resonance as well as turbulent heating in the
case of body waves and through resonant absorption and phase-
mixing in the case of surface waves (see Narain & Ulmschneider
1996, and references therein).

Previous studies have been primarily concerned with three
different models of structured magnetic field configurations,
namely, magnetic interfaces, magnetic slabs and magnetic flux
tubes. In this paper, the propagation of MHD waves along mag-
netic interfaces and slabs is considered, however, see Spruit
(1981), Spruit & Roberts (1983), Herbold et al. (1985), Ulm-
schneider et al. (1991), and Ziegler & Ulmschneider (1997a, b)
for discussions of the propagation of MHD waves along mag-
netic flux tubes. For linear MHD surface waves on a single
magnetic interface, the resulting dispersion relations have been
derived and studied by Roberts & Webb (1978), Wentzel (1979)
and Roberts (1981a). The studies show that on such magnetic
structures, body waves can either be longitudinal or transverse
depending upon the type of perturbation imposed, and that sur-
face waves can be either slow or fast depending on the relative
magnitude of the temperatures on both sides of the interface.
Time-dependent analytical solutions of the initial value problem
for linear MHD surface waves on a single magnetic interface
have been found by Lee & Roberts (1986) for the case of an
incompressible background medium.

The propagation of MHD surface and body waves in mag-
netic slabs is much more complicated than that on a single mag-
netic interface due to the richness of modes that can exist in
such magnetic field structures (Roberts 1981b), and due to the
fact that these slabs can effectively interact with the external
medium. The latter means that a two-dimensional treatment is
required and, as a result, the mathematical description may be-
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come too complicated to obtain analytical solutions even for
simple physical situations. Hence, in most cases a numerical
approach will be necessary. Such an approach was developed
by Wu et al. (1996) who investigated the propagation of lin-
ear MHD body and surface waves along magnetic slabs em-
bedded in an unstratified medium by using a two-dimensional,
time-dependent numerical model. Their approach did not allow,
however, for large amplitude perturbations.

To understand the behavior of nonlinear MHD body and sur-
face waves, it is necessary to incorporate both the nonlinearity
and the magnetic field discontinuities in the numerical model.
Such a model has been developed and is described in this paper
(see Sect. 2; also Huang 1995, 1996). The model allows simu-
lating both linear and nonlinear MHD body and surface waves
in the presence of background magnetic field discontinuities,
however, without gravity. The numerical model is implemented
as two-dimensional and can incorporate either single or mul-
tiple magnetic interfaces such as a magnetic slab or multiple
magnetic slabs with any type of magnetic field variation inside
the slab. There are no gradients in the physical quantities other
than the presence of discontinuities in the background mag-
netic field and in the gas pressure to satisfy the pressure balance
across these discontinuities. The considered numerical model is
based on ideal MHD, which means that there is no wave energy
dissipation. The numerical procedure and two tests performed
to verify it are described in Sect. 3. The numerical simulations
with their physical interpretation of our three model cases are
discussed in Sects. 4 to 6. The conclusions are summarized in
Sect. 7.

2. Physical models and governing equations

Three different physical models of increasing complexity are
considered in this paper, namely, a single magnetic interface,
a single magnetic slab and two adjacent magnetic slabs. In the
single interface model, the background medium is separated by
an interface into two regions with different strengths of the mag-
netic field; in a special case, the field can be zero in one of these
regions. To satisfy the pressure balance across the interface, the
gas pressure must be higher in the region where the magnetic
field is weaker. It is assumed that the interface is located along
the y-axis of a cartesian (x,y) coordinate system. A more de-
tailed description of this model is given in Sect. 4, where it is
used to verify the developed numerical code.

In thesingle slab model, two magnetic interfaces are intro-
duced in the background medium to form a magnetic slab. The
interfaces are located symmetrically with respect to the y-axis,
so that the slab extends along that axis. The slab thickness is a
free parameter in this approach and the external medium is as-
sumed to be field-free. More details are given in Sect. 5, where
the model is used to investigate the behavior of nonlinear MHD
surface and body waves.

Finally, in thetwo adjacent magnetic slabs model, four in-
terfaces are introduced in the background medium to form two
slabs that are located parallel to the y-axis. Both slabs have the
same thickness and the same strength of the magnetic field. The

external medium is again assumed to be field-free. More physi-
cal details of this model are given in Sect. 6, where the excitation
of magnetic slab waves by external acoustic waves is discussed.

A mathematical description of the considered physical mod-
els is given by the set of ideal and two-dimensional MHD equa-
tions. After neglecting gravity, the set can be written in its con-
servative and dimensionless form (see Huang 1995) as follows
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In this set, all variables are dimensionless and defined as follows:
ρ = ρd/ρo, p = pd/ρoV

2
So, V = V

d/VSo, B = B
d/Bo,

r = r
d/VSoto andt = td/to, where the superscript “d” refers

to a dimensional quantity, andρ is the gas density,V is the
velocity,p is the gas pressure,B is the magnetic field strength,t
is the time andr is the position vector. The quantitiesρo, Bo and
VSo represent the reference density, magnetic field strength and
sound speed, respectively, andto is the time scale. In addition,
Vx andVy are the components of the velocity,Bx andBy are
the components of the magnetic field strength,γ is the ratio of
specific heats, andβ is the ratio of gas pressure to magnetic
pressure:β = 8πp/B2. Initially there are no waves or fluid
motions in the systems. The velocity perturbations (see Sects. 5
and 6) are introduced in the models att = 0. Then, the unknowns
ρ, Vx, Vy, Bx, By andp are computed as a function ofx, y andt.
The numerical procedure adopted to solve the governing MHD
equations is described in the following section.

3. Numerical procedure

The governing MHD equations described in the previous section
are of the hyperbolic type and can be cast in the form

Ut + Fx + Gy = 0, (7)
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whereU represents a conservation quantity, andF andG flux
components inx andy directions, respectively. The explicit ver-
sion of the well-known MacCormack scheme, which is second
order accurate in both time and space (Hirsch 1990), is used
to discretize the above equation. According to this method, the
predictor step is calculated from

U i,j = Un
i,j − τx(Fn

i+1,j − Fn
i,j) − τy(Gn

i,j+1 − Gn
i,j), (8)

and the corrector step is given by

U i,j = Un
i,j − τx(F i,j − F i−1,j) − τy(Gi,j − Gi,j−1). (9)

The final step is given as

Un+1
i,j =

1

2
(U i,j + U i,j), (10)

whereF i,j = F (U i,j), Gi,j = G(U i,j), F i,j = F (U i,j),

Gi,j = G(U i,j), subscriptsi, j are grid indices,τx = ∆t/∆x,
τy = ∆t/∆y, where∆t is the time step, and∆x and∆y are
grid spacings in x and y directions, respectively. For simplicity,
a uniform grid will be used in this work. The grid spacing is
chosen such that the wave structure is adequately resolved and
the numerical dissipation inherent in the scheme is minimized.

A numerical scheme can either be implicit or explicit. For
implicit schemes, the time step does not have to be restricted by
the CFL (Courant, Friedrichs, Lewy) condition (Hirsch 1990).
Therefore, these schemes are valuable for problems where fast
convergence to a steady state is desired. However, a special
attention must be given to the numerical iteration process. The
explicit scheme is straightforward in implementation, but its dis-
advantage is that the time step has to satisfy the CFL condition.
The latter states that the grid spacing cannot exceed the dis-
tance covered by a disturbance, traveling with maximum char-
acteristic speed within the numerical time step utilized in the
simulations (Hirsch 1990). For wave problems, the advantage
of the implicit scheme is also not obvious because the time
step is limited by the wave structure. In general, at least 15 grid
points within a wavelength are needed to resolve the wave struc-
ture; if the time steps used in the simulations are too large, then
meaningless (unphysical) results can be obtained. Thus, in this
paper, the explicit version of the MacCormack scheme is used.
The time step∆te from the CFL condition is given by

∆te < min(∆x,∆y)/Vm, (11)

whereVm = max(VS , VA) is the maximum of all characteristic
wave speeds.VA is the Alfvén speed.

For problems which involve discontinuities in the physical
variables, numerical viscosity is needed in the explicit MacCor-
mack scheme to achieve numerical stability. Hence, a numerical
diffusion term in the form ofµ∇2Φ, Φ being the velocity or
the magnetic field strength, will be added to the original set of
governing equations;µ is called “artificial viscosity”. The in-
troduction of artificial viscosity gives rise to another time step
∆td. To obtain numerical stability of the central discretization
of the numerical diffusion term, the following criterion has to
be satisfied for two-dimensional problems (Hirsch 1990):

µ
∆td

min(∆x2,∆y2)
≤ 1

4
. (12)

The appropriate time step∆t then is the smaller one of the two
time steps∆te and∆td:

∆t = min(∆te,∆td). (13)

Having described the numerical procedure, it is now re-
quired to specify boundary conditions for the finite compu-
tational domain used in these numerical simulations. For the
wave propagation problem, open boundary conditions are de-
sired. Different methods have been used to implement these
boundary conditions (see Forbes & Priest 1987, and references
therein). A commonly used method is known as the Sommerfeld
radiation condition. Among the many versions of this method,
the simple approach developed by Orlanski (1976) has been
successfully applied to many wave problems. In this approach,
the wave propagation speeds of the various physical quantities
at the boundary points are calculated by using values of these
quantities at the nearby interior grid points. There is no inward
propagation of information from outside the computational do-
main. If the Sommerfeld radiation condition is given by

Ut + cUUx = 0 (14)

whereU represents an arbitrary physical quantity andcU the
wave propagation speed, then the Orlanski prescription (note
that the original Orlanski paper contains printing errors) is to
compute
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using a leap-frog finite difference scheme.
Another important issue in solving MHD equations is the nu-

merical treatment of the solenoidal condition. It is well-known
that an incorrect numerical treatment of the induction equa-
tion may lead to a non-solenoidal magnetic field that varies in
time and introduces a non-physical force along the field lines.
Several numerical treatments have been proposed (Brackbill &
Barnes 1980; Marder 1987; Evans & Hawley 1988). In the lat-
ter paper, the authors utilized a numerical technique called CT
(Constrained Transport) that allows transforming the induction
equation in such a way that it always maintains vanishing di-
vergence of the field components to within machine round-off
error. The CT technique is also adopted in this paper.

Before presenting the results of our numerical simulations,
it is necessary to describe the time-dependent perturbations that
are introduced in the computational domain to generate the wave
motions. In this paper, only sinusoidal velocity perturbations
are considered:V (xp, yp, t) = perc sin(2πt), whereV is a
dimensionless quantity and can either beVx/VSo orVy/VSo and
perc represents the ratio between the velocity amplitude,Vo, and
the reference sound speed,VSo. In addition,xp andyp represent
the location of the velocity perturbation in the computational
domain and will be specified for each considered case.
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Fig. 1. Schematic description of single magnetic interface model used
in the first test described in the main text.

4. Verification of numerical code

The results of two specific tests performed to verify the numer-
ical code are presented in this paper (see Huang 1995, for more
details and other tests). The first test involves the comparison of
analytical and numerical results. In the second test, the results
from two independent numerical codes are compared. In these
tests two slightly different versions (see below) of the single
magnetic interface model introduced in Sect. 2 are used.

The first test is to solve numerically an initial value problem
for linear surface waves propagating along a single magnetic in-
terface and compare the obtained results with the analytical solu-
tions given by Lee & Roberts (1986). In their approach, a single
magnetic interface is located in an incompressible and magne-
tized plasma. The interface separates the background medium
into two regions of different magnetic fields, namely,Bl for
x < 0 andBr for x > 0 (see Fig. 1). Note that in the performed
calculations both magnetic fields are normalized byBo, which
is taken to be eitherBl or Br whichever is stronger. To satisfy
the pressure balance across the interface, the temperature on
both sides of the interface is assumed to be different but the
density is the same. Lee and Roberts introduced the following
surface wave type perturbation at timet = 0 (see Fig. 1)

Vx(x, y, 0) = −Ae−|x−x′| sin(ky) , (17)

Vy(x, y, 0) = A(x − x′)|x − x′|−1e−|x−x′| cos(ky) , (18)

wherek = π
√

2γβ, A = 0.5 perc, perc = 0.001 andx′ is
the location of the vorticity line (see Fig. 1), which is the only
place in the computational domain where vorticity is initially
non-zero.

To reproduce these analytical results with our numerical
code, it was necessary to run the code withβ = 100 to ac-
count for incompressibility. We tookBl = 1.0 andBr = 0.5.
The comparison between analytical (upper panel) and numeri-
cal (lower panel) results is given in Figs. 2 and 3. AsVA/VS =
√

2/(γβ) = rat, the number of points per wavelength of
an Alfvén wave is given byNAW = rat NW , whereNW

is the number of points per acoustic wavelength. We had to
chooseNW = 400 to adequately resolve the Alfvén wave.
With Nx = 81, Ny = 120 grid points in the computational

Fig. 2. The wave-induced velocity field calculated analytically (upper
panel) and numerically (lower panel) at the location of the vorticity
line (x = x′

= 0.375) and in its vicinity. The presented results are
snapshots taken at the dimensionless timet = 1.0.

domain we have used a grid spacing of∆y = ∆x = 1/NW .
The vorticity line is atx′ = 0.036. In Fig. 2, the velocity field
at the location of the vorticity line and in its vicinity is shown.
Fig. 3 shows the magnetic field perturbations at the interface and
in its vicinity. It is clearly seen that the numerical results well
reproduce the shape of the surface wave at the interface and
the velocity and magnetic field patterns outside the interface.
Some differences seen at the vorticity line can be explained by
the effect of numerical viscosity and by the fact that the plasma
β in numerical simulations is finite, whereas in the analytical
treatment is infinite.

The second test is to numerically solve an initial value prob-
lem for MHD surface waves and compare the results with those
obtained earlier by another numerical method. Here, the com-
parison is made with the numerical results obtained by Wu et
al. (1996) who used a different numerical code. These authors
considered a single magnetic interface that separates the back-
ground medium, which is compressible, into two domains: one
with the magnetic field and one without it. They assumed that
the temperature is constant on both sides of the interface, which
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Fig. 3. The magnetic field perturbations calculated analytically (top
panel) and numerically (lower panel) at the location of the interface
(x = 0.0) and in its vicinity. The presented results are snapshots taken
at the dimensionless timet = 1.0.

means that both domains must have different densities to sat-
isfy the pressure balance across the interface. The numerical
approach is limited to linear waves only. The comparison is
made between the velocity field calculated by our code and that
of Wu et al. (see Figs. 4 and 5). Hereβ = 1.2, Nx = Ny = 66,
NW = 33. The similarities in the overall pattern of the calcu-
lated velocity fields are clearly seen in these figures. The overall
pattern of the computed magnetic field perturbations shows the
same similarities and thus is not presented here. After testing
the code against analytical and numerical solutions for linear
MHD body and surface waves, we are now ready to investigate
the behavior of nonlinear magnetic slab waves.

5. Nonlinear MHD slab waves

The single magnetic slab model already briefly introduced in
Sect. 2 is used to investigate the behavior of MHD body and
surface waves. In the model shown in Fig. 6, the magnetic slab
with the physical parametersB1, P1, ρ1 andT1 is located at the
center of the computational domain, with its axis aligned along
the y-axis and with its thickness denoted byb. The external

Fig. 4. Snapshot of the velocity field induced by a linear surface wave
propagating along the magnetic interface. The presented results were
obtained by using the code developed in this paper.

Fig. 5. The same as Fig. 4 but obtained by Wu et al. (1996).

medium is field-free,Bext = 0, and has the same temperature as
the slab,Text = T1. The magnetic field inside the slab is uniform
and the pressure balance in the x-direction is satisfied with the
gas densityρ1 lower thanρext. The surface and body waves are
generated by imposing longitudinal and transverse perturbations
on the slab. In the performed numerical simulations, the slab
thickness is assumed to beb = 0.66, which corresponds to two
thirds of the acoustic wavelength,β = 1, andNW = 30 grid
points are chosen per acoustic wavelength to achieve a good
numerical resolution of the generated waves. In addition, the
CFL number (see the RHS of Eq. 11) is taken to be 0.4 and the
numerical viscosity is chosen to be0.01; the latter effectively
minimizes numerical oscillations.
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Fig. 6. Schematic description of single magnetic slab model used in
numerical simulations described in the main text.

Fig. 7. Square of the velocity plotted on a logarithmic scale for a
nonlinear wave generated by the longitudinal perturbation inside the
magnetic slab withperc = 0.2 at the center of the computational
domain.

5.1. Longitudinal perturbations

The following longitudinal velocity perturbations are imposed
on the slab:Vy(xp, yp, t) = perc sin(2πt), at the center of
the computational domain (xl ≤ xp ≤ xr, yp = 2.5), with
xl = −b/2 = −.33, xr = b/2 = .33. Recall thatt is the di-
mensionless time. The computational domain is given byNx =
161, Ny = 150 points with grid distance∆x = ∆y = 1/NW .
The perturbation extends over the entire widthb = xr−xl (of 20
points) of the magnetic slab region. As a result of these perturba-
tions,Vx is initially zero. The velocity perturbation amplitude is
assumed to beperc=0.2, that is20% of the sound speed, which
means that finite (nonlinear) amplitude waves are generated by
the imposed motions.

The snapshots of the resulting velocity field and magnetic
field perturbations att = 2.0 are shown in Figs. 7 to 9. Fig. 7
shows the logarithm of the velocity square, that is, the quantity
Q = log V 2 +0.001, whereV 2 = V 2

x +V 2
y . It is clearly seen in

Fig. 7 that three types of waves are excited, namely, the internal
body wave which is confined to the slab (−0.33 < x < 0.33),

Fig. 8. The wave-induced velocity field generated by longitudinal per-
turbations withperc = 0.2 imposed on a single magnetic slab. Same
as in Fig. 7, the snapshot is taken at the dimensionless timet = 2.0.

Fig. 9. The same as Figs. 7 and 8 but for the magnetic field perturbation.

the surface wave which propagates along the slab boundaries,
and the external acoustic wave (x < −0.33 and x > 0.33)
which is propagating isotropically in the external medium.

From a more detailed inspection of the velocity as seen in
Fig. 8, one can see that the velocity inside the slab is essentially
in the y-direction, which is the propagation direction of the in-
ternal body wave. This indicates that the internal body wave is
longitudinal as expected from the imposed perturbation. The fig-
ure also shows some asymmetry in the resulting velocity field.
This is caused by the fact that the longitudinal perturbations,
which resemble a piston moving up and down, are imposed first
in the upward direction leading thereby to the observed asym-
metry in the velocity field. Note also that despite the fact that the
initial perturbation is imposed only inside the slab there is sig-
nificant wave energy leakage to the external medium; the latter
is discussed separately in Sect. 6. The magnetic field perturba-
tions displayed in Fig. 9 in the vicinity of the slab axis show the
typical behavior of the sausage mode. Clearly, the longitudinal
perturbation, which is in the direction of the magnetic field, does
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Fig. 10. Longitudinal velocityVy is plotted versusy for linear and non-
linear waves generated by the longitudinal perturbation withperc =

0.01 andperc = 0.2, respectively. The results are shown for the di-
mensionless timet = 2.0 and at the locationx = 0.

not disturb very much the magnetic field lines inside the slab
but only at its boundaries, where the surface wave is generated.

Fig. 10 shows a comparison of the velocityVy on the slab
axis between the linear and nonlinear cases. The initial pertur-
bation is imposed aty = 2.5. Longitudinal body waves are seen
propagating along the slab axis in the upward (y > 2.5) and
downward (y < 2.5) direction with respect to the location of
the wave source. The steepening of the initially sinusoidal waves
is evident in the case of the nonlinear perturbation (perc = 0.2)
but it is not present for the linear case whenperc = 0.01. The
observed steepening is a consequence of the finite amplitude of
the perturbations and will eventually result in the development
of sawtooth shock waves. Note also that the decrease of the
wave amplitude with distance from the wave source is caused
by wave energy leakage to the external medium and the resulting
excitation of external acoustic waves (see Sect. 6 for details).

5.2. Transverse perturbations

In this numerical simulation the physical parameters are the
same as described above. The only difference is that the ve-
locity perturbation is now transverse instead of longitudinal,
which means thatVy = 0 andVx(xp, yp, t) = perc sin(2πt)),
with xl ≤ xp ≤ xr andyp = 2.5. The obtained results for
the velocity field and magnetic field perturbations are shown in
Figs. 11 to 13, respectively. As seen in Fig. 11, three types of
waves are excited: the internal body wave, the surface wave on
the slab boundaries and the external acoustic wave. The inter-
nal body wave is essentially transverse (see Fig. 12), which is
easily understood considering the form of the imposed perturba-
tion. Note that the surface wave is mainly longitudinal although
the imposed perturbation is transverse. The latter and the “vor-
tex structure” seen in this plot are caused by the transition of
the fluid motion from the transverse body wave to the external

Fig. 11. Square of the velocity plotted on a logarithmic scale for a non-
linear wave generated by the transverse perturbation inside the mag-
netic slab withperc = 0.2 at the center of the computational domain.

Fig. 12. The wave-induced velocity field generated by transverse per-
turbations withperc = 0.2 imposed on a single magnetic slab. Same
as in Fig. 11, the snapshot is taken at the dimensionless timet = 2.0.

acoustic waves. There is also a prominent wave energy leakage
to the external medium; see Sect. 6 for more details.

The observed asymmetry in the x-direction of the magnetic
field can be explained by the fact that the very first perturbation
is imposed to the right with respect to the slab axis. The swaying
of the magnetic field lines which is a characteristic behavior of
the kink mode is shown in Fig. 13. It is seen that the field lines act
in unison, however, lines located closer to the slab boundaries
lag behind. This is a typical behavior of the slow surface mode
(see Roberts 1981b). Note that fast surface waves can only exist
when the background medium is not isothermal, which is not
the case considered here.

Fig. 14 shows the velocitiesVx andVy at the slab axis for
the downward (y > 2.5) and upward (y < 2.5) propagating
waves excited aty = 2.5. The amplitude of the transverse wave
Vx decreases with distance from the wave source as a result of
wave energy leakage to the external medium and due to the gen-
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Fig. 13. The same as Figs. 11 and 12 but for the magnetic field pertur-
bation.

Fig. 14. TransverseVx and longitudinalVy velocities are plotted versus
y for nonlinear waves generated by the transverse perturbation with
perc = 0.2. The results are shown for the dimensionless timet = 2.0

and at the locationx = 0.

eration of longitudinal wavesVy that propagate inside the slab.
The process responsible for the excitation of these longitudinal
waves is called nonlinear mode coupling and its efficiency has
been investigated by Ulmschneider et al. (1991) in their one-
dimensional numerical studies of the propagation of magnetic
flux tube waves in the solar atmosphere. They suggested that the
main reason for the appearance of longitudinal waves is the cur-
vature force that results from the swaying of the magnetic field
lines and is perpendicular to these lines. The consequence of
this process is that the generated longitudinal waves take away
part of the energy carried by the internal transverse body waves
and, as a result, the latter are damped when they propagate. It
must be noted that the longitudinal waves may form shocks and
dissipate the wave energy leading thereby to the heating of the
background plasma.

6. Applications to the Sun

It has long been known that the distribution of magnetic fields
on the solar surface is highly inhomogeneous and that magnetic
inhomogeneities outside sunspots form flux tube structures (e.g.
Stenflo 1978; Zwaan 1989; Solanki 1993). Individual magnetic
flux tubes are regions of intense magnetic fields that rapidly
diverge in the solar chromosphere. The typical strength of the
magnetic field inside these tubes at the base of the photosphere
is about1500 G but can also be less. There are turbulent motions
in the solar convection zone where the tubes are rooted, but also
in the solar photosphere. These motions may interact with the
tubes leading to the generation of tube waves. High resolution
white light observations of the Sun performed by Muller (1989),
Nesis et al. (1992) and Muller et al. (1994) show that the velocity
of turbulent motions can be as large as2 km/s.

It is important to find out how efficiently the observed turbu-
lent motions generate linear and nonlinear magnetic tube waves.
The problem of generation of these waves has been treated
both analytically (Musielak et al. 1989, 1995; Choudhuri et al.
1993a, b) and numerically (Huang et al. 1995; Ulmschneider
& Musielak 1998). The work by Huang et al. shows that the
typical wave energy fluxes carried by nonlinear transverse tube
waves are of the order of109 erg/cm2s. However, the amount
of energy which can be transferred to the chromosphere remains
uncertain because the process of energy leakage to the external
medium has not been taken into account. This is due to the use
of the thin flux tube approximation by these authors. To esti-
mate the efficiency of the leakage process, the slab structure is
used to approximate a magnetic flux tube embedded in the solar
photosphere (see Sect. 6.1).

Observations and numerical simulations show also evidence
for the existence of large amplitude acoustic waves travelling
horizontally in the upper layers of the solar convection zone
(Nordlund & Dravis 1990; Cattaneo et al. 1991; Nordlund &
Stein 1991; Steffen 1993; Steffen et al. 1994). It is of interest to
investigate how efficiently these acoustic waves can supply en-
ergy into the magnetic flux tubes. The efficiency of this process
is estimated here by using the model of two adjacent magnetic
slabs (see Sect. 6.2).

6.1. Wave energy leakage

The results presented in Sect. 5 clearly show that in both cases of
the longitudinal and transverse perturbation the energy carried
by the body and surface waves leaks to the external medium.
As a result of this process, external acoustic waves are gener-
ated. The wave energy leakage has been extensively discussed
by Huang (1996) who obtained the results for magnetic slabs
with β < 1 and demonstrated that more than50% of the en-
ergy carried by transverse slab waves and almost30% of the
energy carried by longitudinal slab waves can leak out to the
external medium within two wave periods. In our present work
the slab structure is used to simulate a flux tube embedded in
the solar photosphere and to estimate the efficiency of wave en-
ergy leakage. It is well known that the solar photosphere may be
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approximated by a model consisting of two media: a magnetic
region where the plasmaβ is of order unity or smaller, and a
weak field region whereβ is very high. In the simulations per-
formed here, the value ofβ in the slab is chosen to be1. The
external medium is assumed to be field-free, which means that
β is infinite there. At the optical depthτ = 1, the photospheric
flux tubes have typical diameters of approximately100 km and
the sound speed is around8 km/s. For waves with periods of
around60seconds, the diameter of the tube is normalized to0.21
which is taken to be equal to the slab thickness. The velocity
perturbation amplitude is chosen to be0.25, which corresponds
to a velocity perturbation of2 km/s and is in agreement with
the observations (see above). Only transverse velocity pertur-
bations are considered.

Snapshots of the resulting velocity field looks similarly as
in Figs. 11 to 12. There are prominent acoustic waves in the ex-
ternal medium. Since the perturbations are imposed only on the
slab, it is evident that a significant amount of wave energy must
be leaking from the slab to the external medium. To estimate
this amount of energy, we use the wave energy leakage ratio
Wleak defined as

Wleak(t) =
Eext

Eext + Eint

(19)

whereEext andEint represent the energy carried by the external
acoustic waves and the internal slab waves, respectively. They
are given by

Eext =

∫

εdSext, (20)

and

Eint =

∫

εdSint, (21)

whereε is the total wave energy density, andSext andSint rep-
resent the part of the computational domain that is external and
internal to the slab, respectively. According to Landau & Lif-
shitz (1959), the kinetic (εkin), thermal (εtherm) and magnetic
(εmagn) energy densities contribute to the total wave energy
density as

ε = εkin + εtherm + εmagn, (22)

with

εkin =
1

2
ρ(V 2

x + V 2
y ), (23)

εtherm =
1

2
γp

ρ′2

ρ2
, (24)

and

εmagn =
1

8πγβ
(B′2

x + B′2
y ), (25)

whereVx, Vy, ρ′, B′
x andB′

y are perturbed quantities. The time-
average ofWleak(t) defined as

W̄leak =
1

T0

∫ T0

0

Wleakdt, (26)

is used here as a quantitative measure of the amount of wave
energy leaking to the external medium. The averaging timeT0

is chosen as2.0 in these calculations. In general, it is desired
to carry out the time average over a very long period of time.
However, this is not feasible numerically as it would require an
infinitely large computational domain to account for the wave
spreading in time. Since the finite computational domain is used
here, the simulations are stopped just before the fastest prop-
agating wave reaches the boundary; the latter always happens
whenT0 > 2.0.

The calculated energy leakage ratio is0.62, which means
that62% of the energy carried by nonlinear slab waves leaks to
the external medium within two wave periods. Now, applying
this result to the wave energy fluxes calculated by Huang et al.
(1995) for transverse tube waves, it is seen that more than half
of the total wave energy flux (of109 erg/cm2s) carried by these
waves will be transferred to the external medium and propagate
there as acoustic waves. As shown recently by Ziegler & Ulm-
schneider (1997a,b), the efficiency of wave energy leakage can
be even higher for more realistic magnetic flux tubes.

6.2. Generation of magnetic slab waves
by external acoustic waves

To calculate the efficiency of the generation of magnetic slab
waves excited by external acoustic waves, the model of two
identical magnetic slabs is considered (see Sect. 2) and the ex-
ternal medium is field-free. The slabs are placed side by side
in the computational domain and the distance between them is
half an acoustic wavelength (see Figs. 15 and 16). The computa-
tional domain and the grid size are similar those chosen for our
longitudinal and transverse wave calculations. The slab which
is located closer to the center of the computational domain is
called the first slab and the other the second slab. The distance
between the first slab and the center of the computational do-
main, where the source of the external acoustic waves is located,
is one acoustic wavelength. The first slab lies atx1 = −1.01,
the second atx2 = −1.52. The wave source is aligned along the
x-direction and has a width of1/15 of the acoustic wavelength.
It must be noted that the values of these three parameters may
have wide ranges in reality and that the particular values used
here are chosen only for the purpose of simulation.

The numerical results obtained fort = 2.0 are presented in
Figs. 15 and 16, which show that at the time when the simulation
was stopped, the external acoustic waves have already reached
both slabs. It is seen that the propagating acoustic waves pass
through both slabs and, as a result, MHD body and surface
waves are excited in the slabs; the latter can be even better seen
in Fig. 16. Obviously, the body and surface waves generated
in the first slab are stronger than those observed in the second
slab. The amount of energy that is lost by the acoustic waves
due to the excitation of the magnetic slab waves on the first
slab is3% and the corresponding value for the second slab is
1.1%. Although these numbers are small, it is expected that the
closer the slabs are to the wave source, the more energy will
be transferred to them. The amount of energy transferred must
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Fig. 15. The velocity field induced by the external acoustic waves gen-
erated by perturbations withperc = 0.25 at the center of the computa-
tional domain. Interaction of these waves with two adjacent magnetic
slabs. Both slabs haveb = 0.21 andβ = 1.0. The presented results
are snapshots taken at the dimensionless timet = 2.0.

Fig. 16. The same as Fig. 14 but for the magnetic field perturbation.

also increase when the amplitude of the imposed perturbations
is increased.

7. Conclusions

1. A numerical code has been developed to study the propagation
of nonlinear MHD body and surface waves along magnetic in-
terfaces and slabs. Both longitudinal and transverse MHD waves
have been simulated.

2. Since an initial value problem for linear surface waves propa-
gating along a single magnetic interface embedded in an incom-
pressible medium has full analytical solutions, our numerical
code has been tested against these solutions. A good agreement
between analytical and numerical results has been found.

3. The problem of propagation of linear surface waves along a
single magnetic interface embedded in a compressible medium
has also been tested by comparing our results with those ob-
tained by Wu et. al. (1996), who utilized a different numerical

scheme. Again, good agreement has been found between the
results obtained by the two different numerical codes.

4. Our numerical code has been used to investigate the behavior
of nonlinear MHD surface waves propagating along a magnetic
slab and both longitudinal and transverse velocity perturbations
with finite amplitudes were excited. The resulting wave patterns
and nonlinear features have been shown and discussed.

5. The process of wave energy leakage from a magnetic slab to
the field-free external medium has been studied. The obtained
results show that62% of the energy carried by transverse slab
waves leaks to the external medium within two wave periods.
This means that the efficiency of the energy transfer by these
waves along the slab is significantly reduced.

6. The process of excitation of MHD waves in two adjacent
magnetic slabs by large amplitude external acoustic waves has
also been investigated. It is found that only1 − 3% of the en-
ergy carried by these acoustic waves is transferred to the slabs,
and that the efficiency of this process strongly depends on the
location of the slabs relative to the source of acoustic waves and
on the amplitude of these waves.

7. The leakage rates found are important for the problem of
heating of magnetically structured regions in the solar and stellar
atmospheres.
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