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Abstract. The wave energy fluxes carried by longitudinal tube waves along thin vertical magnetic flux tubes
embedded in atmospheres of late-type stars are computed. The main physical process responsible for the generation
of these waves is the nonlinear time-dependent response of the flux tubes to continuous and impulsive external
turbulent pressure fluctuations, which are represented here by an extended Kolmogorov spatial and modified
Gaussian temporal energy spectrum. Both the wave energy fluxes and spectra are calculated for population I stars
with effective temperatures ranging from Teff = 3500 K to 7000 K, and with gravities in the range log g = 3−5.
The obtained results show that the computed wave energy may significantly contribute to the enhanced heating
observed in magnetic regions of late-type stars.
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1. Introduction

It has become clear in recent years that acoustic and mag-
netic waves generated in stellar convection zones play a
dominant role in the heating of stellar chromospheres, and
may also contribute significantly to the heating of stel-
lar coronae as well as to the acceleration of stellar winds
(see Narain & Ulmschneider 1996). Our recent work has
shown that previously calculated stellar acoustic wave en-
ergy fluxes (e.g., Bohn 1981, 1984) are incorrect, mainly
because several fundamental assumptions in the Lighthill-
Stein theory (Lighthill 1952; Stein 1967) of sound gener-
ation turned out to be physically unjustified (Musielak
et al. 1994). We have corrected the Lighthill-Stein theory
by incorporating an improved description of the spatial
and temporal spectrum of the turbulent convection and
used this corrected theory to calculate new stellar acoustic
wave energy fluxes (see Ulmschneider et al. 1996 for stars
of solar type metal abundances; and Ulmschneider et al.
1999, for stars with nonsolar metallicities). That work fo-
cused on the generation of acoustic waves, and did not
involve stellar magnetic fields. Given that stars have in-
ternal and surface magnetic fields, we have also worked on
the complementary problem of the excitation of waves in
magnetic flux tubes. Specifically, we have concentrated on
the generation of longitudinal and transverse tube waves,
and developed general analytical (Musielak et al. 1989,
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1995) and numerical (Huang et al. 1995; Ulmschneider &
Musielak 1998) treatments to describe this process.

In the present paper, we use the approach developed
by Ulmschneider & Musielak (1998) to compute the wave
energy fluxes carried by longitudinal tube waves propagat-
ing along thin and vertically oriented magnetic flux tubes
that are embedded in atmospheres of late-type stars. This
numerical approach supplements recent work by Musielak
et al. (2000), who calculated analytically the longitudinal
wave energy fluxes generated in stellar convection zones.
These newly calculated acoustic and magnetic wave en-
ergy fluxes are essential for constructing theoretical chro-
mospheric models of stars of different spectral types and
luminosities (see Buchholz et al. 1998; also Cuntz et al.
1998, 1999).

In the numerical approach developed by Ulmschneider
& Musielak (1998), longitudinal tube waves are generated
as a result of the squeezing of a thin and vertically oriented
magnetic flux tube by external pressure fluctuations pro-
duced by the turbulent motions in a stellar photosphere
and convection zone. Hence, to compute the pressure fluc-
tuations imposed on the tube, it is required to know the
external turbulent motions. The motions are modeled by
specifying the rms velocity amplitude and using an ex-
tended Kolmogorov turbulent energy spectrum with a
modified Gaussian frequency factor (Musielak et al. 1994).
It is assumed that the squeezing is symmetric with respect
to the tube axis. The computed pressure fluctuations are
then translated into the gas pressure and magnetic field
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fluctuations inside the tube by using the horizontal pres-
sure balance. Finally, the internal velocity perturbation
resulting from the internal pressure fluctuation is calcu-
lated. This internal velocity serves as a boundary condi-
tion for a numerical longitudinal tube wave code.

That code used by Ulmschneider & Musielak (1998)
was originally developed by Herbold et al. (1985) who
treated magnetic flux tubes in the so-called thin flux tube
approximation and described them mathematically by
using a set of one-dimensional, time-dependent and non-
linear MHD equations. The code allows to compute the
instantaneous and time-averaged longitudinal tube wave
energy fluxes and the corresponding wave energy spectra.
It requires specifying the strength of the magnetic field in-
side the flux tube and the height in the stellar atmosphere
where the squeezing takes place. The code has been ex-
tensively used to calculate wave energy fluxes and spectra
for longitudinal tube waves propagating in the solar atmo-
sphere, and to investigate the dependence of these fluxes
on the magnetic field strength, the rms velocity amplitude
of turbulent motions, and the location of the squeezing
in the atmosphere. A modified version of this code has
also been used to study the propagation of longitudinal-
transverse magnetic tube waves in the solar atmosphere
(Ulmschneider et al. 1991) and the generation of trans-
verse tube waves in the solar photosphere and convection
zone (Huang et al. 1995).

In the approach developed by Ulmschneider &
Musielak (1998), the external pressure fluctuations are
represented by a superposition of many partial waves with
random phases and with amplitudes determined by the
turbulent flow field. It has been shown that occasionally
the amplitude of this superposition of waves become com-
parable to the horizontal velocities observed on the Sun at
the photospheric level (Muller 19; Nesis et al. 1992; Muller
et al. 1994) and also seen in time-dependent numerical
simulations of solar convection (e.g., Nordlund & Dravins
1990; Nordlund & Stein 1991; Cattaneo et al. 1991; Steffen
1993; see also Nordlund et al. 1997). These more realistic
velocity fluctuations are clearly a main advantage of our
approach, and Ulmschneider & Musielak have used this
argument to justify their studies of the generation of non-
linear longitudinal tube waves in the solar atmosphere.

The main goal of the present paper is to extend these
studies to other late-type stars and compute the wave en-
ergy fluxes and spectra for population I stars with effective
temperatures ranging from Teff = 3500 K to 7000 K, and
with gravities in the range log g = 3−5. The calculated
amount of wave energy carried by nonlinear longitudinal
tube waves in atmospheres of K-type stars has already
been used by Cuntz et al. (1999) to construct theoretical,
time-dependent and self-consistent chromospheric models
for these stars. Our paper is organized as follows: Sect. 2
describes briefly the method developed by Ulmschneider
and Musielak and our basic assumptions. The results of
our calculations are presented in Sect. 3, and finally Sect. 4
gives our conclusions.

2. Basic formulation

2.1. Convection zone models and turbulent velocities

The method to calculate wave energy fluxes carried by
longitudinal tube waves adopted in the present paper has
been described by Ulmschneider & Musielak (1998), thus,
it is not necessary to repeat a detailed discussion here.
In the solar application, we were able to select many pa-
rameters and characteristic values directly from observa-
tions. However, for other stars such data are not available.
Therefore, in the following we first discuss in greater detail
the physical reasoning behind our choice of several param-
eters used in the calculations and then briefly summarize
the adopted computational method.

Both numerical simulations of stellar convection and
mixing length models show that the maximum convective
velocities occur at optical depths of τ5000 ≈ 10 to 100.
For example, Steffen (1993) found in his time-dependent
solar numerical convection calculations that maximum
convective velocities vCMax ≈ 2.8 km s−1 are reached at
τ5000 ≈ 50 and that these values can be reproduced by
the mixing length theory with a mixing length parameter
of α ≈ 2. This choice of α = 2 is also indicated by time-
dependent hydrodynamic simulations of stellar convection
of stars other than the Sun (Trampedach et al. 1997) as
well as by a careful fitting of evolutionary tracks of the
Sun with its present luminosity, effective temperature and
age (Hünsch & Schröder 1997; Schröder & Eggleton 1996).

Our treatment of stellar convection zones is similar
to that described by Ulmschneider et al. (1996). We also
take α = 2 and use a solar metal abundance. In Fig. 1,
we plot the ratio of the maximum convective velocity to
the local speed of sound (the so-called convective Mach
number) for stars of different spectral types and luminosi-
ties. It is seen that this ratio approaches (or even exceeds)
unity for hot and luminous stars. Because the values of
the convective Mach numbers higher than one are unre-
alistic, in this paper we restrict our calculations to stars
with gravities ranging from log g = 5 to log g = 3, and
with Teff = 7000 K or cooler.

In our approach, however, we actually need to know
the velocities of turbulent motions in the overshooting
layer near the stellar surface, where the squeezing of the
magnetic flux tube takes place. Steffen’s numerical cal-
culations show that the rms velocities decrease towards
the solar surface and reach a plateau in the overshoot-
ing layer. Between τ5000 = 1 and 10−4, he finds values of
vrms = 1.4 km s−1, which are practically independent of
height. Ulmschneider & Musielak (1998) adopted for the
Sun a variety of observed rms velocity amplitudes ut in the
range 0.9 < ut < 1.9 km s−1, and showed the dependence
of the computed fluxes on this velocity.

For stars, these velocities cannot be determined from
observations, thus, we assume that the rms velocity fluctu-
ations at the squeezing point are given by ut = vCMax/2.
The value of vCMax is evaluated from stellar convection
zone models based on the mixing length theory with
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Fig. 1. The ratio of the maximum convective velocity, vCMax,
to the local sound speed, cS, is plotted for stars of different
spectral types and luminosities.

Fig. 2. Root mean square turbulent velocities ut = vCMax/2
for late-type stars considered in this paper.

α = 2.0 (see Fig. 1). The numerical factor 2 used in our
calculations assures that in our approach the considered
convective velocities are always much lower than the local
speed of sound. The values of ut = vCMax/2 for the late-
type stars considered in this paper are shown in Fig. 2.

After specifying the rms velocities that are responsi-
ble for the wave generation, we now determine the height
in stellar atmospheres, where the most efficient squeezing
of magnetic flux tubes takes place. We guide ourselves by
studies performed by Ulmschneider & Musielak (1998),
who pointed out that shifting the height of the excita-
tion point did not change much the resulting wave energy
fluxes for the Sun. Based on these results, we take the
squeezing point to be located at optical depth τ5000 = 1
for all considered stars. This depth is commonly taken as
the zero height level in stellar atmosphere computations.

The fact that we take only one excitation point in our
calculations means that the present method does not take
into account the cancellation and amplification (correla-

tion) effects, which occur when the flux tube is excited at
many points along its length. In reality the tube suffers
from squeezing along its entire length directly exposed
to the external turbulent motions and, as a result, cor-
relation effects may be important. In the analytical ap-
proach developed by Musielak et al. (1989, 1995, 2000),
the correlation effects are indeed taken into account but
that approach is restricted to linear waves. Our numerical
treatment in the present paper does not include the corre-
lation effects, yet, differently from the analytic approach
it allows for nonlinear waves.

2.2. Stellar magnetic flux tubes

As already mentioned above, the main aim of this paper is
to calculate the wave energy fluxes and spectra for longi-
tudinal tube waves propagating along a thin and vertically
oriented magnetic flux tube embedded in otherwise mag-
netic field-free atmospheres of stars with effective temper-
atures ranging from Teff = 3500 K to 7000 K, and with
gravities in the range log g = 3−5; note that only stars
of population I are considered in this paper. To perform
these calculations, we must extend the well-known and
commonly accepted concept of solar magnetic flux tubes
(e.g., Stenflo 1978; Solanki 1993) to stellar flux tubes. At
this point, it is important to emphasize that previous (see
Saar 1996, and references therein) and recent (e.g., Ruedi
et al. 1997) measurements of stellar magnetic fields pro-
vide evidence for the existence of strong magnetic fields
(typical observed fields are comparable to or stronger than
the equipartition field, where equipartition here means
equality of the magnetic pressure and the external gas
pressure). These fields are characteristic for starspots but
not for typical single magnetic flux tubes. Thus, to con-
struct models of stellar magnetic flux tubes, we need to
be guided by the results of solar observations. We have to
extrapolate these results to stars other than the Sun. Our
extrapolation is justified by the fact that the considered
stars because of their surface convection zones are fairly
similar to the Sun.

In the present paper, we study the efficiency of the gen-
eration of longitudinal tube waves in stellar atmospheres.
The calculations are performed for one single magnetic
flux tube, which means that we are not interested in the
filling factor and its consequence for stellar wave luminosi-
ties (see, however, Musielak et al. 1995) and for the lower
or higher merging at canopy heights of the diverging flux
tubes. We follow Ulmschneider & Musielak (1998) to con-
struct a model of an isolated magnetic flux tube. The most
critical physical parameter for this model is the strength
of the tube magnetic field, B, at the excitation height.

As already discussed by Musielak et al. (1989, 1995),
the efficiency of the generation of longitudinal tube waves
increases when the “stiffness” of the tube is decreased
(or the gas pressure p inside the tube is increased) by
decreasing the strength of the tube magnetic field (see
also Ulmschneider & Musielak 1998). Thus, the choice
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of the tube field strength is important. Unfortunately,
there are no stellar observations that would allow us
to estimate the value of plasma β = 8πp/B2 for stel-
lar magnetic flux tubes. Similarly, there are no fully
time-dependent radiation-magnetohydrodynamic simula-
tions of stellar magnetic flux tubes that for our range of
stars would supply the value of B and the amount of gas
remaining in these tubes.

As a result, we must proceed by analogy to the Sun.
A tube, completely devoid of gas, but in pressure equi-
librium with the outside gas would have an equipartition
field strength B2

eq/8π = pe, where pe is the gas pressure
outside the tube. Magnetic flux tubes at the solar surface
typically have field strengths of the order of B = 1500 G.
On the other hand, taking pe = 1.17×105 dyn cm−2 from
model C of Vernazza et al. (1981) at the height z = 0
where τ5000 = 1, one gets an equipartition field strength
of Beq = 1716 G. We thus find a ratio B/Beq = 0.875
and consider it as typical for solar and stellar flux tubes.
Since this ratio is likely to vary even on the Sun (e.g.,
Solanki 1993), we have decided to consider three differ-
ent field strengths, namely, B/Beq = 0.75, 0.85, 0.95 for
our stellar flux tubes. This choice of the tube magnetic
field has two main advantages: first, after the correct field
strength is known, the appropriate longitudinal wave flux
can simply be interpolated and second, the dependence
of the longitudinal wave flux on the field strength can be
investigated.

2.3. Wave energy fluxes and spectra

The external pressure fluctuations responsible for squeez-
ing a thin and vertically oriented magnetic flux tube are
assumed to be caused by external velocity fluctuations,
which are modeled by the superposition of a large number
(N = 500) of partial waves

vx(t) =
N∑
n=1

un sin(ωnt+ ϕn) , (1)

where un is the velocity amplitude of these waves, ωn is
the wave frequency, and ϕn = 2πrn is an arbitrary but
constant phase angle with rn being a random number in
the interval [0, 1] (Ulmschneider & Musielak 1998). The
velocity amplitudes un are related to vx and the rms tur-
bulent velocity fluctuations, ut, by

v2
x = u2

t =
1
2

N∑
n=1

u2
n , (2)

and they are calculated from

un =

√
4
3
E′(ωn)∆ω , (3)

where

E′(ωn) =

∞∫
0

E(k)G
(
ωn
kuk

)
dk , (4)

Fig. 3. Extended Kolmogorov spatial turbulent energy spec-
trum E as a function of the dimensionless wave number k/kt

(top), and modified Gaussian turbulent frequency factor G is
plotted versus the dimensionless frequency ω/kuk (bottom).

and where E(k) and G( ω
kuk

) represent an extended
Kolmogorov spatial turbulent energy spectrum and a
modified Gaussian frequency factor, respectively. The rea-
son for this choice of E and G is discussed below. Musielak
et al. (1994) have argued that the spatial turbulent energy
spectrum must be of the Kolmogorov type and that the
main energy carrying bubbles should have a (vertical) size
of the local scale height. In reality, there must be some
modification of the Kolmogorov law to allow for bubbles
larger than this characteristic scale. Since larger bubbles
rise from deeper layers where the scale height is larger, it
is increasingly more difficult for them to penetrate to the
surface. This means that for bubbles with sizes larger than
the scale height, the turbulent energy spectrum should de-
crease. Based on these physical arguments, they proposed
that E(k) should be given by

E(k) =


0 0 < k < akt

b
u2

t
kt

(
k
kt

)
akt ≤ k < kt

b
u2

t
kt

(
k
kt

)−5/3

kt ≤ k ≤ kd

, (5)
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and that a = 0.2 and b = 0.758 for the so-called extended
Kolmogorov turbulent energy spectrum. Here kt and kd

are characteristic wave numbers, which will be specified
in a moment. To study the effect of the turbulent energy
spectrum on the sound generation, these authors have also
discussed two other spectra, namely, the broadened and
raised Kolmogorov spectra. Note that in both of these
spectra the energy in the largest bubbles is artificially in-
creased. It was found that the total acoustic energy did
not change much (approximately by a factor of 2) but, as
expected, the contributions to the high frequency acoustic
power were lowered.

In our present work, we take the extended Kolmogorov
spectrum (see Eq. (5) and Fig. 3) with a linear rise from
k/kt = a = 0.2 to 1, where kt = 2π/Hsurf and Hsurf =
<Teff/(µg), with < being the gas constant and a molecular
weight µ = 1.3. Based on this assumption, the largest
bubbles have the vertical size Hsurf/a = 5Hsurf . Note that
in Eq. (5), kd is the wave number at which the turbulent
cascade ends and that kd = 2π/ld can be estimated by
taking ld ≈ 4 cm (e.g., Theurer et al. 1997).

The modified Gaussian frequency factor is given by

G

(
ω

kuk

)
=

4√
π

ω2

|kuk|3
e−( ω

kuk
)2

, (6)

and displayed in Fig. 3, where uk is computed from

uk =

 2k∫
k

E(k′)dk′

1/2

. (7)

According to Musielak et al. (1994), this form of the fre-
quency factor G is chosen because it has a maximum con-
tribution at ω = kuk. From a physical point of view, this
means that one gets maximum correlation when a bubble
of gas with size λ = 2π/k, moving with velocity uk, has
just traveled by a distance equal to its own diameter at a
time t = 2π/ω = λ/uk = 2π/(kuk). The Gaussian shape
is assumed to account for the fact that most (but not all)
bubbles have similar lifetimes (see Fig. 3).

The velocity fluctuations vx(t) cause turbulent pres-
sure fluctuations p′turb which are responsible for the
squeezing of the flux tube. As shown by Ulmschneider &
Musielak (1998), these fluctuations consist of a time av-
eraged term pturb = 3ρeu

2
t , which augments the external

gas pressure pe, and a fluctuating term pturb = 3ρev
2
x(t),

which gives rise to longitudinal tube waves; note that ρe is
the gas density in the external medium. Combining these
two terms, we get

p′turb = pturb − pturb = 3ρe(v2
x − u2

t ) . (8)

These turbulent pressure fluctuations lead to gas pressure
perturbations p′ inside the tube

p′ =
β

2/γ + β
p′turb , (9)

where β = 8πp0/B
2
0 is the plasma β. Finally, the gas pres-

sure fluctuations inside the tube can be translated into
internal longitudinal velocity fluctuations

v‖ =
c2S
cT

p′

γp0
, (10)

where cS is the sound speed, cT = (1/c2S + 1/c2A)−1/2 the
tube speed, cA the Alfvén velocity, γ the ratio of specific
heats, and p0 the gas pressure inside the tube.

Using γp0 = ρ0c
2
S, where ρ0 is the density inside

the tube, we find that the velocity v‖ can be written as
(Ulmschneider & Musielak 1998)

v‖ =
β

2/γ + β

3ρe(v2
x − u2

t )
ρ0cT

· (11)

The derived v‖ is used as the velocity boundary condition
in our MHD-wave code. As mentioned above, this bound-
ary condition is applied at the height z = 0, where in the
stellar atmosphere outside the tube one has the optical
depth τ5000 = 1.

At this point one might worry that specifying v‖ us-
ing Eq. (11) is inconsistent with the phase of p′ derived
from p′turb. However, we are not interested in the particu-
lar phase of the external pressure fluctuation but only in
its magnitude and time variation which is translated via
Eq. (11) into magnitude and time variation of v‖. The hy-
drodynamic code then takes care of phaseshifts between
p′ and v‖.

Specifying v‖(z = 0, t) at height z = 0, where the
tube is squeezed, we use our time-dependent, magneto-
hydrodynamic Lagrangian code (Herbold et al. 1985) to
calculate the instantaneous internal pressure perturba-
tion p′(z = 0, t). Then, these two variables are used to
calculate the instantaneous wave energy flux, F (z, t) =
v‖(z, t)p′(z, t) and the time-averaged wave energy flux,
F (z, t), also at the height z = 0. The generated flux
represents a mixture of propagating and non-propagating
waves. Since we are only interested in propagating waves,
we separate these waves from the mixture (see Sect. 3.1)
and calculate the propagating wave energy fluxes (see
Sect. 3.3).

It is important to note that our code accounts for phase
differences between v‖ and p′ and that our computations
are adiabatic. In addition, our computational domain is
only a small section of the tube and the generated waves
have relatively small amplitudes. As a result, the process
of shock formation does not take place in our calculations.
Thus

FL ≡ F (z = 0, t) = v‖(0, t)p′(0, t) (12)

represents the wave energy flux carried by longitudinal
tube waves in a stellar atmosphere normalized to the stel-
lar surface. The wave energy spectra are computed by per-
forming Fourier transforms of the obtained instantaneous
wave energy fluxes.
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Fig. 4. Spectrum of partial wave amplitudes un as function of
frequency ω for various ranges ω1 < ω < ωN depending on the
factor f = ωN/ω1 for stars of Teff = 7000 K (top) and 3500 K
(bottom).

2.4. Frequency and wave number limits

The set of frequencies for the partial waves in Eq. (1)
require lower, ω1, and upper, ωN , frequency limits. We
assume that the lower limit is determined by the size
of the largest convective bubbles which come from the
depth zb, where H(zb) = Hsurf/a = 5Hsurf . Hence,
ω1 = kbub with kb = 2π/H(zb) = 2π/(5Hsurf). To de-
termine the velocity ub of these bubbles, we further as-
sume that the form of the turbulent energy spectrum,
E(k), at the depth zb is the same as that given by Eq. (5)
but with ut(zb) = vconv(zb), where vconv(zb) is the con-
vective velocity calculated from the mixing-length model
at the depth zb. Since the wavenumber at zb for these
bubbles is k/kt(zb) = 1, we use Eq. (7) to find that the
velocity of the largest bubbles at depth zb is given by
ub =

√
3b(1− 2−2/3)/2 vconv(zb) = 0.649 vconv(zb).

To establish the upper frequency limit, we computed
the velocity amplitudes of the partial wavesun by choosing
various factors f such that ωN = fω1. The results of these
calculations obtained for stars with Teff = 3500 K and
7000 K and with log g = 5 are presented in Fig. 4, which

Fig. 5. Behavior of the integrand of Eq. (13) as a function
of the dimensionless wave number x for a given partial wave
frequency ωn.

shows the range of un as function of frequency for various
factors f . It is seen that the velocity amplitudes peak at
a certain frequency (these peaks arise from the dominant
temporal correlation in the frequency factor G) and that
the factor f must be large enough (300 or more) to resolve
the entire spectrum. To ensure that the peak is retained
in our computations, we select f = 329 and use N = 500
equidistant frequency points ωn.

Another computational parameter, which affects our
method of wave generation, is the maximum value of the
wave number kMax used in evaluating the integral given by
Eq. (4). As discussed above, one could take kMax = kd. In
practice, a much smaller value is taken. Using the notation
E∗(x) = E(k)kt/u

2
t and u∗k(x) = uk(k)/ut, with x = k/kt,

Eq. (4) can be written as

E′(ωn) =
4ω2

n√
πk3

tut

∞∫
0

E∗(x)e
−(ωn/ut)2

k2
t x

2u∗
k

(x)2

x3u∗k(x)3
dx . (13)

For a given value of ωn, as shown in Fig. 5, we find that
the integrand of this equation has a pronounced peak at
some value xMax which is caused by the frequency factor
G, and that after this peak the integrand drops rapidly,
due to the exponential behavior of G. In order to ensure
that the integration captures the main contribution, we
determine xMax = kMax/kt for each ωn and integrate from
0.2 to 10 xmax using 2000 points.

2.5. Defouw cutoff frequency

The generation and propagation of longitudinal tube
waves is affected by the cutoff frequency for these waves.
Defouw (1976) was first to show that the cutoff is de-
fined by

ωD = 2πνD =
cT
H

√
9
16
− 1

2γ
+
c2S
c2A

(γ − 1)
γ2

, (14)
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Fig. 6. Defouw cut-off frequencies for stars of different surface
gravity log g and effective temperature Teff . There is very little
dependence on the magnetic field strength B.

Fig. 7. Instantaneous velocity vx outside a magnetic flux tube
with field strength B = 0.85Beq at height z = 0 for a star with
surface gravity log g = 5 and effective temperature Teff =
6500 K.

where H is the local pressure scale height, and that only
waves with frequencies higher than this cutoff are prop-
agating waves. Figure 6 shows the Defouw frequency νD

for stars of Teff = 3500 to 7000 K, log g = 3 to 5 and dif-
ferent magnetic field strengths B = 0.75, 0.85, 0.95Beq.
One actually finds that the dependence on B is very small
and the values are the same within the plotting accuracy.

3. Results and discussion

3.1. Velocity power spectra and propagating wave
fluxes

Using the specified frequency limits we have calculated
spectra un of partial waves for stars of different effective
temperatures Teff and gravities g (two examples of such

Fig. 8. Velocity power spectrum of the propagating component
(solid) and the total power spectrum (dashed) for the star with
Teff = 6500 K, log g = 5 and B = 0.85Beq.

spectra are shown in Fig. 4). With a stellar atmosphere
code, assuming a magnetic field strength given by a frac-
tion of the tube equipartition magnetic field Beq, magnetic
tube models are calculated for the considered stars. The
spectra un are then used to compute the turbulent ve-
locity fluctuations vx(z, t) at the squeezing height z = 0,
which corresponds to the optical depth τ5000 = 1 outside
the tube. In Fig. 7, we show this fluctuating turbulent ve-
locity vx, as a function of time t up to t = 2000 s for a
star with Teff = 6500 K and log g = 5, where we have
ut = 1.45× 105 cm/s, ω1 = 13.2 mHz, ωN = 4.35 Hz. Due
to the many partial waves with random phases, vx is very
stochastic in nature which indicates the chaotic character
of the prescribed motions as expected for turbulent veloc-
ity fluctuations. Using Eq. (11) the longitudinal velocities
v‖ inside the tube can then be computed. We now em-
ploy a time-dependent longitudinal wave code using v‖ as
boundary condition and compute the pressure perturba-
tion p′. To avoid switch-on effects and to allow sufficient
time for averaging, these wave computations are extended
up to 35PD, where PD = 1/νD is the Defouw cutoff period
(see Sect. 2.5).

The waves generated in the tube represent a mixture
of propagating (with frequencies higher than the Defouw
cutoff frequency, ωD) and non-propagating (with frequen-
cies lower than ωD) longitudinal tube waves. The reason
for this is that both the turbulent energy spectrum and
the frequency factor of the fluid motions in the nonmag-
netic flow field outside the tube are independent from the
cutoff frequency of the waves inside the tube. Hence, the
total velocity perturbations v‖ generated in the tube by
the outside pressure perturbations p′turb depend on a set
of frequencies that are both above and below the Defouw
cutoff frequency. Since we are only interested in propagat-
ing waves, the non-propagating wave perturbations have
to be removed. To achieve this, we Fourier transform the
time-dependent velocity fluctuations v‖ into the frequency
domain (v‖(ω) = Fv‖(t), with suitable apodising at the
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beginning and end of the time string as well as remov-
ing nonzero time-averages) and compute the correspond-
ing power spectrum, Pv(ω) = v2

‖(ω). The result is repre-
sented in Fig. 8 by a dashed line which at high frequency
is identical to the solid line. It is seen that v2

‖(ω) does
not show isolated frequency contributions but only broad
noise.

To remove the non-propagating component, we intro-
duce a Heaviside step function, H(ω), which is zero below,
and one above, the Defouw frequency ωD and is subse-
quently smoothed over 5 grid points in order to prevent
the generation of spurious high-frequency noise. For the
case considered in Fig. 7, one has a Defouw frequency of
νD = ωD/(2π) = 16.0 mHz, which corresponds to a period
PD = 62.6 s, close to the acoustic cut-off period PA =
4πcS/(γg) = 63.5 s. Applying the inverse Fourier trans-
form to the product v‖(ω)H(ω) gives the propagating lon-
gitudinal velocity component v‖(t) = F−1(v‖(ω)H(ω)),
which is displayed in Fig. 9; its power spectrum is shown
(solid line) in Fig. 8. Comparing vx with v‖ in Figs. 7 and 9
it is seen that the fluctuations of vx are symmetric whereas
the longitudinal velocity v‖ is very one-sided, although the
time-average of these velocity fluctuations is always zero.
This one-sidedness, as already discussed by Ulmschneider
& Musielak (1998), is a consequence of Eq. (11).

Now, the same procedure is applied to the pressure
fluctuations, p′(t). The filtered propagating velocity and
pressure fluctuations, v‖(t) and p′(t), are then multiplied
(see Eq. (12)) and the instantaneous energy flux for prop-
agating longitudinal tube waves is calculated. By remov-
ing the negative values of this instantaneous flux, finally
the upward propagating longitudinal wave energy flux is
obtained. Two examples of the upward propagating fluxes
computed for stars with Teff = 6500 K and 4000 K are pre-
sented in Figs. 10 and 11. They show the highly stochas-
tic nature of the wave generation. Comparison of Figs. 9
and 10 demonstrates that every spike in the longitudinal
wave flux corresponds to a spike in v‖(t). These spikes
are caused by large rapidly moving eddies, which accord-
ing to the Kolmogorov law, have velocities uk ∼ l

1/3
k .

Mathematically, the spikes are described here as a ran-
dom process of constructive interference between some of
the partial waves.

3.2. Wave power spectra

We have also computed wave power spectra for each in-
stantaneous wave energy flux. Some of these spectra are
displayed in Fig. 12, and are for stars with Teff = 4000,
5000, 6000, 7000 K, log g = 5 and B = 0.85Beq. The
low frequency cut-off (at the Defouw frequency) is due
to our removal of the non-propagating part of the velocity
and pressure fluctuations (see Fig. 8). The presented spec-
tra also show changes of the Defouw frequency ωD with
Teff ; these changes are consistent with the results shown
in Fig. 6. It is seen that the spectra reach their maxima
at roughly ω = 2ωD and then decrease relatively slowly

Fig. 9. Instantaneous (apodised) velocity v‖ of the propagating
wave component in the magnetic flux tube with field strength
B = 0.85Beq at height z = 0 for a star with surface gravity
log g = 5 and effective temperature Teff = 6500 K.

Fig. 10. Instantaneous upward longitudinal tube wave energy
flux resulting from the velocity fluctuations shown in Fig. 9.
The stochastic nature of the wave generation is shown.

toward higher frequencies. For a two orders of magnitude
increase in frequency the power decreases by roughly two
orders of magnitude except for the coolest star where the
power decreases more rapidly. This slow decrease at the
high frequency limit of the power spectrum is another re-
sult of the very stochastic nature and the spikyness of the
wave generation process, which produces a large number
of high frequency events. Moreover, it has to be noted that
the power in Fig. 12 actually represents v4

‖ which indicates
that dFL(ω)/dω ∼ dv2

‖(ω)/dω decreases even more slowly
with frequency.

3.3. Time-averaged upward wave energy fluxes

Due to this spikyness of the instantaneous wave energy
fluxes (see Figs. 10 and 11), it is clear that the averaging
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Fig. 11. Instantaneous upward longitudinal tube wave energy
flux for a flux tube with B0/Beq = 0.85 embedded in an at-
mosphere of a star with Teff = 4000 K and log g = 5. The
stochastic nature of the wave generation is very prominent.

Fig. 12. Power spectra of the instantaneous wave energy flux
in magnetic flux tubes with B0/Beq = 0.85 embedded in at-
mospheres of stars with Teff = 7000, 6000, 5000, 4000 K and
log g = 5 as a function of circular frequency ω.

has to be carried out over a long time interval (35PD) to
provide reliable average fluxes. The time-averaged longitu-
dinal upward propagating wave energy fluxes, FL, normal-
ized to the stellar surface and computed for magnetic flux
tubes embedded in atmospheres of stars with Teff ranging
from 3500 to 7000 K and with log g varying from 3 to 5,
are displayed in Fig. 13 and are also given in Table 1. The
values are for flux tubes with magnetic field strengths of
B = 0.75, 0.85 and 0.95Beq at the stellar surface.

Comparing these averaged wave fluxes with the instan-
taneous fluxes of Figs. 10 and 11, we find that the peaks
of the instantaneous fluxes can be orders of magnitude
larger than the average flux. For example, one has FL =
1.0×109 erg cm−2 s−1 for the star with Teff = 6500 K, but
the spikes can be as high as 1.9× 1010 erg cm−2 s−1 (see

Fig. 13. Time-averaged upward longitudinal wave energy
fluxes for late-type stars with different spectral types and lumi-
nosities. The strength of the magnetic field B inside stellar flux
tubes is a parameter and specified as a fraction the equiparti-
tion magnetic field strength, Beq.

Fig. 10); this shows that the wave flux consists essentially
of a series of intense short duration bursts. The disparity
between the instantaneous and average flux is also present
in cool stars. For instance, a star with Teff = 4000 K has
FL = 1.4 × 107 erg cm−2s−1 and spikes of the order of
2.6×108 erg cm−2s−1 (see Fig. 11). The disparity amounts
to a factor of 19 for both stars which clearly indicates that
the averaging for cool stars has to be extended to long time
intervals to obtain stable average wave fluxes.

The extreme spikyness is in good agreement with ob-
servations by Muller (19) and Muller et al. (1994), and
with models by Choudhuri et al. (1993a) and (1993b).
This peculiar nature of the wave fluctuations shows that
it is essential to include nonlinear effects in the longitudi-
nal wave generation.

Figure 13 and Table 1 show that the wave energy gen-
eration depends significantly on effective temperature and
gravity. This is a consequence of the dependence of the
rms velocity ut on Teff and log g displayed in Fig. 2. The
explanation of this behavior has already been given by
Ulmschneider et al. (1996) in their acoustic wave gener-
ation calculations. The main excitation of the magnetic
flux tubes by external turbulence occurs near the top of
the convection zone where the convection flux, ρv3

conv, is
still essentially equal to the total stellar radiative flux,
σT 4

eff , and where the convective velocity vconv has its max-
imum. Lowering Teff at constant log g thus decreases vconv

and ut, while lowering gravity with Teff held constant low-
ers the atmospheric density ρ and increases vconv and ut

(Figs. 1, 2).
Based on the results presented in Table 1, the aver-

age total upward wave energy fluxes obtained for different
values of ut can be approximately fitted by

FL ≈ 4.3 × 10−3 u2.2
t erg cm−2 s−1 , (15)
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Table 1. Rms turbulent velocities ut (cm/s) at the squeez-
ing height and average total fluxes, FL (erg cm−2s−1), for up-
ward propagating longitudinal tube waves in stars with dif-
ferent effective temperatures Teff , gravity log g, and magnetic
field strength B.

Teff log g = 3 4 5

ut (cm/s)

3500 8.2× 104 3.3× 104 1.8× 104

4000 1.2× 105 7.0× 104 2.8× 104

4500 1.5× 105 9.7× 104 5.5× 104

5000 1.8× 105 1.2× 105 7.8× 104

5500 1.5× 105 9.6× 104

6000 1.8× 105 1.2× 105

6500 1.5× 105

7000 1.7× 105

B = 0.75Beq

3500 1.7× 108 2.2× 107 1.6× 107

4000 3.2× 108 1.7× 108 2.2× 107

4500 3.4× 108 1.5× 108

5000 5.1× 108 3.8× 108

5500 8.7× 108 6.8× 108

6000 1.3× 109

6500 2.0× 109

7000 3.3× 109

B = 0.85Beq

3500 8.5× 107 1.2× 107 1.0× 107

4000 1.5× 108 9.2× 107 1.4× 107

4500 2.8× 108 1.8× 108 9.0× 107

5000 2.9× 108 2.2× 108

5500 5.6× 108 3.9× 108

6000 8.8× 108 7.1× 108

6500 1.0× 109

7000 1.4× 109

B = 0.95Beq

3500 2.6× 107 4.0× 106 3.1× 106

4000 4.4× 107 3.0× 107 4.2× 106

4500 5.9× 107 5.9× 107 2.8× 107

5000 8.1× 107 6.9× 107

5500 1.4× 108 1.1× 108

6000 2.1× 108 2.1× 108

6500 2.9× 108

7000 3.6× 108

for stars with log g = 5, and

FL ≈ 6.1 × 10−5 u2.5
t erg cm−2 s−1 , (16)

for log g = 4, where in both cases, it is assumed that B =
0.85Beq. Both the magnitude of the exponent of ut and
the mode of excitation show that longitudinal tube waves
are generated by monopole (or dipole) emission which has
already been recognized by Musielak et al. (1989, 1995)

in their analytical treatment of the generation of these
waves.

The results given in Table 1 also demonstrate that the
generated wave energy flux decreases when the strength
of the tube magnetic field is increased. This well-known
effect has been extensively discussed by Musielak et al.
(1989, 1995) and Ulmschneider & Musielak (1998), and is
attributed to the increasing stiffness of magnetic flux tubes
when its magnetic field strength increases. With greater
field strength, the density inside the tube decreases, and
there is less gas to support longitudinal tube waves (see
Sect. 3.4, for a further discussion). The approximate rela-
tionships describing this effect are

FL ≈ 4.8 × 107 (B/Beq)−7.2 erg cm−2 s−1, (17)

for stars with log g = 5, and

FL ≈ 5.4 × 107 (B/Beq)−7.8 erg cm−2 s−1, (18)

for log g = 4, where in both cases, Teff = 5000 K. It is seen
that the dependence of longitudinal wave energy fluxes
on the magnetic field strength in the flux tubes is very
similar for stars of the same Teff and different gravities. An
interesting result is, that this dependence on the magnetic
field does not change much when stars of different Teff

but similar gravities are considered. This means that the
effects caused by the magnetic field on the generation of
longitudinal tube waves are very similar in all late-type
stars.

3.4. Comparison to previous results

The computed wave energy spectra and fluxes are now
compared with those obtained previously for longitudinal
and transverse tube waves, and also for acoustic waves.

1. In the paper by Ulmschneider & Musielak (1998), we
have used for the Sun the same numerical method as in the
present paper and have compared the computed fluxes to
those obtained analytically by Musielak et al. (1995). That
comparison showed that the numerical fluxes are typically
an order of magnitude larger than those computed ana-
lytically. The difference can be explained by the fact that
the numerical method with its singular excitation point al-
lows for very spiky nonlinear waves and does not take into
account the correlation effects due to simultaneous exci-
tation at many height points (see Sect. 2.1). As a result,
we tentatively regard the fluxes given by Ulmschneider &
Musielak and those presented here as upper bounds for
the amount of longitudinal wave energy generated in the
solar and stellar convection zones.

2. Recently, Musielak et al. (2000) have used their analyti-
cal method to compute the wave energy spectra and fluxes
for longitudinal tube waves generated in convection zones
of stars with Teff ranging from 3000 K to 8000 K with grav-
ities log g = 3 to 5. Comparing their results with those in
the present paper, we find that the conclusions reached
from the comparison of the solar fluxes are also valid for
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Table 2. Average upward longitudinal tube wave fluxes,
FL (erg cm−2s−1) for the Sun (Teff = 5770 K, g = 2.436 ×
104 cm s−2) in tubes of different magnetic field strengths
B/Beq where Beq = 1976 G.

B/Beq FL

0.65 1.5 × 109

0.75 1.2 × 109

0.85 6.6 × 108

0.95 1.9 × 108

other stars, namely, the numerically calculated fluxes are
always higher than those obtained analytically. These dif-
ferences vary with the effective temperature and gravity.
For example in the case B/Beq = 0.85, for log g = 5 the
difference varies from a factor of 20 for Teff = 7000 K
to a factor of 500 for Teff = 3500 K, while for log g = 4
from a factor 20 for Teff = 6000 K to a factor of 200 for
Teff = 3500 K, and for log g = 3 from a factor 20 for
Teff = 4750 K to a factor of 200 for Teff = 3500 K. In the
analytical results the fluxes for a given Teff in the range of
7000 K to 3000 K increases by a factor of 60 for lowering
the gravity by each factor 10. The numerical results vary
much less for a similar change of gravity except for the
stars with Teff = 4000 K and cooler.

The large differences for cool stars can be attributed
to the fact that these stars have very low turbulent ve-
locities, which in the analytical approach are mainly re-
sponsible for the generation of non-propagating waves (see
Musielak et al. 2000 for a detailed discussion). Apparently,
more energy is generated as propagating waves in the nu-
merical approach because larger instantaneous velocities
are imposed on stellar magnetic flux tubes at the excita-
tion height located at τ5000 = 1.

Comparing the numerical and analytical longitudinal
tube wave fluxes we also find that the latter depend on
the magnetic field strength as (B/Beq)−9.3, while the
former as (B/Beq)−7.2 (see Eq. (17)). This implies that
the analytical approach predicts much lower wave energy
fluxes when the stiffness of stellar magnetic flux tubes in-
creases (see Sect. 3.3). On the other hand, larger fluxes
are obtained by using the numerical method because that
method takes the nonlinear effects into account.

3. Important differences are found when comparing our
present work with the solar results of Ulmschneider &
Musielak (1998). By taking the upward propagating longi-
tudinal flux in the present work instead of the total prop-
agating flux in the 1998 paper (as suggested by Reiner
Hammer 2000, private communication), we gain roughly a
factor of two. But there are also differences when compar-
ing our present velocity and magnetic field dependences of
Eqs. (15) to (18) with the results of Eq. (27) in the 1998
paper. The fact that there is a different dependence on the
rms velocity ut is not surprising because in our present
paper ut is fixed for a given star. Therefore Eqs. (15)
and (16) refer to velocities ut of stars of different Teff , while

in Ulmschneider & Musielak, the ut-dependence refers to
variations of ut in a single star, the Sun with fixed Teff .

What is more puzzling at first sight is the large differ-
ence in the dependence of the longitudinal wave flux on the
magnetic field strength B. The solar work of Ulmschneider
& Musielak (1998) differs from our present work in the ex-
ternal atmosphere model. While in the former a semiem-
pirical extended VAL model was used, our present work
for the large variety of stars employs theoretical radiative
equilibrium atmosphere models in which magnetic tubes
of various field strengths are embedded. For solar Teff and
gravity, therefore, different external gas pressures, pe are
found at τ5000 = 1 and consequently different equiparti-
tion field strengths Beq =

√
8πpe. In the VAL model e.g.

one has Beq = 1716 G, while in our present work our solar
atmosphere model has Beq = 1976 G. While this differ-
ence contributes to the different B-dependences, a second
effect is even more important.

Consider the upward longitudinal tube wave fluxes for
a solar model in Table 2. It is seen that these fluxes satu-
rate for low field strengths and show a strong B-variation
when the magnetic field strength is high. Actually tak-
ing the two FL values for B/Beq = 0.85 and 0.95, we
find for the Sun FL ≈ 1.0 × 108(B/Beq)−11.4, while if
we take the values B/Beq = 0.65 and 0.75, we find
FL ≈ 7.6 × 108(B/Beq)−1.5. This clearly shows that the
longitudinal tube wave fluxes depend strongly on B if B is
high, and much less strongly onB whenB is low, which ex-
plains most of the difference to the results of Ulmschneider
& Musielak (1998).

4. Comparing the longitudinal wave energy fluxes by
Ulmschneider & Musielak (1998) with the transverse wave
energy fluxes obtained by Huang et al. (1995) shows that
the latter are approximately 30 times higher than the for-
mer. Since it is much easier to generate transverse than
longitudinal tube waves in stellar convection zones (e.g.,
Spruit & Roberts 1983), we expect stellar transverse wave
energy fluxes to be significantly higher than the longitu-
dinal fluxes computed in this paper. However, the direct
comparison cannot be done presently because nonsolar
stellar transverse wave energy fluxes have not been cal-
culated.

5. Finally, we compare our stellar longitudinal wave fluxes
with the acoustic wave energy fluxes by Ulmschneider
et al. (1996). Note that longitudinal tube waves are
essentially one-dimensional acoustic waves, propagating
along magnetic flux tubes. For the Sun, Ulmschneider &
Musielak (1998) found that the longitudinal wave energy
fluxes are roughly equal to typical solar acoustic wave
fluxes. We now find that the Sun, with an acoustic flux of
FA = 1.4× 108 erg cm−2 s−1 has a factor of 5 greater up-
ward longitudinal wave flux FL = 6.6× 108 erg cm−2 s−1

(see Table 2). The selection of the upward propagating
flux instead of the total propagating flux increases the
longitudinal wave fluxes in the present work.

For the case B/Beq = 0.85 and a mixing length param-
eter α = 2.0 we find now for log g = 5 that the difference
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between the upward propagating longitudinal tube wave
flux and the acoustic flux varies from a factor of 2.0 for
Teff = 7000 K to a factor of 450 for Teff = 3500 K, while
for log g = 4 from a factor 2.0 for Teff = 6000 K to a factor
of 40 for Teff = 3500 K, and for log g = 3 from a factor
3.0 for Teff = 4500 K to a factor of 17 for Teff = 3500 K.
While the longitudinal fluxes for hotter stars are a factor of
two larger, these differences become much larger towards
cool stars because of the much flatter Teff-dependence of
the magnetic waves. The reason for this behavior is that
the acoustic flux has a u8

t -dependence due to quadrupole
sound generation (Lighthill formula) while the longitudi-
nal tube waves have an u2−3

t -dependence (Eqs. (15), (16))
which is due to monopole sound generation.

The comparison clearly shows that the wave energy
flux inside a stellar magnetic tube is much higher than
the acoustic flux in the external medium. In addition, be-
cause the wave in the tube travels in an atmosphere which
has a much lower gas density than the outside medium,
the higher wave energy will lead to a much stronger heat-
ing of these tubes. This enhanced heating can be used to
explain the increased chromospheric activity in magneti-
cally active late-type stars.

4. Conclusions

From our studies of the nonlinear generation of longitu-
dinal waves in stellar magnetic flux tubes, the following
general conclusions can be drawn. As we have been forced
to make many critical assumptions on the property of the
turbulence and the magnitude of the velocity fluctuations
for the different stars we must caution the reader about
the reliability of our numerical flux values.
1. Through nonlinear time-dependent response of stellar
magnetic flux tubes to continuous and impulsive external
turbulent pressure fluctuations, longitudinal tube waves
are generated by the process of monopole emission.
2. The shapes of the computed power spectra are simi-
lar for stars of different effective temperature and gravity.
However, the longitudinal wave flux at a given frequency
is much higher for hot than for cool stars.
3. The total upward longitudinal wave energy flux in-
creases both with higher effective temperature and de-
creasing gravity.
4. The computed wave energy flux depends strongly on
the magnetic field strength B. For a given spectral type
and luminosity class, the flux can be almost one order
of magnitude higher in tubes with a field strength of
B/Beq = 0.75 than in those with B/Beq = 0.95. The
wave energy fluxes depend strongly on B if B is high, and
much less strongly on B when B is low.
5. The longitudinal wave energy fluxes are higher than
the acoustic fluxes computed for the same stars. For cool
dwarfs, the longitudinal fluxes are much higher. This is
due to the u8

t and u2−3
t dependences on the convective ve-

locity for the acoustic and longitudinal tube waves, respec-
tively, and signifies the difference between quadrupole and
monopole sound generation. Because the magnetic tubes

carrying the longitudinal waves have a lower density, the
heating in the tubes is much more dramatic. This can ex-
plain the intense heating in magnetic regions.
6. The total upward wave energy fluxes calculated with
the numerical method are approximately a factor of 20
higher than those obtained analytically. These differences
increase to factors of 200 to 500 for cool dwarfs.
7. The obtained longitudinal wave energy fluxes represent
upper bounds for the realistic wave energy fluxes gener-
ated in stellar atmospheres.
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