H. M. Antia
A. Bhatnagar
P. Ulmschneider

Lectures on Solar Physics

SPIN Springer’s internal project number, if known

Springer
 Berlin Heidelberg New York
 Barcelona Budapest Hong Kong
 London Milan Paris
 Santa Clara Singapore Tokyo
Preface

The idea for these lecture series arose at a Workshop on solar physics which was held at the Inter University Centre for Astronomy and Astrophysics (IUCAA), Pune/India in December 2000. This Workshop aimed to present a comprehensive and up-to-date overview of solar physics for interested students and faculty in other branches of astrophysics. It was intended to show that this field, concentrating on our closest star, is a vital and exciting field of research. For this purpose a number of comprehensive reviews were organised which assumed that the audience would have only a basic physics background but had no prior knowledge about solar physics. The set of lectures covered topics ranging from the solar core to the convection zone, the photosphere, chromosphere, and corona and extending to the solar wind in the interplanetary medium.

During and after the Workshop there was much enthusiasm for this form of presentation and it was felt that these lectures, augmented by including the latest research findings in the field, would be beneficial to a much larger audience. Thus the plan for this book originated which could be realised thanks to the publishers, Springer Verlag.

There are 9 articles based on the lectures given at the Workshop. The article by Chitre on “Overview of Solar Physics” gives an introduction to the whole variety of phenomena of solar physics, the problems and their solutions and salient results. The article on “Instrumentation and Observational techniques related to Solar Physics” by Bhatnagar describes in detail the principles of solar instrumentation normally used to take simple white, monochromatic and spectroscopic observations. Practical methods to measure important basic parameters, like area, position and the classification of sunspots are described in detail. Antha’s article on “Solar Interior and Seismology” describes the solar interior, the technique of helioseismology and how this new technique allows a determination of the internal structure and dynamics of the Sun and constrains the theories of stellar structure, evolution and angular momentum transport. Ambastha’s article on “The Active and Explosive Sun” gives an overview of the highly time-dependent phenomena in the photosphere, chromosphere and corona of the Sun and provides some theoretical models of the solar flares. Hasan’s article on “Magnetic Flux Tubes and Activity on the Sun” discusses the generation, storage and emergence of magnetic fields in the form of small-scale flux tubes and examines their role in heating of the chromosphere. Ventakrishnan’s article on “Solar Magnetic Fields” gives a theoretical overview of the generation of
magnetic fields by the dynamo mechanism, the general magnetic field topology and how the magnetic fields are measured. Ulmschneider’s contribution on “The Physics of Chromospheres and Coronae” discusses why all stars like the Sun have hot outer chromospheric and coronal layers. It identifies the heating mechanisms and dynamical processes which take place both in the presence and absence of magnetic fields. The article by Dwivedi on “The Solar Corona” gives a general overview of the solar corona, how it is observed and what the physical processes leading to its formation are. Manoharan’s contribution on “The Solar Wind” finally describes the generation and measurement of the solar wind derived from in situ observations by spacecraft and interplanetary scintillation studies.

We hope that by reading these lectures, interested people, amateurs, graduate and postgraduate students will be motivated to take up solar physics as an area of research, and share our excitement about the wonders of our nearest star – the Sun.

We are thankful to the Inter University Centre for Astronomy and Astrophysics, Pune for organising and hosting this Workshop on Solar Physics.

Mumbai, Udaipur, Heidelberg
February 2003

H. M. Antia
A. Bhatnagar
P. Ulmschneider
Contents

Overview of Solar Physics

S. M. Chitre ... 1
1 Introduction ... 1
2 Composition and Structure of the Sun 3
 2.1 Equations of Stellar Structure 4
 2.2 The Standard Solar Model .. 7
3 Probes of the Sun’s Interior .. 10
 3.1 The Solar Neutrino Problem 10
 3.2 Helioseismology ... 14
 3.3 Rotation Rate in the Solar Interior 18
4 Magnetically Controlled Solar Phenomena 20
References .. 24

Instrumentation and Observational Techniques in Solar Astronomy

Arvind Bhatnagar .. 27
1 Introduction .. 27
2 How to Observe the Sun? .. 28
 2.1 Observing the Photosphere ... 29
 2.2 Observation of the Chromosphere 32
 2.3 Observation of the Corona .. 32
3 Solar Instrumentation ... 34
 3.1 Solar Telescopes ... 34
 3.2 Coronographs .. 39
 3.3 Spectrographs, Spectrohelioscopes and Spectroheliographs .. 39
 3.4 Narrow Band Filters .. 48
 3.5 Solar Image Guider ... 52
4 Solar Observations ... 53
 4.1 Solar Seeing ... 54
 4.2 Sunspot Observations ... 55
 4.3 Development of Sunspots and Sunspot Groups 59
 4.4 Classification of Sunspots and Sunspot Groups 61
 4.5 Sunspot Number ... 64
 4.6 Position Determination of Solar Features 67
5 Solar Magnetic Fields ... 73
 5.1 Sunspot Magnetic Field ... 73
VIII Contents

5.2 General Magnetic Field ... 75
5.3 Velocity Field Observation .. 77
5.4 Leighton’s Spectroheliographic Technique for 2-D Velocity and Magnetic Field maps ... 78
5.5 Vector Magnetic Field .. 78
6 Solar Data From the Internet ... 78
References ... 79

Solar Interior and Seismology
H. M. Antia ... 81
1 Introduction .. 81
2 Observations of Solar Oscillations 82
3 Properties of Solar Oscillations 84
4 Seismic Inferences of the Solar Structure 92
 4.1 Inversion Techniques .. 93
 4.2 Inversion Results ... 96
 4.3 Inversion for Temperature and Chemical Composition 101
5 Rotation Rate in the Solar Interior 105
 5.1 Inversion for Rotation Rate 105
 5.2 Inversion Results ... 109
 5.3 The tachocline ... 112
 5.4 Meridional Flow .. 114
6 Asphericity in Solar Structure 115
7 Temporal Variations in the Solar Interior 116
 7.1 Temporal Variations of the Solar Radius 117
 7.2 Temporal Variations of the Rotation Rate 119
8 Summary ... 121
References ... 122

The Active and Explosive Sun
Ashok Ambastha ... 128
1 Introduction .. 128
2 The Signposts of Solar Activity 132
3 Centres of Activity in the Solar Atmosphere – The Sunspots .. 134
4 Sunspots and Solar Rotation 136
5 The 11 Year Solar Activity Cycle 139
 5.1 Mapping Sunspot Positions During Activity Cycles: The Butterfly Diagram ... 140
 5.2 Changing Face of the Sun over the Solar Cycle 142
 5.3 Solar Activity Cycles of Long Periods 143
 5.4 Babcock’s Model of the Solar Activity and the Magnetic Cycle ... 144
6 Explosive, Eruptive Phenomena on Sun 146
 6.1 Solar Flares ... 146
 6.2 Flare Classification ... 152
 6.3 Standard Flare Model and the Main Phases of Flares 154
 6.4 Fundamental Questions about Flares 154
Contents

6.5 Potential and Force-free Magnetic Fields .. 156
6.6 Solar Corona!e Plasma Conditions and Magnetic Reconnection 159
6.7 A Flare Model as Inferred from the Recent Observations 160
6.8 Solar Quakes Produced by Large Flares ... 162
6.9 Eruptive Prominences, and Filaments ... 162
6.10 Coronal Mass Ejections (CMEs) – Large Scale Eruptions of Mag-
netic Clouds from the Sun .. 168
References ... 172

Magnetic Flux Tubes and Activity on the Sun
S. S. Hasan ... 175
1 Introduction ... 175
2 Magnetic Fields in the Solar Interior and Flux Emergence 176
 2.1 Solar Dynamo ... 176
 2.2 Seat of the Dynamo ... 177
 2.3 Flux Emergence ... 178
3 Nature of the Surface Magnetic Field .. 180
 3.1 Formation of Intense Flux Tubes in the Photosphere 181
 3.2 Thermal Structure of Intense Flux Tubes 187
4 Dynamical Processes and Heating of the Magnetic Chromosphere . 190
 4.1 Longitudinal and Transverse Waves in Flux Tubes 192
 4.2 Linear Model ... 193
 4.3 Chromospheric Heating .. 194
 4.4 Nonlinear Results .. 195
5 Summary ... 199
References ... 200

Solar Magnetic Fields
P. Venkatakrishnan .. 204
1 Introduction ... 204
2 Magnetohydrodynamic Approximation in Stellar Plasmas 205
3 Generation of Magnetic Fields ... 207
 3.1 Turbulent Dynamo and Mean Field Magnetohydrodynamics 208
 3.2 Dynamo in the Overshoot Layer .. 213
 3.3 Babcock-Leighton Picture and Hybrid Models 214
 3.4 Inputs from Helioseismology ... 215
4 Force Free Equilibria, Topology, Reconnection and Flares 216
5 Measurement of the Solar Magnetic Field 219
 5.1 The Zeeman Effect ... 219
 5.2 The Hanle Effect .. 221
 5.3 The Stokes Parameters .. 222
 5.4 Subsystems for Polarimetry .. 223
 5.5 Conversion of Polarisation Maps into Magnetograms 230
6 Concluding Remarks .. 231
References ... 231
Contents

The Physics of Chromospheres and Coronal Emissions

P. Ulmschneider

1. Introduction, What are Chromospheres and Coronal Emissions? 234
2. Heating Mechanisms .. 236
3. Hydrodynamic Heating Mechanisms 238
4. Magnetic Heating Mechanisms .. 241
 4.1 Mode-coupling .. 244
 4.2 Resonance Heating ... 246
 4.3 Turbulent Heating ... 247
 4.4 Compressional Viscous Heating 248
 4.5 Ion-cyclotron Resonance Heating 249
 4.6 Landau Damping ... 249
 4.7 Resonant Absorption ... 249
 4.8 Phase-mixing .. 250
 4.9 Reconnection in Current Sheets 250
5. Acoustic Energy Generation ... 254
6. Theoretical Chromospheres .. 257
7. Semi-empirical Chromosphere Models 261
8. Extremely Time-dependent Chromospheres 262
9. Realistic Chromospheres .. 270
10. Magnetic Chromospheres ... 275
11. Conclusions .. 280
References .. 280

The Solar Corona

Bhola N. Dhivedi

1. Introduction .. 284
2. History of Coronal Studies ... 287
3. X-rays and Ultraviolet Emission from the Solar Atmosphere 289
4. Coronal Heating ... 292
 4.1 Coronal Heating by Nanoflares 295
 4.2 Coronal Heating by Waves 297
 4.3 Fieldwork .. 298
5. Conclusions .. 300
References .. 300

The Solar Wind

P. K. Manoharan

1. Introduction .. 302
2. The Hot Solar Corona .. 302
 2.1 Coronal Magnetic Field .. 303
 2.2 Coronal Heating ... 305
3. Coronal Expansion/Solar Wind 306
4. Interplanetary Magnetic Field 308
5. Solar Wind Measuring Techniques 308
 5.1 Interplanetary Scintillation 309
Contents

6 Solar Wind in the Inner Heliosphere 313
 6.1 Quasi-Stationary Solar Wind 314
 6.2 Radial Evolution of the Quasi-stationary Wind 315
 6.3 Latitudinal Variations ... 317
 6.4 Density Turbulence Spectrum 319
7 Solar Wind Transients .. 321
 7.1 Co-rotating Interaction Regions 321
 7.2 Coronal Mass Ejections ... 323
References .. 327

Index ... 331
List of Contributors

Ashok Ambasta
Udaipur Solar Observatory
Physical Research Laboratory
P. O. Box No. 198
Udaipur 313001, India
ambasta@prl.ernet.in

S. M. Chitre
Department of Physics
University of Mumbai
Mumbai 400001, India
kumarchitre@hotmail.com

Bhola N. Dwivedi
Department of Applied Physics
Institute of Technology
Banaras Hindu University
Varanasi 221005, India
dwivedi@banaras.ernet.in

H. M. Antia
Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai 400005, India
antia@tifr.res.in

Arvind Bhatnagar
Udaipur Solar Observatory
Physical Research Laboratory
P. O. Box No. 198
Udaipur 313001, India
arvind@prl.ernet.in

S. S. Hasan
Indian Institute of Astrophysics
Bangalore 560034, India
hasan@iiap.ernet.in

P. K. Manoharan
Radio Astronomy Centre
Tata Institute of Fundamental Research
P. O. Box 8
Udhagamandalam (Ooty) 643001,
India
mano@racooty.ernet.in

P. Ulmschneider
Institut für Theoretische Astrophysik
Univ. Heidelberg
Tiergartenstr. 15
69121 Heidelberg, Germany
ulms@ita.uni-heidelberg.de

P. Venkatakrishnan
Udaipur Solar Observatory
Physical Research Laboratory
P. O. Box No. 198
Udaipur 313001, India
pvk@prl.ernet.in