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Abstract: The chapter discusses waves and oscillations in the nonmagnetic
(internetwork) chromosphere and in the magnetic network. In the internet-
work medium, the waves are acoustic; and in the magnetic network, which
is idealized in terms of thin magnetic flux tubes, the waves are transverse
and longitudinal tube waves. Because of the density stratification the waves
are dispersive and have cutoffs: for the acoustic waves in the nonmagnetic
medium and for longitudinal flux tube waves, the period is about three
minutes; and for transverse flux tube waves, it is about seven minutes for
typical values of the observed strength of the magnetic field.

Wave propagation in the nonmagnetic medium is described in terms of
plane and spherical waves and excitation by means of impulsive excitation;
and for flux tube waves, by large single impulses and by a fluctuating velocity
field. Observational signatures of the various wave types and their effect on
chromospheric heating are considered. It is concluded that calcium bright
points in the nonmagnetic chromosphere are due to spherical acoustic waves;
and that in the magnetic network, transverse waves are more important for
the oscillations than longitudinal waves and may penetrate into the corona,
giving rise to some coronal heating.

1.1 Introduction

The quiet chromosphere is bifurcated into magnetic and nonmagnetic re-
gions. Although magnetic fields are found everywhere on the Sun they are
dynamically unimportant in the interior of supergranulation cells (CI). In
the magnetic network on the cell boundary (CB), fields are of decisive im-
portance for the nature of the waves and their propagation characteristics.
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In the magnetic network, the field occurs in concentrations of intense
magnetic flux that are idealized as tubes in which the contribution of the
field to the pressure may exceed that of the gas. A typical photospheric
value of the plasma—f3 (the ratio of gas to magnetic pressure, 3 = 87p/B?)
is # = 1/3, for which the gas density in a thin tube is lower than in the
ambient medium by a factor of 4.

In the thin-tube approximation, vertical tubes in pressure equilibrium
with the outside medium expand upward to conserve magnetic flux. From
a low filling factor of 1% in the photosphere the tubes spread to 15% in the
layers of formation of the emission features in the H and K lines of ionized
calcium (at a height of 1 Mm) and to 100% in the magnetic canopy, often
defined as the region above the layer where 3 = 1. At some height the
idealization of a thin flux tube ceases to be useful.

The nature of the waves that can exist in these two media depends on the
magnetic field. In the field-free CI, the restoring forces in the wave equation
are pressure and gravity. In the upward direction, only acoustic waves can
propagate. The chromospheric oscillations in the CI are therefore due to
acoustic waves. In oblique directions, gravity-modified acoustic waves can
also contribute (Skartlien, Stein & Nordlund 2000). In flux tubes in the
magnetic network, all three restoring forces, namely, pressure, gravity and
the magnetic field, can act. But the only important wave types appear to be
transverse and longitudinal flux tube waves; the former are mainly magnetic,
and the latter, mainly acoustic. Internal gravity waves appear to play no
role in any of the chromospheric oscillations. The main effect of gravity is
to provide the stratification of the atmosphere which, in turn, is responsible
for the dispersion of all waves traveling in the vertical direction, and hence
for the existence of cutoffs and limits on the frequency ranges in which the
waves can either propagate or are evanescent.

In the cell interior, acoustic waves have a period of three minutes (cor-
responding to a frequency of ¥=>5 mHz), and kink waves in the magnetic
network have typical periods of seven minutes (v=2.5 mHz), depending on
the strength of the magnetic field; longitudinal flux tube waves also have
three-minute period and only a weak dependence on field strength. In all
these cases, the waves are propagating if their frequency is higher than the
respective cutoff frequency, and evanescent if it is lower.

Chromospheric oscillations are seen most prominently in intensity en-
hancements of the emission peaks in the cores of the K and H lines of
Ca II. In the nonmagnetic cell interior, the bright phase of the oscillations
gives rise to Ko, and Ho, bright points, so called because of the pronounced
asymmetry of the line profile which favors the blue emission peaks in the
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line cores; these bright regions are also referred to as calcium grains. In
the magnetic network, the corresponding features are called network bright
points; their line profiles are much less asymmetric.

Oscillations reveal the properties of the medium through which they prop-
agate. But whereas p—mode oscillations of the solar interior have low damp-
ing and long life time, for some modes corresponding to thousands of wave
periods, and therefore reveal the internal solar structure in great detail, chro-
mospheric oscillations are highly damped by shock dissipation and therefore
live only for intervals of the order of a few times the wave period before they
must be excited again. Chromospheric oscillations tell us mainly about the
state of the atmosphere in the layers where the waves arise. An important
difference between internal solar and chromospheric oscillations is that the
former are resonance oscillations whereas the characteristic frequencies of
chromospheric oscillations owe their values to the existence of cutoffs of dis-
persive waves propagating upward (or downward) in a stratified medium,
in which waves with wavelengths much longer than the density scale height
propagate with reduced group velocity and, eventually, with the group ve-
locity approaching zero and the phase velocity approaching infinity; in that
limit, a wave is evanescent and transports no energy (in the linear limit),
and the atmosphere swings in unison, either up and down (acoustic waves)
or sideways (transverse flux tube waves).

1.2 Oscillations in the Nonmagnetic Chromosphere

The most important lines for the three-minute oscillations in the nonmag-
netic chromosphere have been the H and K lines, with residual central inten-
sity of 4% the strongest lines in the visible solar spectrum. Seminal papers
on ground-based observations of oscillations are: Liu (1974); Grossmann-
Doerth, v.Uexkiill & Kneer (1976); Cram & Damé (1983); v.Uexkiill &
Kneer (1995); and on space observations by Carlsson, Judge & Wilhelm
(1997). The only empirical model of chromospheric oscillations is by Carls-
son & Stein (1994, 1997). Important theoretical papers are Lamb(1908),
Fleck & Schmitz (1991) and Rossi et al. (1991) for the analytic solution of the
wave equation for impulsive excitation of oscillations in a one-dimensional
(1D), stratified, isothermal atmosphere; Kalkofen et al. (1994) for the nu-
merical solution in an isothermal atmosphere and Sutmann & Ulmschneider
(1995) in an empirical chromospheric model; and Kato (1966) and Bodo et
al. (2000) for the analytic solution of the wave equation in three-dimensional
geometry.

The wave period was proposed to be due to standing waves in the cav-
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ity formed by the chromospheric temperature structure (Leibacher & Stein
1981). That explanation became untenable with the simulation of bright-
point oscillations in the dynamical model of Carlsson & Stein (1994). The
excitation of oscillations was proposed to be due to internal p—modes (e.g.
Rutten & Uitenbroek 1991, v.Uexkiill & Kneer 1995, Carlsson et al. 1997),
which were presumed to generate upward-propagating waves by superposi-
tion. Such a model calls for a source region with a linear size of the order
of the wavelength of p—modes, approximately 2,000 km. But observations
of the horizontal size of the propagation channel in which the waves respon-
sible for the oscillations travel upward suggest a size varying between the
width of an intergranular lane in the photosphere (Sivaraman, Bagare &
November 1990), about 100 km, and about 6,000 km in high layers of the
chromosphere (Carlsson et al. 1997). The actual area of the excitation region
would thus be smaller by two orders of magnitude than that required for
p—mode excitation. This mechanism also fails to explain the wave period.

The excitation of bright-point oscillations is still an unsolved problem.
The most plausible explanation for the wave period is that it is the acoustic
cutoff period in the upper photosphere (discussed below).

Although both calcium bright points and chromospheric heating are caused
by acoustic waves, the paucity and location of bright points suggest that they
arise in a process that is different from that of the general heating of the
chromosphere. For a ratio of Ix,,/I = 1.5 of the intensity maximum at the
Ky, emission peak and the average intensity in the cell interior (in a band
of 0.3 A centered on Ky, ), v.Uexkiill and Kneer found that bright points
occur only in 5% to 10% of the CI. Nevertheless, the process of heating the
chromosphere is likely to cause some motions of low amplitude with a period
of three minutes since the waves generated in the convection zone by the
Lighthill mechanism carry a substantial signal at the acoustic cutoff period
(Theurer, Ulmschneider & Kalkofen 1997). Thus, a plausible scenario of
three-minute oscillations consists of calcium bright points that are caused
by discrete excitation processes in intergranular lanes, and of a low-level
background of waves with the cutoff period as a signature that are caused
by the general heating of the chromosphere.

The oscillations seen in calcium bright points reveal the dynamics and the
underlying structure of the chromosphere. An instructive example is the K
line observed by Liu (1974) and shown in Figure 1.1 at three phases during
the evolution of a wave. At time t = 0, the wave is deep in the photosphere
and has low amplitude. The intensity profile is symmetric and shows the
temperature structure of the undisturbed atmosphere, mapped from depth
to wavelength. Following the line intensity inwards from the wings, the
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Fig. 1.1. Figure 1. Profile of the K line at three phases in the evolution of an
oscillation — from Liu (1974).

temperature drops through the photosphere to symmetrically placed min-
ima in the K line profile, which are formed at the temperature minimum
between photosphere and chromosphere. The intensity then rises inward,
corresponding to the outward rise of the kinetic temperature, until photons
from the line can escape from the atmosphere. At that point the line profile
forms the K9 maxima, where the excitation temperature of the two combin-
ing states in the line transition separates from the kinetic temperature and
the source function drops below the Planck function; the intensity continues
to drop to the line center, forming the K3 minimum.

At the time of £ = 120 s, the wave has reached the layer of formation of
the K9 maxima and led to a very large, asymmetrical increase of the inten-
sity of the blue emission peak, Ko,. At the same time, the K3 minimum is
shifted towards the red side of the spectrum. The simultaneous intensity en-
hancement at Ko, and the redshift of K3 is the signature of Ko, bright-point
oscillations that must be explained by a model of chromospheric dynamics.

The empirical dynamical model by Carlsson & Stein (1994) reproduced
these features. Starting from cospatial observations by Lites, Rutten &
Kalkofen (1993) of the Doppler velocity of a photospheric Fe T line and
of the simultaneous evolution of the H line, Carlsson & Stein drove the
lower boundary in their simulation with the observed Doppler velocity. The
comparison of the simulated and observed H line intensities as functions
of wavelength and time (Figure 1.2: profiles, respectively, on the left and
the right) shows broad agreement in the signature feature for the simulated
bright point, namely, the simultaneous occurrence of enhancement of the Hoy,
intensity peak and redshift of the line center Hs. These features are formed
when the upward-propagating shock wave, which heats the layer where the
Hy emission peaks are formed, meets downward-streaming gas above this
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Fig. 1.2. Figure 2. The H line intensity as a function of wavelength and time: left
panel, simulated; right panel, observed — from Carlsson (1994).

layer, which had been lifted upwards by the preceding wave. Although this
feature has been explained before, from a study of waves in an isothermal
atmosphere (Kalkofen et al. 1994), the significance of the Carlsson & Stein
simulations is that the intimate relation between waves in the photosphere
and subsequent dynamics in the chromosphere was shown in an empirical
model. This model established that calcium bright points are caused by
propagating acoustic waves and the intermittent formation of shocks. The
value of this demonstration is not diminished by the flaws of the model,
which are apparent in Fig. 1.2, which is taken from the frontispiece of the
Oslo proceedings booklet.

There are three differences between the simulated and the observed inten-
sities. They are the late arrival of the shock in the layer of formation of the
blue emission peak, the Hj3 intensity formed above the shock that may be
low by an order of magnitude, and the Ho, intensity at maximal brightness
that may be high by an order of magnitude.

The reason for the late arrival of the shock is not understood. The low
intensity of the line center was traced to the intermittent heating in the
dynamics and the absence of general heating (Kalkofen, Ulmschneider &
Avrett 1999, Kalkofen 2001). And the excess intensity at Ho, is due to the
topology of wave propagation in bright-point oscillations, which the model
assumes to be in the form of plane waves, where the energy of the waves
is trapped in vertical cylinders, whereas the Sun shows them to be in the
form of spherical waves, where the energy spreads horizontally in upward
propagation. This spreading is apparent in the size of the area disturbed
by the shock and varies from the 100 km in the photosphere, noted above,
to 0.5 to 1 Mm at the base of the chromosphere (Foing & Bonnet 1984),
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to 2 to 3 Mm in the layer of formation of the Hy, emission peak (Cram &
Damé 1983).

The main properties of the oscillations can be understood from the lin-
earized hydrodynamic equations. The (1D) equations for plane waves illu-
minate the role played by the acoustic cutoff frequency, and the 3D solutions
show the horizontal spreading of the wave energy.

For the discussion of the equations it is convenient to separate the ex-
ponential variation of the physical quantities and to write the equations
in terms of their corresponding “reduced” quantities. Thus, instead of the
physical velocity v(z,t) in terms of height z and time ¢ we write the hydro-
dynamic equations for a reduced velocity u(z,t), defined by

v(z,t) = u(z,t) exp(z/2H). (1.1)

The equation expresses the property that the physical velocity grows in the
vertical direction with an e-folding distance of twice the density scale height.
This vertical growth compensates for the exponential decrease of the density
and insures that energy flux is conserved.

The hydrodynamic equations for dimensionless variables 2z’ and #' can be
cast into the form of a wave equation, called Klein-Gordon equation,

2o
2" a2

With the ansatz u(z’,t') ~ exp(ikz’ —iwt’), we obtain the dispersion relation

u=0. (1.2)

for disturbances propagating in this stratified, isothermal medium,
E=uw? -1, (1.3)
and the phase and group velocities

L w w _ Ow
Uph—E—ﬁ, ’Ug—%

At the cutoff frequency, w = 1, the phase velocity becomes infinite and the

=1/vph, UphUg = 1. (1.4)

group velocity becomes zero. The product of phase and group velocities
equals the square of the sound speed, which is unity here.

The analytic solution of the equations for a velocity pulse (see Kalkofen
et al. 1994), which is due to Lamb (1909), shows the pulse propagating with
sound speed in the vertical direction, followed by a wake, which in the limit
of late times results in a decaying oscillation at the cutoff frequency,

cos(t')
Vi

It is interesting to note that transverse and longitudinal waves in a thin

u(2' 1) o (1.5)
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flux tube embedded in an isothermal medium obey the same wave equation
(1.2); only the transformation (1.1) is modified to allow for the upward
expansion of the flux tube to conserve magnetic flux, leading to an e-folding
distance for the growth of the velocity amplitude of tube waves of 4H.

The three-dimensional hydrodynamic equations describe internal gravity
waves in addition to acoustic waves (see Kato 1966). But internal gravity
waves are excluded from the vertical direction, and carry little energy in the
horizontal direction. Acoustic waves in the horizontal direction suffer only
geometrical dilution and are therefore also unimportant for chromospheric
oscillations. In the vertical direction, the growth of the “wave amplitude”
(for pressure p or v?) is still proportional to the factor exp(z/H).

There are two major differences between solutions for acoustic waves in
1D and 3D. In the spherical case, the wave amplitude decreases with the
square of the distance from the origin suggesting flux conservation through
a spherical surface, and varies along the perimeter of the circle about the
source. This is seen in the upper panel of Figure 1.3, where the top curve
displays the pulse at the time when its apex has reached the reference height
of 15 ‘H that represents the layer of formation of the Ho, and Ko, emission
peaks, showing the wave amplitude increasing from the pole to the equator
(and decreasing again to the south pole). For the oscillations in the wake of
the pulse, the energy is reduced — in the third wave, for example, by an order
of magnitude — and the amplitude decreases with increasing zenith angle.
Thus, the profile of the upward-propagating wave narrows and more energy
is concentrated towards the axis of the channel. The lower panel shows
the same curves, but with the exponential factor exp(z/H). The steeper
decrease of the amplitudes with angle reflects the lower height reached by
parts of the wave at larger angle.

The results from the linear, analytic solution cannot be carried over to the
nonlinear regime immediately. In the 1D case, for example, the nonlinear
solution no longer has most of the energy in the initial pulse, but in the
second or third oscillation in its wake. Similarly, in the numerical simulation
of bright-point dynamics by Carlsson & Stein (1994), a calculation for the
atmosphere initially at rest shows little correspondence with the observations
until a time interval of the order of the wave period.

Among the important results of the 3D calculation is the increase of the
phase velocity for the oscillation behind the pulse (only in the vertical di-
rection), the finite width of the propagation channel, and the narrowing of
the channel for the later oscillations, with some modification expected for
the nonlinear behavior of the waves on the Sun. A prediction from the 3D
solution is that a bright point would begin at the center and grow outward.
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Fig. 1.3. Figure 3. Wave amplitudes in arbitrary units as functions of polar angle
in a vertical cut, at the times when the apex of the pulse (top curve) and the apices
of the waves in its wake (ordered below the pulse) have reached the target height.
Top panel: wave amplitudes without the exponential-growth factor; bottom panel:
with the factor — from Bodo et al. (2000).

It would fade the same way and leave behind a bright ring. Another unique
feature of calcium bright points in the field-free medium is that the axis of
the propagation channel is controlled only by the direction of gravity, and
should therefore be vertical, without being inclined as can be the case for
waves propagating in magnetic flux tubes.

1.3 Oscillations the Magnetic Network

Ground-based observations of the Ca IT H and K lines, which are formed
in the low chromosphere, show similar emission from network and internet-
work regions. While instantaneous bright points from the internetwork may
outshine network bright points (see Fig. 1 of Lites et al. 1993), the long-
time average intensity shows total calcium emission from the network to be
more important (see Fig. 1 of von Uexkiill & Kneer 1995). In addition to
the higher intensity of the network bright points, their period is longer, ~ 7
minutes (Lites et al. 1993, Curdt & Heinzel 1998), and the time variation of
their intensity profile is much less peaked.

Space-based observations of UV spectral lines and continua provide im-
portant constraints on the structure and dynamics of the chromosphere and
chromosphere-corona transition region. Observations with SUMER indicate
that network regions are brighter than internetwork regions and show strong
oscillatory power only at lower frequencies (Judge, Carlsson & Wilhelm
1997). Transition region lines from the network show persistent redshifts
and the line widths indicate the presence of subsonic, unresolved nonther-
mal Doppler motions of several kilometers per second (Dere & Mason 1993;
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Peter 2000, 2001). Furthermore, there is a strong correlation between high
intensity and redshift (Hansteen, Betta & Carlsson 2000). Curdt & Heinzel
(1998) found evidence for upward propagating waves within the network
(also see Heinzel & Curdt 1999). However, the wave modes responsible for
these oscillations have not yet been identified.

In this section, we shall focus on dynamical processes occuring in the
network and their role in heating the magnetic chromosphere. A complete
model must explain the nature and period of the oscillations observed in the
network as well as its heating. Furthermore, the model must be compatible
with observations.

The magnetic field in the network can be idealized in terms of isolated
vertical flux tubes in the photosphere which fan out with height. It is well
known that flux tubes support a variety of wave modes. The detailed be-
havior of these modes for thin flux tubes has been extensively studied (for
a recent review see Roberts and Ulmschneider 1998). The modes that we
shall be concerned with are the sausage or longitudinal mode (Defouw 1976;
Roberts & Webb 1978) and the kink or transverse mode (Ryutov & Ryutova
1976; Parker 1979; Spruit 1982).

The earliest studies on MHD wave excitation were based on extensions of
the Lighthill (1952) mechanism (Osterbrock 1961; Musielak & Rosner 1987;
Collins 1989, 1992). More recently, Musielak et al (1989, 1995), Huang,
Musielak & Ulmschneider (1995) and Ulmschneider & Musielak (1998) ex-
amined the generation of longitudinal and transverse waves in a flux tube
through turbulent motions in the convection zone. An alternative scenario,
based on observations of granule motions and G-band bright points in the
network by Muller & Roudier (1992) and Muller et al. (1994), suggests
that transverse waves can be generated through the impulse imparted by
granules to magnetic flux tubes (Choudhuri, Auffret & Priest 1993; Choud-
huri, Dikpati & Banerjee 1993; Steiner et al 1998). These investigations
suggested that there is sufficient energy flux in MHD waves to account for
chromospheric heating.

In this work, we consider in some detail consequences of MHD wave ex-
citation in magnetic flux tubes through the buffeting action of convective
motions (granulation) in the surrounding medium. Such waves are likely
to play an important role in heating the magnetic chromosphere and also
possibly the corona.

Consider a vertical magnetic flux tube extending through the photosphere,
which we assume to be “thin” and isothermal. It is convenient again to use
the “reduced” displacement, Q(z,t), which for a thin flux tube is related to
the physical Lagrangian displacement, &(z,t), by Q(z,t) = (2, t)e */4H.
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It can be shown that Q, (o« = & for transverse waves and a = X for
longitudinal waves) satisfies a Klein-Gordon equation (Hasan and Kalkofen
1999, henceforth HK), similar to the case of the non-magnetic medium.

Qa1 8Qa
022 2 ot?

~ k3Qa = Fa, (1.6)

where ko = wq/Ca, wa is the cutoff frequency for the wave and ¢, is the
wave propagation speed in the medium and F, is a forcing function (see
HK for details). The speeds for the transverse and longitudinal waves are,

respectively,
2 = 2 o
K ’y 1 + 26 bl
2= c
AT 1446/2°

where ¢, is the sound speed, 7 is the ratio of specific heats (y = 5/3),
3 = 8np/B?, p is the gas pressure inside the tube and B is the magnitude
of the vertical component of the magnetic field on the tube axis.

The cutoff frequencies for transverse and longitudinal waves are, respec-

tively,
2 g 1
_ 9 1.7
YR T SH1 126 (1.7)
2_ 2 A 3 1.0 18
WA—WBv+W(Z—;)a (1.8)

where w%,, = g? (v — 1)/c? is the Brunt-Viisili frequency.

The solutions of Eq. (1.6) can easily be developed using Green’s func-
tions (for details see HK). The generic behavior for the impulsive excitation
of transverse and longitudinal waves by granular motions in the magnetic
network is the same: the buffeting action due to a single impact excites
a pulse that propagates along the flux tube with the kink or longitudinal
tube speed. For strong magnetic fields (8 < 1), most of the energy goes
into transverse waves, and only a much smaller fraction into longitudinal
waves. After the passage of the pulse, the atmosphere gradually relaxes to
a state in which it oscillates at the cutoff period of the mode. These results
show that the first pulse carries most of the energy and after this pulse has
passed the atmosphere oscillates in phase without energy transport. The
period observed in the magnetic network is interpreted as the cutoff period
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Fig. 1.4. Time variation of the vertical energy flux in transverse waves in a single
flux tube at z = 750 km due to footpoint motions, taken from observations, excited
in an isothermal flux tube with T' = 6650 K, 8 = 0.3.

of transverse waves, which leads naturally to an oscillation at this period
(typically in the 7-minute range) as proposed by Kalkofen (1997).

For weaker magnetic fields the energy fluxes in the two modes are com-
parable. From the absence of a strong peak at low frequencies in the power
spectrum of the cell interior (CI) we conclude that both transverse and
longitudinal waves must make a negligible contribution to Ko, bright point
oscillations. The absence of the magnetic modes then implies that the waves
in the CI are probably acoustic waves, and the observed 3 minute period is
therefore the acoustic cutoff period — and not the cutoff period of longitu-
dinal flux tube waves. This implies that the magnetic field structure in the
CI is likely to be different from that of flux tubes in the magnetic network.

The above analysis has considered the buffeting of flux tubes as a single
impact. In reality, we expect the excitation of waves in a tube to occur not as
a single impact but continually due to the highly turbulent and stochastic
motion of granules. It is interesting to examine the consequences of this
interaction for chromospheric heating. Such an investigation was carried out
by Hasan, Kalkofen & van Ballegooijen (2000, hereafter HKB), who modeled
the excitation of waves in the magnetic network due to the observed motions
of G-band bright points, which were taken as a proxy for footpoint motions
of flux tubes. Using high resolution observations of G band bright points in
the magnetic network, the energy flux in transverse waves was calculated in
a large number of magnetic elements.

Fig. (1.4) shows the vertical energy flux in transverse waves versus time
at a height z = 750 km for a typical magnetic element in the network. We
find that the injection of energy into the chromosphere takes place in brief
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and intermittent bursts, lasting typically 30 s, separated by longer periods
(longer than the time scale for radiative losses in the chromosphere) with
lower energy flux. The peak energy flux into the chromosphere is as high

as 10? erg cm 2 s~ ! in a single flux tube, although the time-averaged flux

2 s~1. However, from an observational point of view, such

is ~ 108 erg cm™
a scenario for heating the magnetic network would yield a high variability
with time in Ca IT emission, which appears incompatible with observations.
A possible remedy to this difficulty would be to postulate the existence of
other high-frequency motions (periods 5-50 s) which cannot be detected as
proper motions of G-band bright points (HKB). Adding such high-frequency
motions to the simulations HKB obtained much better agreement with the
persistent emission observed from the magnetic network. For a filling factor
of 10% at z = 750 km, the predicted flux is ~ 107 erg cm~2 s~ !, which is suf-
ficient to balance the observed radiative loss of the chromospheric network
(see Model F' of Avrett 1985). Therefore, for transverse waves to provide
a viable mechanism for sustained chromospheric heating, the main contri-
bution to the heating must come from high-frequency motions, with typical
periods 5-50 s. HKB speculated that the high-frequency motions could be
due to turbulence in intergranular lanes, but whether the level of turbulence
is sufficiently high remains to be investigated.

The above studies were based on a linear approximation, in which the
longitudinal and transverse waves are decoupled. However, the velocity am-
plitude v(z) for the two modes increases with height z (for an isothermal
atmosphere v o exp(z/4H), where H is the pressure scale height), so the mo-
tions are likely to become supersonic higher up in the atmosphere. At such
heights, nonlinear effects become important, leading to coupling between
the transverse and longitudinal modes. Some progress on this question has
been made using the nonlinear equations for a thin flux tube (Ulmschneider,
Zahringer & Musielak 1991; Huang, Ulmschneider & Musielak 1995). This
work has been extended to include a treatment of kink and longitudinal
shocks (Zhugzhda, Bromm & Ulmschneider 1995).

Recently, Hasan, Kalkofen & Ulmschneider (2001) carried out prelimi-
nary adiabatic calculations of nonlinear kink waves in a thin, isothermal
flux tube. The footpoints are impulsively shaken with a transverse velocity
of the form v, (0,t) = vgexp[—(t —t¢)?/72], where vy is the specified velocity
amplitude, g is the time of maximum velocity, and 7 is the duration of the
impulse (the longitudinal velocity at the base is assumed to be zero). This
impulse generates a transverse wave that propagates upwards with a phase

1

speed ¢, = 7.9 km s~ *. Fig. (1.5a) shows the transverse and longitudinal

velocity components as functions of height z at various times. We find that
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Fig. 1.5. Nonlinear coupling of transverse and longitudinal waves in a flux tube: (a)
Transverse velocity v, (solid curves) and longitudinal velocity v, (dashed curves)
as functions of height z at various times, for to = 50 s, 7 =20 s, v = 1.0 km s~!.
The numbers besides the curves denote time in seconds. (b) Velocities as function
of time t at a fixed height z = 1800 km for vy = 0.75 km s~ 1.

in the photospheric layers, where the transverse velocity amplitude is small
compared to the kink wave speed, the longitudinal component of the veloc-
ity is negligible. However, as the pulse propagates upward the transverse
velocity increases and longitudinal motions are generated due to nonlinear
effects when v, ~ ¢,. The longitudinal motions, being compressive, steepen
into shocks. These results are similar to those found by Hollweg, Jackson
& Galloway (1982), who studied the nonlinear coupling of torsional Alfvén
waves and longitudinal waves. However, in the present calculations we find
wakes following the passage of the initial pulse. Fig. (1.5b) shows the ve-
locity as a function of time at a fixed height. Note that at late times the
transverse and longitudinal components oscillate with different periods that
closely match the cutoff periods (310 s for the kink wave, 230 s for the lon-
gitudinal wave). At this stage the velocity amplitudes are small and the two
modes are nearly decoupled. This suggests that a power spectrum of net-
work oscillations should detect peaks corresponding to these periods. There
is a hint that such peaks may be present in the observations of Lites et al.
(1993).

To summarize the main conclusions emerging from the nonlinear calcu-
lations: When the transverse velocities are significantly less than the kink
wave speed (i.e. the linear regime), there is essentially no excitation of lon-
gitudinal waves. However, at heights where V, = ¢, longitudinal wave
generation becomes efficient, leading to the modes having comparable am-
plitudes; a large-amplitude transverse pulse generates a longitudinal pulse,
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which eventually generates wakes that have low amplitudes and represent
decoupled longitudinal and transverse waves, oscillating at their respective
cutoff periods. We have examined the coupling between the two modes and
find that V, increases quadratically with V, at low Mach number M (with
respect to ¢ ), and linearly with V,, for M — 1. Transverse waves lose energy
due to mode coupling. The fractional wave energy in longitudinal motions
increases rapidly at first with the forcing transverse velocity Vg, before even-
tually saturating at a value of about 0.4, which is close to equipartion of
energy between the two modes. For a forcing amplitude of Vy = 1.5 km s~ !,
when there is almost equipartition of energy, the transverse energy flux
entering the transition region is approximately 107 erg cm™2 s~!. This esti-
mate is clearly an upper bound since we need to consider two effects: first,
footpoint motions with this velocity occur on average with a frequency of
0.1, and second, there is an attenuation of the flux as it propagates through
the transition region, which could lead to a further reduction by a factor of
about 10. Hence, we estimate that the net energy flux entering the corona
2 571, Large-amplitude longitudinal waves generated in
the upper photosphere steepen and form shocks in the chromosphere. They
are likely to be important for chromospheric heating.

is about 10° erg cm™
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