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Abstract. The response of exponentially spreading magnetic flux tubes embedded in an isothermal solar atmosphere to the
propagation of longitudinal tube waves and random pulses produced in the solar convection zone is studied analytically. General
solutions are presented and applied to solar tube models. It is shown that free atmospheric oscillations inside these flux tubes are
generated with oscillation periods near 3 min, which are essentially identical to the oscillation periods observed in the interior
regions of supergranulation cells. The observed oscillations are therefore consistent with processes in magnetic tubes as well
as in nonmagnetic regions. Stochastic perpetual excitation is expected to keep these flux tube oscillations present at all times.
These oscillations are inconsistent with the observed 7-min oscillations in the chromospheric network.
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1. Introduction

The outer solar atmosphere is known to oscillate with a differ-
ent period than the solar photosphere. While the latter is dom-
inated by 5 min oscillations, the main oscillations of the solar
chromosphere are near 3 min (see Deubner 1991; Rutten &
Uitenbroek 1991; Curdt & Heinzel 1998). From a theoretical
point of view, there are fundamental differences in the origin
of these oscillations. The solar 5-min oscillations are caused
by the so-called “cavity modes”, which are essentially acoustic
waves trapped inside the Sun (e.g., Ulrich 1970; Leibacher &
Stein 1971). However, the solar 3-min oscillations are likely
to be a response of the solar chromosphere to propagating
acoustic waves, which not only heat the chromosphere (e.g.,
Ulmschneider et al. 2001) but also excite free atmospheric os-
cillations at the acoustic cutoff frequency (see Fleck & Schmitz
1991).

Extensive analytical (Fleck & Schmitz 1993; Kalkofen
et al. 1994; Schmitz & Fleck 1995; Sutmann et al. 1998) and
numerical (Sutmann & Ulmschneider 1995a, b) studies have
been performed of the behaviour of these waves in the so-
lar atmosphere. The main obtained results can be summa-
rized as follows. The free atmospheric oscillations are always
present, independent of the form of the initial disturbance that
caused them, and they decay in time as t−3/2 if the frequency
of the driving waves is not equal to the acoustic cutoff fre-
quency. Obviously, there are also so-called forced atmospheric
oscillations, which represent either propagating or evanescent
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acoustic waves, and do not decay in time if the wave source
drives them continuously. Finally, in the special case when the
wave frequency is exactly equal to the cutoff frequency, the free
and forced oscillations are the same and they do not decay in
time.

The above described 3-min atmospheric oscillations are
seen in the interior of the supergranulation cells. It is obser-
vationally well established that isolated strong vertical mag-
netic fields (flux tubes) exist outside sunspots, particularly at
the boundaries of supergranulation cells (e.g., Solanki 1993;
Stenflo 1994), and there they give rise to the chromospheric
network emission in the observed chromospheric spectral lines.
The tubes are “windows” which channel the wave energy
generated in the solar convection zone to the solar atmo-
sphere (e.g., Spruit & Roberts 1983; Musielak et al. 1989) and
form the chromospheric magnetic network of the quiet Sun.
Observations have shown that atmospheric oscillations in this
network have a period near 7 min (Damé 1983; Lites et al.
1993; Curdt & Heinzel 1998).

Because magnetic flux tubes permit the propagation of
three types of magnetohydrodynamic waves, longitudinal,
transverse and torsional waves (Solanki 1993; Narain &
Ulmschneider 1996), it would be interesting to know if these
wave modes are able to generate oscillations and whether the
mentioned observations could be used to identify the wave
modes. Kalkofen (1997) suggested that propagating transverse
tube waves cause the flux tubes to oscillate with the cutoff fre-
quency for these waves. This has been further investigated by
Hasan & Kalkofen (1999) who considered the generation of
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transverse tube waves by the buffeting action of granules on
the tubes. The main conclusion of their paper is that the wave
energy fluxes carried by transverse tube waves are in agreement
with the observed chromospheric power spectrum of network
oscillations. The authors also suggest a possible role played by
longitudinal tube waves in these atmospheric oscillations.

In this and a subsequent paper (Musielak & Ulmschneider
2003, Paper II) we want to provide a partial answer to the ques-
tion whether propagating longitudinal (this paper) or transverse
(Paper II) waves give rise to the kind of oscillations which have
been observed. In order to keep the argument simple, we sup-
pose a very idealized model of an isolated isothermal exponen-
tially spreading flux tube and compute the time-dependent evo-
lution of various wave-like disturbances analytically, assuming
adiabatic wave propagation. We think that the disturbances, ei-
ther waves or pulses, are generated by the external turbulent
motions in the solar convection zone; note that the interac-
tion between the solar p-modes and magnetic flux tubes (see
Bogdan 1992, 1994, and references therein) is not included in
our approach.

The problem is approached by casting the derived wave
equation for longitudinal tube waves into a Klein-Gordon
form, which shows explicitly the cutoff frequency (Sect. 2)
and is solved by using a Laplace transformation (Sect. 3).
Subsequently the obtained analytical solutions are applied to
our simplified magnetic flux tube model and the time evolu-
tion of the generated free atmospheric oscillations are derived
and discussed (Sect. 4); in these applications, we use the most
recently computed wave energy spectra for longitudinal tube
waves (Musielak et al. 1995, 2000, 2002). Discussion of the
obtained results and our final conclusions are given in Sect. 5.

2. Klein-Gordon equation and cutoff frequency

We consider an isolated magnetic flux tube embedded in a mag-
netic field-free compressible and isothermal medium. The tube
is assumed to be thin, untwisted, and oriented vertically, with
circular cross-section, and in temperature equilibrium with its
surroundings. We choose a Cartesian coordinate system with
the z-axis along the tube axis and gravity g = −g ẑ, where ẑ is
the unit vector along the z-axis. Because of the thin flux tube
approximation, the magnetic field inside the tube is given by
Bo = Bo(z) ẑ. In addition, Be = 0 and we assume horizon-
tal pressure balance po + B2

o/8π = pe, where po and pe are
the internal and external gas pressures; note that subscripts “o”
and “e” will be used throughout this paper to denote the inter-
nal and external tube parameters, respectively. Magnetic flux
conservation and the horizontal pressure balance lead to an ex-
ponentially spreading tube geometry.

Solar observations show that outside sunspots an isolated
tube has magnetic field strengths of around Bo = 1500 G at
τ5000 = 1 (e.g., Solanki 1993), which approximately corre-
sponds to Bo = 0.85Beq, where Beq =

√
pe/8π is the equiparti-

tion field strength. This type of field is usually found for mag-
netic elements in the chromospheric network at the boundary
of supergranulation cells. Because one observes different field
strengths of the various tubes on the Sun we adopt tube models
with field strengths varying from Bo = 0.75Beq to Bo = 0.95Beq

at the solar surface. Our exponentially spreading tube models
are not ideal for a crowded network situation because they will
expand very quickly and run into neighboring flux tubes, from
where they are prevented to spread further. So our results for
greater heights may be inapplicable for some cases. Another
situation for which our model should be valid is for isolated
intranetwork fields. For these, Wang et al. (1995) found typi-
cal magnetic fluxes of 6 × 1016 Mx which assuming tube radii
of 40 km at the solar surface would have similar field strengths
as taken for the network tubes.

To describe the waves or pulses in our tube model, we intro-
duce the velocity perturbation, u = vz(z, t) ẑ, the magnetic field
perturbation, b = bz(z, t) ẑ, the density perturbation, ρ = ρ(z, t),
and the pressure perturbation, p = p(z, t). Then, we linearize
the basic MHD equations, apply the thin flux tube approxima-
tion, and derive the wave equation for the velocity perturbation
(e.g., Musielak et al. 1989)
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where the tube velocity is given by

cT =
cScA√
c2

S + c2
A

, (2)

and cS = γpo/ρo is the sound speed, cA = Bo/
√

4πρo the
Alfvén velocity, and H the pressure scale height. Since in our
model both cS and cA are constant, the tube velocity cT is also
constant and the form of the derived wave equation is the same
for every wave variable.

To cast Eq. (1) in the form of a Klein-Gordon equation, we
introduce vz(z, t) = v(z, t)

√
Bo/ρo and obtain[
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]
v(z, t) = 0 , (3)

where ΩT is the cutoff frequency for longitudinal tube waves
(Defouw 1976)
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, (4)

which is the frequency of the free atmospheric oscillations
inside the magnetic flux tube. The fact that the wave equa-
tion for longitudinal tube waves can be transformed into a
Klein-Gordon equation was first recognized by Rae & Roberts
(1982) in their studies of the propagation of these waves in the
solar atmosphere; a similar approach was used independently
by Musielak et al. (1989, 1995) who investigated the efficiency
of generation of longitudinal tube waves in the solar and stellar
convection zones.

The characteristic speed cT and the Alfvén speed cA for
longitudinal tube waves can be expressed in terms of the sound
speed cS and the plasma β = 8πpo/B2

o as

cT =
cS√

1 + γβ/2
, cA = cS

√
2
γβ
, (5)

which shows that cT is always lower than the sound speed. It
approaches cS as β→ 0, and decreases with increasing β.
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Using the above relations, we may express the cutoff fre-
quency ΩT in terms of the acoustic cutoff frequency ΩS =

cS/2H (Lamb 1908) and the plasma β. This gives

ΩT =
ΩS√

1 + γβ/2

(
9
4
− 2
γ
+ 2β
γ − 1
γ

)1/2

· (6)

In the limit β → 0, we have ΩT/ΩS →
√

9/4 − 2/γ ≈ 1.025,
however, for β � 0, one finds

√
4(γ − 1)/γ ≈ 0.98. This shows

that ΩT is always comparable to ΩS and that the range of fre-
quencies for the propagation of both waves is very similar (see
Sect. 4, for more discussion).

Note also that ΩT and ΩS are the only cutoff frequencies in
the approach presented here. Hence, longitudinal tube waves
are propagating if their frequency ω > ΩT, otherwise they
are evanescent. The cutoff frequency ΩS plays the same role
for the propagation of acoustic waves in the external medium.
Clearly, the cutoff frequencyΩT is not as simple as for acoustic
waves and it depends on both pressure (density) and magnetic
field scale heights as well as on the Brunt-Väisälä frequency
modified by the tube geometry (e.g., Musielak et al. 1989; also
Hasan & Kalkofen 1999).

3. Mathematical solutions

To solve the derived Klein-Gordon equation we must specify
the initial and boundary conditions. Following Sutmann et al.
(1998), we take

lim
t→0
v(t, z) = 0, lim

t→0,z,0

∂v

∂t
= 0, (7)

lim
z→0
v(t, z) = vo(t), lim

z→∞ v(t, z) = 0 , (8)

where vo(t) is an arbitrary excitation velocity to be prescribed at
z = 0 inside the tube. By specifying these initial and boundary
conditions, we solve the homogeneous Klein-Gordon Eq. (3)
with the inhomogeneous boundary conditions (8). For differ-
ent ways of solving this problem see Davies (1978), Haberman
(1987) and Edwards & Penny (1989).

Since the derived Klein-Gordon equation and the pre-
scribed initial and boundary conditions are of the same form as
those considered by Sutmann et al. (1998) for acoustic waves,
their results can be directly used here. Thus, the general solu-
tion is

v(t, z) = vo(t − z/cT)H(t − z/cT) +
∫ t

0
vo(t − τ) W(τ, z) dτ, (9)

whereH(t− z/cT) is the Heaviside step-function which has the
value is 0 for t < z/cT and 1 for all values of t > z/cT, while
H(t − z/cT) = 0.5 if t = z/cT. In addition, W(τ, z) is given by

W(τ, z) = −ΩT

cT

J1

(
ΩT

√
τ2 − (z/cT)2

)
z√

τ2 − (z/cT)2
H(τ − z/cT). (10)

Note that the solution for v(t, z) is obtained by using the Laplace
transform method (see Sutmann et al. 1998, for more details).

We now consider four different types of excitation of the
free and forced oscillations inside the magnetic flux tube,

namely, excitation by monochromatic longitudinal tube waves,
a spectrum of longitudinal tube waves, a δ-function pulse and a
wavetrain of random pulses. Analytical solutions to all these
cases have already been obtained by Sutmann et al. (1998)
for acoustic waves propagating in an isothermal atmosphere.
An interesting result of the present paper is that the mathe-
matical structure of the basic equations derived here for lon-
gitudinal tube waves and those obtained by Sutmann et al. for
acoustic waves is the same, which means that the solutions
for both types of waves become identical when cS is replaced
by cT and ΩS by ΩT. In the following, we write only the fi-
nal solutions without repeating the detailed derivations. These
solutions will be then used to study the free atmospheric os-
cillations of magnetic flux tubes in the solar atmosphere (see
Sect. 4).

3.1. Excitation by monochromatic longitudinal tube
waves

We consider a monochromatic longitudinal tube wave with fre-
quency ω and amplitude uo, and assume that these waves are
continuously generated by the external turbulent motions (see
Sect. 4) and that they propagate along the flux tube. The re-
quired boundary condition (Eq. (8)) is

vo(t) = uo e−iωt, (11)

which allows writing the general solution (see Eq. (27) in
Sutmann et al. 1998) as

v(t, z) = uo e
−i

(
ωt−
√
ω2−Ω2

T z/cT

)
+ uo

√
2ΩT

π

1

ω2 −Ω2
T

z
cT

1
t3/2

×
[
ΩT sin

(
ΩTt − 3π

4

)
+ iω cos

(
ΩTt − 3π

4

)]
· (12)

According to this formula, the response of the atmosphere in-
side the flux tube to the propagating monochromatic waves is
a superposition of two different types of oscillations: forced
atmospheric oscillations with the wave frequency ω and free
atmospheric oscillations with the cutoff frequency ΩT. The
forced oscillations with the driving frequencyω represent prop-
agating longitudinal tube waves if ω > ΩT and evanescent
waves ifω ≤ ΩT; the behavior of these waves in both frequency
regimes is well-known (Defouw 1976) and they do not decay in
time because they are driven continuously by the wave source.
The free oscillations are described by the second term on the
RHS of Eq. (12) and it is seen that they decay in time as t−3/2 at
any given height; in addition, their amplitude increases linearly
with height.

This phenomenon has been extensively studied in the lit-
erature for acoustic waves (e.g., Fleck & Schmitz 1991, 1993;
Kalkofen et al. 1994; Schmitz & Fleck 1995; Sutmann et al.
1998). It has been expected that similar oscillations driven by
longitudinal tube waves and decaying in time as t−3/2 will also
exist inside solar magnetic flux tubes (e.g., Hasan & Kalkofen
1999, and references therein); the analytical solutions pre-
sented in this paper clearly show that this is indeed the case.

It must be noted that the free atmospheric oscillations with
the acoustic cutoff frequency have also been referred to as
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resonance oscillations (e.g., Fleck & Schmitz 1991; Schmitz
& Fleck 1995; Sutmann & Ulmschneider 1995a, b), where the
word “resonance” was used in a sense of “echo”. Since in typ-
ical resonance phenomena one would expect the wave velocity
v(z, t) to become unbounded when ω approachesΩT, and since
the latter never happens (see Eq. (12)), we follow Kalkofen
et al. (1994) and call these oscillations free atmospheric os-
cillations throughout this paper.

3.2. Excitation by a spectrum of longitudinal tube
waves

We assume that a spectrum of these waves is generated at the
lower tube boundary (z = 0) and propagates upward along the
tube. The spectrum is approximated here by a linear superposi-
tion of sinusoidal partial waves with different amplitudes, fre-
quencies and phases. This allows writing the lower boundary
condition vo(t) as

vo(t) =
N∑

n=1

un e−i(ωnt+ϕn), (13)

where un and ωn are the velocity amplitudes and frequencies
of the partial waves, respectively, and ϕn are arbitrary constant
phases. With this boundary condition, we obtain (see Eq. (36)
in Sutmann et al. 1998)

v(t, z) =
N∑

n=1

un e−iϕn e
−i

(
ωnt−
√
ω2

n−Ω2
T z/cT

)

+
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un e−iϕn
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2ΩT

π

1

ω2
n −Ω2
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z
cT

1
t3/2

×
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ΩT sin

(
ΩTt − 3π

4

)
+ iωn cos

(
ΩTt − 3π

4

)]
· (14)

There are obvious similarities to the previous case of
monochromatic waves. The first sum on the RHS of the above
equation describes the forced atmospheric oscillations that are
periodic and non-decaying in time. All partial waves with
ωn > ΩT are propagating waves, however, partial waves with
ωn < ΩT are evanescent waves and their amplitudes decrease
exponentially with height. The free atmospheric oscillations
with the cutoff frequencyΩT are described by the second term
on the RHS of Eq. (14). It is seen that each partial wave excites
its own free oscillations, which superpose and have amplitudes
that decay in time as t−3/2. If ωn → ΩT, then we must take
t → ∞, which makes the second term in Eq. (14) equal zero
and the free and forced oscillations become the same and they
do not decay in time.

3.3. Excitation by a δ-function pulse

We now assume that one longitudinal pulse with a δ-function
shape is being generated by the external turbulence at z = 0.
Here, the required boundary condition is

vo(t′) = uo δ(t′), (15)

where t′ = ΩTt/2π.

Using Eq. (9) and applying the limit of t � z/cT to Eq. (10),
the solution can be written (see Eq. (41) in Sutmann et al.
1998) as

v(t, z) = −uo

√
2π
ΩT

z
cT

1
t3/2

cos
(
ΩTt − 3π

4

)
, (16)

which shows that the δ-function pulse excites only the free at-
mospheric oscillations that decay in time in the same manner
(t−3/2) as the free oscillations generated by longitudinal tube
waves (see Eq. (12)). The main reason that the forced oscilla-
tions are not present is that there is no continuous excitation.

3.4. Excitation by a wavetrain of random pulses

Finally, we consider the response of the flux tube to a wavetrain
of longitudinal pulses with randomly chosen amplitudes and
periods. The wavetrain is introduced at the lower boundary of
the tube (z = 0) where after each completed wave period a
new period and a new amplitude are stochastically chosen. This
boundary condition requires vo(t) to be given in the following
form:

vo(t) =
∞∑

n=1

un e−iωnt [H(t − tn−1) −H(t − tn)
]
, (17)

where un and ωn are randomly chosen wave amplitudes and
periods, respectively. In addition, we have

tn =
n∑

i=0

Ti, tn−1 =

n−1∑
i=0

Ti, (18)

and

T0 = 0, Ti =
2π
ωi
· (19)

Using Eq. (9) and applying the asymptotic limit of t � z/cT to
Eq. (10), we obtain (see Eq. (62) in Sutmann et al. 1998)

v(t, z)=

√
2ΩT

π

z
cT

N∑
n=1

un
1

ω2
n −Ω2

T

2
t3/2

× [
ΩT cos(ΩTt − ϕ1) − iωn sin(ΩTt − ϕ1)

]
sin ϕ2, (20)

where N is chosen in such a way that t > tN , and

ϕ1 =
1
2
ΩT(tn + tn−1) +

3π
4
, (21)

ϕ2 =
1
2
ΩT∆tn, (22)

with ∆tn = tn − tn−1.
The obtained result is similar to that found for the excita-

tion by a δ-function pulse (see Eq. (16)) because it shows that
only the free atmospheric oscillations exist. Obviously, this is
an expected result because the excitation is not continuous but
instead it is stopped at times t > tN , which means that only
N number of pulses are generated. As a result of this wave-
train with finite number of pulses both the forced and free os-
cillations are excited, however, for the analytical solution to
be valid we need t � tn−1, t � tn and t � z/cT, so that
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Table 1. The characteristic velocity cT (km s−1), cutoff frequency
ΩT (s−1) and total wave energy flux FT (erg cm−2 s−1) are given for
three different values of Bo/Beq used in this paper. By comparing the
maximum wave frequency ωmax to ΩT, it is seen that most of the gen-
erated wave energy is carried by propagating longitudinal tube waves.
The fluxes FT are computed following Musielak et al. (1995) but us-
ing 32 frequency points (Musielak & Ulmschneider 2001).

Bo/Beq cT ΩT ωmax FT

0.75 5.7 0.0315 0.0697 6.5 × 107

0.85 6.4 0.0317 0.0784 2.8 × 107

0.95 7.0 0.0319 0.0862 7.0 × 106

the forced atmospheric oscillations are no longer present inside
the tube. Hence, the analytical solution describes only the free
atmospheric oscillations and these oscillations decay in time
as t−3/2, which is the same dependence as found for all other
excitation types discussed in this paper.

4. Application to solar magnetic flux tubes

To compute the structure of the solar atmosphere outside the
magnetic flux tube, we take the gravity g = 2.376 × 104 cm/s2

and the gas pressure pe = 4 × 104 dyn/cm2, which corresponds
approximately to the temperature Te = 5000 K in the VAL
model (Vernazza et al. 1981); the atmospheric height corre-
sponding to this pressure and temperature is identified as z = 0
in our model. The atmosphere outside the tube is assumed to be
isothermal with Te = 5000 K and in hydrostatic equilibrium.
The atmosphere inside the tube is also taken to be isothermal
with To = Te and extends from z = 0 to z = 2000 km. We
specify the tube magnetic field strength by Bo/Beq = 0.85 at
τ5000 = 1 (see Sect. 3) and use the horizontal pressure bal-
ance to calculate the gas pressure and density inside the tube
at the height z = 0 km. Magnetic flux conservation and the
horizontal pressure balance allow then to compute the tube’s
exponentially spreading field geometry and physical parame-
ters over the entire height range. Since the strength of the tube
field varies for flux tubes on the Sun (e.g., Solanki 1993), we
also consider Bo/Beq = 0.75 and 0.95 (see e.g., Ulmschneider
& Musielak 1998).

For each value of the tube magnetic field strength, we com-
pute the characteristic tube speed cT and the cutoff frequency
ΩT (see Table 1). Taking γ = 5/3, we find cS = 7.3 km s−1

and ΩS = 0.0312 s−1 or νS = ΩS/2π = 4.9 mHz. Comparison
of the values of cS and cT shows that longitudinal tube waves
propagate with a speed that is lower than the sound speed in our
tube models. This is consistent with Eq. (5) as Bo/Beq = 0.75,
0.85 and 0.95 correspond to β ≈ 0.8, 0.4 and 0.1, respectively.
In addition, we find that the values of ΩT for the three consid-
ered tube magnetic fields are very similar to the acoustic cutoff
frequency ΩS (see Eq. (6)), which means that the free atmo-
spheric oscillations inside and outside the tube will have almost
the same frequencies. Note also that in our approach, cT, cS,
ΩT and ΩS are constant, because the background atmosphere
is isothermal and because both the gas density and the tube
magnetic field decrease with height, so that cA = Bo/

√
4πρo

remains constant.

In the following, we present the results for the free atmo-
spheric oscillations by plotting the variation of the real part of
the normalized wave velocity v(z, t)/cT with time at two differ-
ent atmospheric heights, z = 500 and 2000 km. In our calcula-
tions the conditions t � z/cT and t � 1/|ΩT ± ω| are always
fulfilled.

4.1. Monochromatic waves

It remains to specify the amplitude of our wave disturbances
which are thought to arise from the stochastic motions which
buffet the flux tube in the convection zone. An analytical
method describing the interaction between a thin and verti-
cally oriented magnetic flux tube and the external turbulent
motions has been developed by Musielak et al. (1989, 1995)
who considered the generation of longitudinal tube waves by
these motions in the solar and stellar convection zones. The
method is based on the original work by Lighthill (1952) in
which the inhomogeneous wave equation is derived and the
source function is assumed to be fully determined by the tur-
bulent motions; the latter are prescribed by using an extended
form of the Kolgomorov turbulent energy spectrum and a mod-
ified Gaussian frequency factor (Musielak et al. 1994). To com-
pute the wave energy spectra and fluxes resulting from this
theory, one must specify the following solar parameters: grav-
ity (see above), the effective temperature (Teff = 5770 K) and
metallicity (Zm = 0.02). In addition, we must know the mixing-
length parameter α, which is assumed to be 2 in all our calcu-
lations, and the strength of the tube magnetic field that we take
Bo/Beq = 0.75, 0.85 and 0.95.

The newly computed wave energy spectra for the Sun are
presented in Fig. 1, which shows that the amount of generated
wave energy decreases with increasing magnetic field strength
(see also Musielak et al. 1989). The total fluxes FT carried by
longitudinal tube waves propagating inside solar magnetic flux
tubes are calculated by intergrating the computed spectra over
frequency (see Table 1); note thatωmax corresponds to the max-
imum flux of these spectra and is much higher than the cut-
off ΩT, which means that the generated waves are always prop-
agating waves.

We begin with the excitation of the free atmospheric
oscillations by monochromatic longitudinal tube waves de-
scribed by Eq. (11). The frequency of these waves is assumed to
be ω = ωmax (see Table 1) and the initial amplitude is given by
uo =

√
2FT/ρocT, where the total wave energy flux FT is taken

from Table 1. The fact that the total wave energy flux is carried
by a monochromatic wave is a rather crude approximation but
we compute this case here because we want to compare it with
the more realistic case when the entire wave energy spectrum is
considered (see below). Taking the real part of Eq. (12) and nor-
malizing v(t, z) by cT, we compute the time evolution of the free
atmospheric oscillations at the atmospheric heights z = 500
and z = 2000 km. The results are shown in Fig. 2. It is seen
that the amplitude of these oscillations is small compared to the
tube speed cT and quickly decreases with time. The amplitude
slightly increases when the magnetic field strength decreases,
because the total wave energy flux increases (see Table 1),
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Fig. 1. Longitudinal wave energy fluxes as function of circular fre-
quency ω for three different values of the tube magnetic field strength:
Bo/Beq = 0.75, 0.85 and 0.95 specified at τ5000 = 1.

Fig. 2. Time evolution of the free atmospheric oscillations inside solar
magnetic flux tubes with Bo/Beq = 0.85. The oscillations are driven by
monochromatic longitudinal tube waves with ω = 0.0784 and FT =

2.8 × 107 (erg/cm2 s), and the real part of v(t, z)/cT (see Eq. (12))
is plotted at two different atmospheric heights z = 500 km and z =
2000 km.

but this effect is never significant. Since the oscillations shown
in Fig. 2 are calculated for Bo/Beq = 0.85, the period of the os-
cillations is approximately 3 min (=2π/ΩT). As the changes in
the values ΩT given in Table 1 are very small, this means that
the frequency of the free atmospheric oscillations is practically
the same for the entire considered range of tube magnetic field
strengths.

4.2. A spectrum of waves

We now discuss the excitation of free atmospheric oscilla-
tions by a spectrum of longitudinal tube waves (see Eq. (13))
propagating inside the magnetic flux tubes. As discussed in
Sect. 3.2, this spectrum consists of a series of partial waves.
To specify the amplitude of these waves, we use the full
wave energy spectra generated in the solar convection zone

Fig. 3. Time evolution of the initial wave velocity vo(t) normalized
by cT. These velocity fluctuations represent the spectrum of longitudi-
nal tube waves shown in Fig. 1 (solid line) at the atmospheric height
z = 0 km inside solar magnetic flux tubes with Bo/Beq = 0.85.

(see Fig. 1). During their propagation along the magnetic flux
tubes, these waves excite free atmospheric oscillations with the
cutoff frequency ΩT but they also dissipate their energy and
heat the background atmosphere. Since our wave energy spec-
tra are computed for 32 frequency points (following Musielak
& Ulmschneider 2001), we identify these frequencies with ωn

of Eq. (13). For each frequency, we calculate the intial wave
amplitude un =

√
2Fn/ρocT, where Fn is the wave energy flux

integrated over the frequency interval∆ω = ωn+1−ωn. Because
these waves are propagating (ωn > ΩT), we assume that all of
them have the same phase φn = 0. A typical time evolution
of the initial wave velocity vo(t, z = 0) given by Eq. (13) for
a wave spectrum with Bo/Beq = 0.85 is shown in Fig. 3; it
is seen that some spikes have amplitudes as large as 0.2cT. In
similar plots for Bo/Beq = 0.75 and 95, one finds that the spikes
become higher (up to 0.3cT) and lower (0.15cT), respectively,
which reflects the amount of wave energy generated in these
two cases (see Fig. 1 and Table 1).

We take the real part of Eq. (14) and calculate the time evo-
lution of the free atmospheric oscillations for Bo/Beq = 0.75,
0.85 and 0.95. The results obtained for the first two field
strengths are presented in Figs. 4 and 5. It is seen that the os-
cillations driven by wave spectra also decay in time as t−3/2,
however, that their amplitudes are much higher than those
for monochromatic waves (see Fig. 2). This is explained by
the fact that some partial waves of the spectrum have ampli-
tudes higher (see Fig. 2) than the amplitude of monochromatic
waves; the latter is uo = 0.06cT for Bo/Beq = 0.85. By com-
paring Figs. 4 and 5, one finds that the amplitude of the oscil-
lations increases with decreasing magnetic field strength, but
that these changes are small. The frequency of the free atmo-
spheric oscillations inside solar magnetic flux tubes is found
to be approximately 3 min and is relatively insensitive to the
magnetic field strength (see Table 1). It must also be noted that
the spectrum of waves is continuously generated in the solar
convection zone, which means that the oscillations should be
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Fig. 4. Time evolution of free atmospheric oscillations inside solar
magnetic flux tubes with Bo/Beq = 0.85. The oscillations are driven
by the spectrum of longitudinal tube waves shown in Fig. 1 and only
the real part of v(t, z)/cT is plotted at two different atmospheric heights
z = 500 km and z = 2000 km.

Fig. 5. The same as Fig. 4 but for Bo/Beq = 0.75.

always present inside the tubes despite their decay in time (e.g.,
Sutmann & Ulmschneider 1995b).

4.3. A wavetrain of random pulses

Finally, we consider the wavetrain with a finite number of N si-
nusoidal pulses with randomly chosen amplitudes and frequen-
cies at times t > tN . In this case a pulse with a new period and
new amplitude is introduced whenever the previous pulse has
been completed. Frequencies of these pulses are always a frac-
tion of ΩT but no pulses with ωn = ΩT are allowed. Similarly,
their amplitudes are also limited and not allowed to be higher
than 0.1cT. The source of these pulses can be rapid horizontal
motions which occur at the top of the solar convection zone
and in the solar photosphere (e.g., Muller et al. 1994; Solanki
et al. 1996; Steiner et al. 1998). Without getting into de-
tails how these pulses are actually excited (e.g., Ulmschneider
& Musielak 1998), we simply assume here that we have at
z = 0 the random pulses described by Eq. (17), and that they

Fig. 6. Time evolution of the free atmospheric oscillations inside solar
magnetic flux tubes with Bo/Beq = 0.85. The oscillations are driven by
a wavetrain of longitudinal pulses with randomly chosen amplitudes
and frequencies. The real part of v(t, z)/cT is plotted at two different
atmospheric heights z = 500 km and z = 2000 km.

propagate upward producing the free atmospheric oscillations
inside the tube. Since the wavetrain is finite only free oscilla-
tions are present at t > tN (see Eq. (20)). The time evolution is
plotted in Fig. 6. Clearly, each random pulse decays in time as
t−3/2, even so the oscillations are sustained in the atmosphere
for at least 10 000 s, which is the time of our calculations. If
these random pulses were continuously generated, then the free
atmospheric oscillations would be permanently present inside
solar magnetic flux tubes. Note also that the amplitudes of these
oscillations are comparable to those shown in Fig. 4 for the ex-
citation by the spectrum of waves.

5. Discussion and conclusions

The presented results clearly imply that free atmospheric os-
cillations should always be present inside solar magnetic flux
tubes. The period of these oscillations is approximately 3 min
and is practically independent of the strength of the magnetic
field in the tube. Because of physical similarities between lon-
gitudinal tube waves and acoustic waves, their cutoff periods
are also very similar and PT ≈ PS ≈ 3 min, which means that
the free atmospheric oscillations inside and outside the tubes
are almost identical.

The oscillations inside the tubes can be driven either by a
spectrum of longitudinal tube waves continuously generated in
the solar convection zone or by wavetrains of random pulses
which continuously propagate inside these tubes. The ampli-
tude of these oscillations is relatively low v(t, z) ≈ 10−3cT and
quickly decays with time at each atmospheric height. Despite
these facts, the oscillations should be observable, because they
are expected to be constantly reexcited.

Our investigation is for exponentially spreading tubes in ap-
propriate regions of the chromospheric network at the bound-
ary of superganulation cells where enough space is available
before the tubes meet neighboring flux tubes.
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The results are also valid for intracell flux tubes, that is
tubes in the interior of the supergranulation cells. The observed
3 min oscillations in the interior of these cells can be explained
both by processes in magnetic flux tubes and outside such
structures. Moreover, it is unsafe to conclude from the absence
of chromospheric bright point emission in the cell interior,
that magnetic flux tubes are not present, because these expo-
nentially spreading tubes are very insufficiently heated (Fawzy
et al. 1998). These latter calculations, however, do not take into
account the influx of acoustic energy from outside the tube.

Our calculations using longitudinal tube waves and pulses
do not agree with the observed oscillations in the range from 6
to 15 min (e.g., Kalkofen 1996). Therefore, the 7-min oscilla-
tions must be of different nature and origin than the oscillations
discussed in this paper (see Kalkofen 1997; Hasan & Kalkofen
1999; also Paper II of this series).

Our conclusions about the nature of the generated oscilla-
tions are summarized as follows:

1. The excitation of an isothermal atmosphere inside solar
magnetic flux tubes by longitudinal tube waves and pulses
leads to the free atmospheric oscillations with periods near
3 min. The frequency of these oscillations is the cutoff fre-
quency ΩT for these waves which is very similar to, and
essentially indistinguishable from the acoustic cutoff fre-
quency ΩS. In addition, ΩT is practically independent of
the field strength in the magnetic tube.

2. The free atmospheric oscillations decay in time as t−3/2 if
the frequency of driving waves is not equal to the cutoffΩT.
This time dependence is the same for all considered mech-
anisms of the excitation of these oscillations.

3. For the continuous excitation, the forced atmospheric oscil-
lations are also present in the atmosphere. Different from
the free oscillation they do not decay in time and their fre-
quency is the same as the frequency of the driving waves.
However, if the latter is equal to the cutoff ΩT, then the
forced and free oscillations are identical and they do not
decay in time. When the atmosphere is stochastically and
perpetually excited by longitudinal wave pulses, the gener-
ated free atmospheric oscillations with frequencyΩT ≈ ΩS

will always be present.
4. The amplitude of the free atmospheric oscillations is a

small fraction of the tube speed cT and it is larger for the
excitation by a spectrum of waves and random pulses than
for monochromatic waves. This amplitude increases when
the tube magnetic field is decreased.

5. The observed 3-min oscillations inside the supergranula-
tion cells are consistent both with nonmagnetic free at-
mospheric oscillations and with free oscillations in mag-
netic flux tubes. Longitudinal waves and pulses do not
explain the observed 7-min oscillations in the chromo-
spheric network.
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