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Abstract. The response of an exponentially diverging magnetic flux tube embedded in an isothermal solar atmosphere to the
propagation of transverse tube waves and random transverse pulses generated in the solar convection zone is studied analyt-
ically. General solutions are presented and applied to solar flux tubes located in the interior region and at the boundary of
supergranulation cells. It is shown that the period of the free oscillations driven by transverse waves and pulses ranges from 7
to 10 min for the considered values of the tube magnetic field, and that these oscillations decay in time as t−3/2. Since the
observational signatures of these transverse oscillations are hard to detect, we also consider the generation of longitudinal tube
waves by nonlinear mode coupling and the excitation of free atmospheric oscillations by longitudinal waves. Our results show
that the basic properties of oscillations driven by transverse and longitudinal tube waves are different. While transverse waves
excite oscillations with 7−10 min periods, oscillations by longitudinal waves have periods near 3 min. This is consistent with
the observed 3-min oscillations inside the supergranule cells but inconsistent with the 7-min oscillations observed in the chro-
mospheric network. We suggest that an explanation of the observed 7-min oscillations might be found by taking into account a
more realistic structure of flux tubes located in the magnetic network.
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1. Introduction

In the first paper of this series (Musielak & Ulmschneider 2003,
Paper I), we have investigated the excitation of free and forced
atmospheric oscillations inside solar magnetic flux tubes by
longitudinal tube waves and random pulses. The main obtained
results can be summarized as follows. The free atmospheric os-
cillations with periods near 3 min are always present, indepen-
dent of the form of the initial disturbance that caused them, and
they decay in time as t−3/2 if the frequency of the driving waves
is not equal to the cutoff frequency for longitudinal tube waves.
The forced atmospheric oscillations represent either propagat-
ing or evanescent longitudinal tube waves in an isothermal at-
mosphere, and they do not decay in time if the wave source
drives them continuously. Finally, in the case when the wave
frequency is exactly equal to the cutoff frequency, both the free
and forced oscillations are the same and they do not decay in
time.

Similar results but for acoustic waves have been obtained
by Fleck & Schmitz (1993), Kalkofen et al. (1994), Schmitz
& Fleck (1995) and Sutmann et al. (1998), and used by these
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authors to explain the origin of 3 min oscillations observed
in the solar chromosphere (e.g., Deubner 1991; Rutten &
Uitenbroek1991). These 3 min oscillations are observed in
the interior of the supergranulation cells and they can be ex-
plained both by processes inside intracell magnetic flux tubes
(see Paper I) and outside such structures, where the oscillations
are driven by the propagating acoustic waves generated in the
solar convection zone (Fleck & Schmitz 1991).

The results obtained in Paper I are also valid for expo-
nentially diverging magnetic flux tubes in the chromospheric
network. However, the existence of these tubes at the bound-
ary of supergranulation cells is limited to appropriate regions
of the network where enough space is available for the tubes
to spread exponentially with height. For such flux tubes, the
results of Paper I demonstrate that the propagating longitudi-
nal tube waves and random pulses excite only 3 min oscilla-
tions. This is inconsistent with 7 min oscillations observed in
the magnetic network (Damé 1983; Lites et al. 1993; Curdt &
Heinzel 1998); the periods of these oscillations range from 6
to 15 min and no power is observed at 3 min (e.g., Kalkofen
1996). Therefore, the 7-min oscillations must be of different
nature and their origin cannot be explained by the oscillations
discussed in Paper I.
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Possible explanations of the 7-min oscillations observed in
the chromospheric network have been proposed by Deubner &
Fleck (1990), who considered formation of standing waves by
internal gravity waves, and by Hasan & Kalkofen (1999), who
suggested that transverse tube waves generated through buffet-
ing by granules would excite these oscillations. Since the free
atmospheric oscillations driven by transverse waves and pulses
cannot be directly observed (e.g., Kalkofen 1997), Hasan &
Kalkofen suggested that the observed 7-min oscillations are
actually excited by longitudinal tube waves generated by trans-
verse tube waves through the process of nonlinear mode cou-
pling (e.g., Ulmschneider et al. 1991). To reach this conclu-
sion, these authors had to asssume that the period of the driven
atmospheric oscillations will be preserved after the wave trans-
formation takes place. In this paper, we explore the validity of
this assumption after deriving general analytical solutions for
the excitation of the free atmospheric oscillations by transverse
tube waves and random transverse pulses.

We consider a magnetic flux tube embedded in otherwise
non-magnetic and isothermal atmosphere, and assume that this
tube is oriented vertically and its magnetic field spreads expo-
nentially with height. In general, the tube supports three differ-
ent types of waves, namely, longitudinal, transverse, and tor-
sional (e.g., Spruit 1981), and the external medium supports
the propagation of acoustic waves. For each wave the corre-
sponding cutoff frequency can be defined, so we have: the lon-
gitudinal (Defouw 1976), transverse (Spruit 1982), torsional
(Noble et al. 2003), and acoustic (Lamb 1908) cutoff frequency.
The tube and the external medium will oscillate with these cut-
offs when driven by the corresponding wave motion. The fact
that acoustic waves and random acoustic pulses freely propa-
gating in the external atmosphere excite free atmospheric os-
cillations with the acoustic cutoff frequency has been already
well-established (e.g., Fleck & Schmitz 1991; Sutmann et al.
1998). In addition, in Paper I we studied the excitation of free
atmospheric oscillations inside the tube by freely propagating
longitudinal tube waves and random longitudinal pulses (see
also Rae & Roberts 1982). In this paper, we investigate the
excitation of tube oscillations with the transverse cutoff fre-
quency by freely propagating transverse tube waves and ran-
dom transverse pulses (see Spruit & Roberts 1983, and Hasan
& Kalkofen 1999, for previous work). Finally, similar studies
for torsional oscillations will be described in the next paper of
this series.

As mentioned above, the main aim of this paper is to study
the excitation of atmospheric oscillations by transverse tube
waves and random transverse pulses, which are assumed to be
generated in the solar convection zone by turbulent motions
interacting with the tube; the most recently computed wave
energy spectra carried by transverse tube waves (Musielak &
Ulmschneider 2001) are used in our calculations. The pre-
sented approach is valid only for exponentially spreading flux
tubes, which means that the obtained results can be applied to
intracell flux tubes located in the interior of the supergranu-
lation cells and also to those tubes in the magnetic network
that can spread exponentially with height. To derive the cutoff
frequency for transverse tube waves, we cast the wave equa-
tion into a Klein-Gordon form (Sect. 2) and solve it by using

a Laplace transformation (Sect. 3). The derived analytical so-
lutions are then applied to solar magnetic flux tubes (Sect. 4).
Nonlinear mode coupling is discussed in Sect. 5 and our final
conclusions are given in Sect. 6.

2. Klein-Gordon equation and cutoff frequency

A magnetic flux tube is considered to be isolated and embedded
in a magnetic field-free, compressible and isothermal medium.
The tube is assumed to be thin, untwisted, and oriented verti-
cally, with circular cross-section, and in temperature equilib-
rium with its surroundings. To describe transverse waves prop-
agating along this tube, we introduce a Cartesian coordinate
system with the z-axis being the axis of the non-oscillating
tube and the gravity g = −g ẑ, where ẑ is the unit vector along
the z-axis. We also consider a local cylindrical coordinate sys-
tem (r, φ, l) within the tube, with l being the vector along the
tube (Spruit 1981).

The tube magnetic field Bo = Bo(z) ẑ is exponentially
spreading with height and can be locally expressed as Bo =

Bo(r, φ, l) l̂, where l̂ is the unit vector along the tube; note that
for the non-oscillating tube l̂ = ẑ. Since Be = 0, the horizon-
tal pressure balance is po + B2

o/8π = pe, where po and pe is
the gas pressure inside and outside the tube. In order to dis-
tinguish the physical parameters inside and outside the tube,
we introduce subscripts “o” and “e” to denote the internal
and external parameters, respectively. Solar observations show
that typical magnetic field inside the tube is Bo = 1500 G at
τ5000 = 1 (e.g., Solanki 1993; Stenflo 1994), which is approx-
imately Bo = 0.85Beq, where Beq =

√
8πpe is the equiparti-

tion field. Our model of the exponentially diverging flux tube
is valid for isolated intracell fields, for which Wang et al. (1995)
found typical magnetic fluxes of 6 × 1016 Mx. Assuming tube
radii of 40 km (Solanki 1993) at the solar surface (τ 5000 = 1)
this would imply that the field strength would be similar to that
observed in the magnetic network. However, our model is not
ideal for crowded flux tubes in the chromospheric network be-
cause the exponential expansion of these tubes is prevented by
neighboring flux tubes.

We assume that transverse tube waves are excited by the ex-
ternal turbulence alone and that there are no other motions out-
side or inside the tube. The generated waves are fully described
by the perturbations of the tube velocity, u(z, t) = v x(z, t)x̂, and
the magnetic field, b(z, t) = bx(z, t)x̂; we restrict our consider-
ation to the x-direction only as there is no physical distinction
between the x and y directions. Note also that our approach is
restricted to linear waves, so that both the density and pressure
perturbations can be neglected; this approximation is good for
the considered waves in the region of their generation, how-
ever, the waves may become nonlinear in higher atmospheric
layers due to increasing wave amplitudes with height. The total
magnetic field in the Cartesian coordinate system is given by
Bo = Bo(z) ẑ + bx(t, z)x̂, with bx/Bo = lx.

To derive the wave equation for the velocity perturba-
tion, we linearize the basic MHD equations, use ∇ · u = 0
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and (u · ∇)u = 0, apply the thin flux tube approximation
(Musielak & Ulmschneider 2001), and obtain

∂2vx

∂t2
− c2

K
∂2vx

∂z2
+

c2
K

2H
∂vx
∂z
= 0, (1)

where the characteristic velocity of these transverse (kink)
waves is given by

cK =
Bo√

4π(ρo + ρe)
, (2)

and H is the pressure (density) scale height. Note that cK is
constant along the tube and, as a result, the form of the derived
wave equation is the same for both wave variables.

To remove the first derivative from Eq. (1), we use v x =

v/ρ1/4
o and obtain[
∂2

∂t2
− c2

K
∂2

∂z2
+ Ω2

K

]
v(z, t) = 0, (3)

where ΩK is the cutoff frequency for transverse tube waves
(Spruit 1982)

ΩK =
cK

4H
· (4)

The derived wave equation is written in a Klein-Gordon form
(see Musielak et al. 1990; Hasan & Kalkofen 1999; Musielak
& Ulmschneider 2001), which explicitly displays the cutoff fre-
quency ΩK. An interesting result is that the form of the wave
equation derived here for transverse tube waves is the same as
that obtained for longitudinal tube waves in Paper I and for
acoustic waves by Sutmann et al. (1998); the only difference is
the explicit form of the cutoff freqeuncy for each type of wave.

The characteristic speed cK for transverse tube waves can
be expressed in terms of the sound speed cS = γpo/ρo and
plasma β, where β = 8πpo/B2

o, as

cK =
cS√

γ(β + 1/2)
, (5)

which shows that cK/cS → 1.095 as β → 0 and cK/cS → 0 as
β→ ∞. We may now use Eq. (5) of Paper I to eliminate cS from
the above equation and relate cK to the characteristic velocity
of longitudinal tube waves cT. This gives

cK = cT

√
2 + γβ
γ(1 + 2β)

· (6)

For β → 0 we have cK/cT →
√

2/γ ≈ 1.095 and for β � 0
one finds cK/cT ≈

√
1/2 ≈ 0.707. Hence both characteristic

tube speeds are comparable only for low-β plasma, otherwise
longitudinal tube waves propagate faster than transverse tube
waves.

Similar relationships can be found for the cutoff fre-
quency ΩK, which can be expressed in terms of the acoustic
cutoff frequencyΩS = cS/2H (Lamb 1908) and plasma β as

ΩK =
ΩS

2
√
γ(β + 1/2)

, (7)

and in terms of the cutoff frequency for longitudinal tube
waves ΩT (Defouw 1976; see also Eq. (4) of Paper I) as

ΩK = ΩT

√
2 + γβ
γ(1 + 2β)

(
9 − 8
γ
+ 8β
γ − 1
γ

)−1/2

· (8)

According to these equations, ΩK/ΩS →
√

2/γ/2 ≈ 0.548
and ΩK/ΩT →

√
2/γ/

√
9 − 8/γ ≈ 0.535 when β → 0, and

ΩK/ΩS → 0 when β→ ∞, and ΩK/ΩT → 1/4
√
γ − 1/γ

√
β ≈

0.395/
√
β for β� 0. Thus,ΩK is almost half ofΩT (orΩS) for

low-β plasma and decreases when β increases. This means that
the range of frequencies for the propagation of transverse tube
waves is at least twice as large as the one for either longitudinal
tube waves or acoustic waves. Note thatΩK andΩS are the only
cutoff frequencies in the approach considered in this paper. By
making Fourier transform of Eq. (3), one derives the dispersion
relation and finds that transverse tube waves are propagating if
their frequency ω > ΩK, otherwise they are evanescent. The
cutoff frequency ΩS plays the same role for the propagation of
acoustic waves in the external medium.

3. Mathematical solutions

The obtained Klein-Gordon equation can be solved by speci-
fying the initial and boundary conditions. We follow Sutmann
et al. (1998) and take

lim
t→0
v(t, z) = 0, lim

t→0,z�0

∂v

∂t
= 0, (9)

lim
z→0
v(t, z) = vo(t), lim

z→∞ v(t, z) = 0, (10)

where vo(t) is an arbitrary excitation velocity to be prescribed at
z = 0 inside the tube. These initial and boundary conditions are
of the same form as those considered by Sutmann et al. (1998),
therefore, their results can be directly used to solve the problem
discussed in this paper. As shown by these authors, the general
solution can be obtained by performing Laplace transforms and
can be written as

v(t, z) = vo(t − z/cK)H(t − z/cK)+
∫ t

0
vo(t − τ) W(τ, z) dτ, (11)

whereH(t − z/cK) is the Heaviside step-function and its value
is 0 for t < z/cK and 1 for all values of t > z/cK, while H(t −
z/cK) = 0.5 if t = z/cK. The function W(τ, z) arises from the
inverse Laplace transform (see Sutmann et al. 1998, for details)
and is given by

W(τ, z) = −ΩK

cK

J1(ΩK

√
τ2 − (z/cK)2)z√
τ2 − (z/cK)2

H(τ − z/cK). (12)

To investigate the excitation of the free and forced atmospheric
oscillations inside a magnetic flux tube, we consider four dif-
ferent cases, namely, excitation by monochromatic transverse
tube waves, a spectrum of transverse tube waves, a δ-function
pulse and a wavetrain of random pulses. Similar cases but
for acoustic waves have been considered by Sutmann et al.
(1998) who derived the general analytical solution for each
case. From a mathematical point of view, the basic equations
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derived here are of the same form as those obtained by these au-
thors. Therefore, their solutions may be formally used here and
they only require to replace cS by cK and ΩS by ΩK. It must be
noted that the basic mathematical structure of these equations
is also the same to that discussed in Paper I for longitudinal
tube waves; this means that we could use the results of Paper I
and replace cT by cK and ΩT by ΩK. In the next section, we
present and discuss the final solutions and used them to study
oscillations of magnetic flux tubes in the solar atmosphere.

3.1. Excitation by monochromatic transverse tube
waves

We assume that monochromatic transverse tube waves with
frequency ω and amplitude uo, is continuously generated by
the external turbulent motions (see Sect. 4) and they propagate
along the flux tube. The boundary condition (Eq. (10)) that de-
scribes this process is

vo(t) = uo e−iωt, (13)

which allows writing the general solution (see Eq. (27) in
Sutmann et al. 1998) as

v(t, z) = uo e
−i

(
ωt−
√
ω2−Ω2

K z/cK

)

+uo

√
2ΩK

π

1

ω2 − Ω2
K

z
cK

1
t3/2

×
[
ΩK sin

(
ΩKt − 3π

4

)
+ iω cos

(
ΩKt − 3π

4

)]
· (14)

The first term on the RHS of this equation describes the forced
atmospheric oscillations represented here by either the prop-
agating (ω > ΩK) or evanescent (ω < ΩK) transverse tube
waves (Spruit 1982); note that these oscillations do not decay
in time if they are driven by monochromatic waves that are con-
tinuously generated. The free atmospheric oscillations are de-
scribed by the second term on the RHS of Eq. (14) and it is seen
that they decay in time as t−3/2 at any given height and their
amplitude increases linearly with height (Hasan & Kalkofen
1999). The decay time for these oscillations is the same as that
previously found for acoustic waves (Fleck & Schmitz 1991,
1993; Kalkofen et al. 1994; Schmitz & Fleck 1995; Sutmann
& Ulmschneider 1995a,b; Sutmann et al. 1998) and for longi-
tudinal tube waves in Paper I.

3.2. Excitation by a spectrum of transverse tube waves

The spectrum of transverse tube waves generated at the lower
tube boundary (z = 0) is approximated here by a linear super-
position of sinusoidal partial waves with different amplitudes,
frequencies and phases. The initial velocity vo(t) required for
the boundary condition given by Eq. (10) can be specified as

vo(t) =
N∑

n=1

un e−i(ωnt+ϕn), (15)

where un and ωn are the velocity amplitudes and frequencies
of the partial waves, respectively, and ϕn are arbitrary constant

phases. We use Eq. (36) from Sutmann et al. (1998) to write

v(t, z) =
N∑

n=1

un e−iϕn e
−i

(
ωnt−
√
ω2

n−Ω2
K z/cK

)

+

N∑
n=1

un e−iϕn

√
2ΩK

π

1

ω2
n −Ω2

K

z
cK

1
t3/2

×
[
ΩK sin

(
ΩKt − 3π

4

)
+ iωn cos

(
ΩKt − 3π

4

)]
· (16)

Similar to the previous case of monochromatic waves, there
are two different types of oscillations, namely, the forced at-
mospheric oscillations that do not decay in time and the free
atmospheric oscillations that decay in time as t−3/2. All partial
waves with ωn > ΩK propagate freely along the tube and the
waves with ωn < ΩK are evenescent. Each partial wave excites
its own free oscillations, which superpose and have amplitudes
that decay in time as t−3/2. If ωn → ΩK, then we must take
t → ∞ which makes the second term in Eq. (16) equal zero,
and the free and forced oscillations become the same and they
do not decay in time.

3.3. Excitation by a δ-function pulse

We now consider one transverse pulse with a δ-function shape
to be generated at z = 0. The required boundary condition is

vo(t′) = uo δ(t
′), (17)

where t′ = ΩKt/2π.
We follow Sutmann et al. (1998) to obtain

v(t, z) = −u0

√
2π
ΩK

z
cK

1
t3/2

cos

(
ΩKt − 3π

4

)
, (18)

which shows that only free atmospheric oscillations are excited
and that they also decay as t−3/2. The forced oscillations are not
present in this case because there is no continuous excitation.

3.4. Excitation by a wavetrain of random pulses

Finally, we assume that a wavetrain of transerse and sinusoidal
pulses with randomly chosen amplitudes and periods is gener-
ated at the lower boundary of the tube (z = 0) and propagates
upward along the tube. A new pulse is stochastically chosen
after the time equal to the passed wave period of the previous
pulse. The boundary condition requires v o(t) to be given in the
following form:

vo(t) =
∞∑

n=1

un e−iωnt [H(t − tn−1) −H(t − tn)
]
, (19)

where un and ωn are randomly chosen wave amplitudes and
periods, respectively. In addition, we have

tn =
n∑

i=0

Ti, tn−1 =

n−1∑
i=0

Ti, (20)

and

To = 0, Ti =
2π
ωi
· (21)
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Using Eq. (11) and applying the asymptotic limit of t � z/c K

to Eq. (12), we obtain (see Eq. (62) in Sutmann et al. 1998)

v(t, z) =

√
2ΩK

π

z
cK

N∑
n=1

un
1

ω2
n − Ω2

K

2
t3/2

× [
ΩK cos(ΩKt − ϕ1) − iωn sin(ΩKt − ϕ1)

]
sinϕ2, (22)

where N is chosen in such a way that t > tN , and

ϕ1 =
1
2
ΩK(tn + tn−1) +

3π
4
, (23)

ϕ2 =
1
2
ΩK∆tn, (24)

with ∆tn = tn − tn−1.
Similar to the previous case, the wavetrain of random pulses
generates only the free atmospheric oscillations because the ex-
citation is not continuous but instead it is stopped at the time
t > tN ; the latter means that only N pulses are generated. The
derived analytical solution shows that these oscillations also
decay in time as t−3/2.

4. Application to solar magnetic flux tubes

We compute the structure of the solar atmosphere outside the
magnetic flux tube by taking gravity g = 2.376 × 10 4 cm/s2,
and assuming that the atmosphere is isothermal with tempera-
ture Te = 5000 K and extends from z = 0 to z = 2000 km.
The gas pressure outside the tube at z = 0 is assumed to
be pe = 4 × 104 dyn/cm2, which approximately corresponds
to Te = 5000 K in the VAL model (Vernazza et al. 1981). The
atmosphere inside the tube is also isothermal with T o = Te. We
specify the tube magnetic field to be Bo/Beq = 0.85 at τ5000 = 1
(see Sect. 2) and use the horizontal pressure balance to calcu-
late the distribution of physical parameters inside the tube with
depth and height. Since the value of the tube magnetic field
may vary for flux tubes on the Sun (e.g., Solanki 1993), we also
consider Bo/Beq = 0.95 and 0.75 (Ulmschneider & Musielak
1998).

The characteristic tube speed cK and the cutoff fre-
quency ΩK are computed for each value of the tube magnetic
field and given in Table 1. To compare these values with the
sound speed cS and the acoustic cutoff frequency ΩS, we take
γ = 5/3 and get cS = 7.3 km s−1 and ΩS = 0.0312 s−1. Hence,
the speed of transverse tube waves is either lower than, or com-
parable to, the sound speed and this is consistent with Eq. (6)
as Bo/Beq = 0.75, 0.85, and 0.95 correspond respectively to
Bo ≈ 1325, 1500, and 1675 G, or β ≈ 0.8, 0.4, and 0.1 at
τ5000 = 1. The values of ΩK is always lower than ΩS (see
Eq. (7)) and changes with the strength of the tube magnetic
field (Table 1).

Note that cK, cS, ΩK and ΩS are constant in our model be-
cause the background atmosphere is isothermal and the tube
expands exponentially with height. The cutoff frequencies that
are the same in the entire atmospheric model are often referred
to as the “global” cutoff frequencies to distinct them from the
so-called “local” cutoff frequencies which vary with height due

Table 1. The characteristic velocity cK (km s−1), cutoff fre-
quencyΩK (s−1) and total wave energy flux FK (erg cm−2 s−1) are given
for three different values of Bo/Beq used in this paper. By compar-
ing the maximum wave frequency ωmax to ΩK, it is seen that most of
the generated wave energy is carried by propagating longitudinal tube
waves. The wave energy fluxes are computed by following Musielak
& Ulmschneider (2001).

Bo/Beq cK ΩK ωmax FK

0.75 5.0 0.0107 0.0152 2.2 × 108

0.85 6.0 0.0129 0.0183 1.4 × 108

0.95 7.3 0.0155 0.0220 8.9 × 107

to the presence of other gradients, for example, the temper-
ature gradient (e.g., Brown et al. 1986); obviously, all cutoff
frequencies discussed here and in Paper I are the global cut-
off frequencies. In the following, we present the results of our
calculations by plotting the real part of the normalized wave ve-
locity v(z, t)/cK with time for the free atmospheric oscillation at
two different atmospheric heights z = 500 and 2000 km; in all
our calculations the conditions t � z/cK and t � 1/|ΩK ± ω|
are always fulfilled.

4.1. Wave energy fluxes

The interaction between a thin and vertically oriented mag-
netic flux tube and the external turbulent motions has been
studied analytically by Musielak & Ulmschneider (2001), who
developed a general theory describing the generation of trans-
verse tube waves and used to compute the wave energy spec-
tra and fluxes for the Sun and late-type dwarfs (Musielak &
Ulmschneider 2002a,b). Similar to the generation of longitudi-
nal tube waves discussed in Paper I, this theory is also based
on the original work done by Lighthill (1952) in which the in-
homogeneous wave equation is derived and the source function
is assumed to be fully determined by the turbulent motions. To
prescribe the source function, one typically uses an extended
form of the Kolgomorov turbulent energy spectrum and a mod-
ified Gaussian frequency factor given by Musielak et al. (1994);
both forms have been adopted by Musielak et al. (1995) to
study the excitation of longitudinal tube waves, by Rubinstein
& Zhou (2002) to investigate the generation of acoustic waves,
and by Bi & Xu (2002) to examine the efffects of turbulence on
the solar p-mode oscillations.

We follow Musielak & Ulmschneider (2002a) to calculate
the wave energy spectra and fluxes for the Sun by taking the
solar gravity (see above), T eff = 5770 K, the solar metallicity
(Zm = 0.02), the mixing-length parameter α which is assumed
to be 2 in all our calculations, and the following three values
of the tube magnetic field: Bo/Beq = 0.75, 0.85 and 0.95. The
obtained wave energy spectra are shown in Fig. 1. It is clearly
seen that the amount of generated wave energy decreases with
increasing magnetic field and that the frequency ωmax of the
maximum of each spectrum is located relatively close to the
cutoff frequency ΩK. Since ωmax is always less than ΩK (see
Table 1), the generated transverse tube waves are always prop-
agating waves. The total wave energy fluxes carried by these
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Fig. 1. Transverse wave energy fluxes computed for three different val-
ues of the tube magnetic field: Bo/Beq = 0.75, 0.85 and 0.95 specified
at τ5000 = 1.

Fig. 2. Time evolution of the free atmospheric oscillations inside solar
magnetic flux tubes with Bo/Beq = 0.85. The oscillations are driven
by monochromatic transverse tube waves with ω = 0.0183 and FK =

1.4 × 108 (erg/cm2s), and the real part of v(t, z)/cK (see Eq. (14)) is
plotted at two different atmospheric heights z = 500 km (t = 832 s)
and z = 2000 km (t = 3326 s).

waves along solar magnetic flux tubes are computed by inter-
grating the spectra over frequency and the obtained fluxes are
given in Table 1. In the following, the fluxes and spectra are
used to study the excitation of atmospheric oscillations inside
magnetic flux tubes by monochromatic transverse tube waves
and a spectrum of these waves, respectively.

4.2. Monochromatic waves

To investigate the excitation of the free atmospheric oscillations
by monochromatic transverse tube waves, we calculate the ini-
tial amplitude uo =

√
2FK/ρocK, where FK is the total wave en-

ergy flux carried by transverse tube waves (see Table 1). Since
we consider monochromatic waves, we assume that ω = ωmax,
where ωmax is the maximum frequency of the computed wave
energy spectra (see Fig. 1) and is given in Table 1. The time

Fig. 3. Time evolution of the initial wave velocity vo(t) normalized by
cK. These velocity fluctuations represent the spectrum of transverse
tube waves shown in Fig. 1 (solid line) at the atmospheric height z =
0 km inside solar magnetic flux tubes with Bo/Beq = 0.85.

evolution of the wave velocity v(t, z) normalized by c K (see
Eq. (14)) is calculated at the atmospheric height z = 500 km,
which corresponds to t = 832 s, and z = 2000 km, which cor-
responds to t = 3326 s, and plotted in Fig. 2. The presented
results clearly show that the amplitude of these oscillations is
small when compared to the tube speed cK and quickly de-
creases with time as t−3/2. A small increase of the amplitude
with decreasing tube magnetic field is consistent with changes
of FK given in Table 1. Since FK is larger than the total lon-
gitudinal wave energy flux FT (see Paper I), the normalized
amplitude v(t, z)/cK of the free atmospheric oscillations caused
by transverse tube waves is approximately one order of mag-
nitude larger than the amplitude v(t, z)/cT for longitudinal tube
waves. In addition, the frequencyΩK of the oscillations excited
by transverse tube waves is approximately two times lower
than ΩT, which is the cutoff frequency for longitudinal tube
waves (see Paper I); this can be clearly seen when Fig. 2 of
Paper I and Fig. 2 of this paper are compared. According to the
results given in Table 1,ΩK increases by a factor of 1.2 with the
increasing magnetic field, which means that the oscillations in-
side magnetic flux tubes are of higher frequency for stronger
magnetic fields.

4.3. Spectra of waves

The assumption that the total wave energy flux is carried by
monochromatic waves is not realistic as the turbulent mo-
tions in the solar convection zone generate a full spectrum of
waves with different frequencies and amplitudes. Because of
the nature of these motions, the amplitudes vary rapidly in
time and for a very brief period of time they can be as high
as 0.4cK (see Fig. 3). The time evolution of vo shown in Fig. 3
is computed by identifying the frequency ω n (see Eq. (15))
of each partial wave with 32 frequency points used in calcu-
lations of the wave energy spectra presented in Fig. 1, and
by taking un =

√
2Fn/ρocK, where Fn is the wave energy

flux carried by the waves with ωn. Since all partial waves are
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Fig. 4. Time evolution of the free atmospheric oscillations inside solar
magnetic flux tubes with Bo/Beq = 0.85. The oscillations are driven by
the spectrum of transverse tube waves shown in Fig. 1 (solid line) and
only the real part of v(t, z)/cK is plotted at two different atmospheric
heights z = 500 km (t = 832 s) and z = 2000 km (t = 3326 s).

propagating (ωn > ΩK), we assume that the phase φn = 0 is
the same for all these waves. The results shown in Fig. 3 repre-
sent the spectrum of transverse tube waves propagating along
magnetic flux tubes with Bo/Beq = 0.85 (see Fig. 1). The veloc-
ity fluctuations obtained for Bo/Beq = 0.75 and 0.95 look very
similar except that some spikes are even higher for the former
and lower for the latter.

According to Eq. (16), the spectrum of transverse tube
waves propagating along magnetic flux tubes excite the free
atmospheric oscillations with the cutoff frequencyΩK. We cal-
culate the time evolution of these oscillations for all three cases
of the tube magnetic field, and plot the real part of Eq. (16)
for Bo/Beq = 0.85 and 0.95 in Figs. 4 and 5, respectively. It is
clearly seen that that the oscillations driven by these two spec-
tra decay in time as t−3/2 and that their amplitudes are approx-
imately twice as high as those shown in Fig. 2 for monochro-
matic waves. By comparing the results shown in Figs. 4 and 5,
one finds that the amplitude of these oscillations is very sim-
ilar for the two considered values of the tube magnetic field.
This is rather surprising result as the initial wave energy flux is
higher for Bo/Beq = 0.85 than for 0.95 (see Fig. 1); the differ-
ence is caused by the fact that flux tubes with stronger magnetic
fields are more difficult to shake (see Musielak & Ulmschneider
2001, for details). As a result of this difference in the wave en-
ergy fluxes, the amplitude of the oscillations shown in Fig. 4
should be higher than those presented in Fig. 5.

To explain this apparent discrepancy, we checked the time
required for transverse tube waves to reach the atmospheric
height z = 500 km (z = 2000 km) in both cases. We found that
this time was 832 s (t = 3326 s) and 690 s (t = 2758 s) for the
waves propagating along the tube with Bo/Beq = 0.85 and 0.95,
respectively. Based on Eq. (16), one sees that the longer time
reduces the amplitude, however, the shorter time is responsible
for its increase; hence, it is a pure coincidence that the ampli-
tudes of the oscillations shown in Figs. 4 and 5 look so similar.

Fig. 5. The same as Fig. 4 but for Bo/Beq = 0.95.

The frequency ΩK of the free atmospheric oscillations
shown in Figs. 4 and 5 is different because of different strength
of the tube magnetic field (see Table 1). For the oscillations pre-
sented in Fig. 4, we have ΩK = 0.0129 s−1, which gives PK =

2π/ΩK = 487 s ≈ 8 min; however, for the oscillations of Fig. 5,
we find ΩK = 0.0155 s−1, which gives PK = 405 s ≈ 7 min.
In both cases, the period of these oscillations is consistent with
the observations mentioned in Sect. 1. This agreement has led
Kalkofen (1997) and Hasan & Kalkofen (1999) to conclude
that the free atmospheric oscillations observed in the chromo-
spheric network are driven by transverse tube waves propa-
gating along solar magnetic flux tubes. Since these waves are
continuously generated in the solar convection zone (Musielak
& Ulmschneider 2001), in principle they could excite the ob-
served oscillations; however, see our discussion in Sect. 5.

4.4. Random pulses

Finally, we consider a wavetrain of transverse pulses that have
random amplitudes and frequencies. The wavetrain is assumed
to be finite with the number of pulses determined by the con-
dition t > tN . A new pulse with randomly chosen amplitude
and period is introduced after the passed time becomes equal
to the period of the previous pulse. For all pulses the condi-
tion ωn > ΩK must be satisfied, which means only propagat-
ing pulses are considered. The source of these pulses can be
rapid horizontal motions existing at the top of the solar con-
vection zone and in the solar photosphere (e.g., Muller et al.
1994; Solanki et al. 1996; Steiner et al. 1998). Generation of
transverse tube waves and pulses by these large amplitude mo-
tions has been studied analytically (Choudhuri et al. 1993a,b;
Zhugzhda et al. 1995) and numerically (Huang et al. 1995).

Here, our assumption is that the wavetrain of random pulses
described by Eq. (19) is imposed on the tube at z = 0 and that
these pulses propagate upward along the tube and produce the
free atmospheric oscillations. Since the wavetrain is finite only
the free oscillations are present (see Eq. (22)) and their time
evolution is plotted in Fig. 6. It is seen that each random pulse
decays in time as t−3/2 and that their amplitudes are comparable
to those shown in Figs. 4 and 5 for the excitation by the spectra
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Fig. 6. Time evolution of the free atmospheric oscillations inside solar
magnetic flux tubes with Bo/Beq = 0.85. The oscillations are driven
by a wavetrain of transverse pulses with randomly chosen amplitudes
and frequencies. The real part of v(t, z)/cK is plotted at two different
atmospheric heights z = 500 km (t = 832 s) and z = 2000 km (t =
3326 s).

of waves. An interesting result is that the oscillations are sus-
tained in the atmosphere for more than 10 000 s, which is the
computation time; they would eventually die out because of
the finite number of pulses. In order to make these oscillations
a permanent atmospheric feature, the pulses must be continu-
ously generated (Sutmann et al. 1998; also Paper I), even so, the
maximum amplitude of these oscillations is only 0.01 km s−1 at
the atmospheric height z = 2000 km.

5. Nonlinear wave coupling

Our analytical results show that both transverse tube waves and
transverse pulses propagating along a magnetic flux tube freely
excite tube oscillations. The frequency of these free oscillations
is ΩK = 0.0129 s−1 and the period is PK = 2π/ΩK ≈ 8 min for
Bo/Beq = 0.85. The period becomes longer PK ≈ 10 min for
the weaker magnetic field Bo/Beq = 0.75 and shorter PK ≈
7 min for the stronger field Bo/Beq = 0.95. This range of pe-
riods seems to be in good agreement with the oscillations ob-
served in the chromospheric network (see Sect. 1). However,
a fundamental difficulty with the free atmospheric oscillations
driven by transverse waves and pulses is that these oscillations
give negligible contribution to the Doppler signal and, there-
fore, they are not visible at disk center (e.g., Kalkofen 1997).
According to Hasan & Kalkofen (1999), the oscillations can
be detected in the solar chromosphere after transformation of
transverse tube waves into longitudinal tube waves. The pro-
cess responsible for this transformation is the nonlinear mode
coupling and these authors assumed that the period of both
waves is the same after the transformation. In the following,
we discuss this process and the validity of their assumption.

A schematic picture showing how the nonlinear mode cou-
pling works is presented in Fig. 7. It must be noted that in our
approach transverse tube waves are generated as linear waves.
However, when they propagate in the solar atmosphere their

Fig. 7. A schematic picture showing generation of longitudinal tube
waves by nonlinear transverse tube waves. This nonlinear coupling
between the modes produces longitudinal tube waves that have fre-
quencies approximately twice as high as transversetube waves.

amplitudes increase due to the decrease in density and non-
linear effects (mode coupling to longitudinal tube waves) be-
come important. As a result of these effects, the components of
the curvature forces along the verical become large enough to
produce compressions inside the tube. For each transverse dis-
placement, there is approximately one compression and one ex-
pansion inside the tube. Thus, one full longitudinal tube wave
is generated by every half wavelength of a transverse wave,
which means that the frequency of the longitudinal tube waves
is approximately twice that of the transverse tube waves. This
shows that the period of the generated longitudinal tube waves
is approximately one half the period of transverse tube waves
and that the assumption made by Hasan & Kalkofen (1999) is
not correct.

As shown in Paper I, the period of the longitudinal tube
waves is not the main property that determines the period of
the resulting free oscillations. Actually, the free atmospheric
oscillations excited by the propagating longitudinal tube waves
of any frequency inside solar magnetic flux tubes have always a
period that is equal to the cutoff period PT = 2π/ΩT. Therefore,
the propagation of longitudinal tube waves produced by the
nonlinear mode coupling will generate free oscillations with
the cutoff frequency ΩT but not ΩK as suggested by Hasan &
Kalkofen (1999). As a result, the period of these oscillations
will be near 3 min and will be practically independent of the
strength of the tube magnetic field (see Paper I). Thus, we may
conclude that both longitudinal tube waves generated in the so-
lar convection zone and longitudinal tube waves produced by
the nonlinear mode coupling excite 3-min oscillations inside
solar magnetic flux tubes.
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Despite the fact that these two different excitation mecha-
nisms produce free atmospheric oscillations inside solar mag-
netic flux tubes with the same period, their amplitudes are
likely to be different. The amplitudes of the oscillations ex-
cited by the first mechanism are known and given in Paper I;
however, to determine the amplitudes of oscillations produce
by the second mechanism, one must know the efficiency of the
nonlinear mode coupling (Ulmschneider et al. 1991). Since the
energy fluxes carried by transverse tube waves are relatively
high (Huang et al. 1995; Musielak & Ulmschneider 2002a),
and since the amplitude of these waves quickly increases with
height due to the density gradient, the transformation of the
waves into longitudinal tube waves must be efficient (e.g.,
Ulmschneider et al. 2001; Fawzy et al. 2002). If this is the case,
then the amplitudes of the free oscillations discussed here must
be higher (or even much higher) than those presented in Paper I.
To make this comparison more detailed calculations of the ef-
ficiency of the nonlinear mode coupling are required, however,
calculations of this type are out of the scope of this paper.

It is important to note that our model of exponentially di-
verging magnetic flux tubes allows us to introduce the global
cutoff frequencies (ΩT, ΩS and ΩK) and derive the general an-
alytical solutions for different excitation mechanisms. On the
other hand, our model has only limited applications to the Sun.
The model is obviously valid for a single magnetic flux tube
located inside the supergranulation cells. It may also be ap-
plied to appropriate regions of the chromospheric network at
the boundary of superganulation cells where enough space is
available before the tubes meet neighboring flux tubes. In both
cases, the analytical theory presented here predicts only the
existence of the 3-min free atmospheric oscillations inside so-
lar magnetic flux tubes. Hence, neither our results nor the re-
sults presented by Hasan & Kalkofen (1999) can account for
the 7-min oscillations observed in the chromospheric network.
Clearly, a different approach is needed to explain the nature and
origin of these oscillations.

One possible explanation of the 7-min oscillations has been
given by Deubner & Fleck (1990) who suggested that internal
gravity waves forming standing waves inside the solar chro-
mospheric cavity may account for the range of periods (see
also Lou 1995a,b) and other basic properties of these oscilla-
tions. However, Hasan & Kalkofen (1999) argue that this is
not sufficient because a theory explaining the observed oscil-
lations must also account for the heating of the chromospheric
network. We basically agree with this suggestion and believe
that in order to explain the nature and origin of the oscilla-
tions in the magnetic network, one must take into account more
realistic shapes of the magnetic flux tubes (see, for example,
Fawzy et al. 2002) and include the temperature gradient as well.
Obviously, for such situations no analytical solutions can be
obtained and only the so-called local cutoff frequencies can be
derived. The fact that both the period of the free atmospheric
oscillations and their time decay are affected by the temper-
ature gradient has been shown by Sutmann & Ulmschneider
(1995a) for a magnetic-free atmosphere. Similar studies must
be performed for solar magnetic flux tubes discussed here and
in Paper I. The results of these studies will be presented else-
where.

6. Conclusions

Our conclusions about the nature of the oscillations excited
by transverse tube waves and pulses can be summarized as
follows:

1. The propagation of transverse tube waves and pulses along
a single magnetic flux tube leads to the free oscillations of
this tube with the cutoff frequency ΩK. Since this cutoff de-
pends on the strength of the tube magnetic field, the period of
these oscillations ranges from 7 to 10 min for the field ranging
from Bo/Beq = 0.95 to 0.75.

2. The free atmospheric oscillations decay in time as t−3/2 if
the frequency of driving waves is not equal to the cutoff fre-
quency ΩK. This time dependence is the same for all consid-
ered mechanisms of the excitation of these oscillations.

3. For the continuous excitation, the forced oscillations of the
magnetic flux tube are also present. They are different from
the free oscillations as they do not decay in time and their fre-
quency is the same as the frequency ω of the driving waves.
However, when ω = ΩK both the free and forced oscillations
become identical and they do not decay in time.

4. The amplitude of the free oscillations driven by either trans-
verse tube waves or pulses is relatively small when compared
with the characteristic speed cK of these waves. This amplitude
is larger for the excitation by a spectrum of waves and random
pulses than for monochromatic waves, and it increases when
the tube magnetic field is decreased.

5. The free and forced oscillations of solar magnetic flux tubes
driven by transverse tube waves and random pulses cannot
be directly observed as they do not give a Doppler signal.
However, free and forced atmospheric oscillations inside these
tubes can be observed if they are excited by longitudinal tube
waves generated by transverse tube waves through the process
of nonlinear mode coupling (Hasan & Kalkofen 1999). Our re-
sults show that the basic properties of these two types of os-
cillations are different. The main difference is that the former
have periods ranging from 7 to 10 min and the latter show al-
ways periods near 3 min.

6. The observed 3-min oscillations inside the supergranule cells
are consistent both with the free atmospheric oscillations inside
magnetic flux tubes and with the free atmospheric oscillations
in a nonmagnetic atmosphere outside these tubes. The results
presented here and in Paper I show that the former are excited
by the propagating longitudinal tube waves generated either by
the turbulent motions in the solar convection zone or by trans-
verse tube waves through nonlinear mode coupling. According
to our analytical results, in both cases only the 3-min free at-
mospheric oscillations are produced.

7. Our results cannot explain the 7-min oscillations observed in
the chromospheric network. The main reason is that our model
does not apply to crowded magnetic flux tubes at the boundary
of supergranules. Therefore, to account for these oscillations,
one must take into consideration a more realistic structure of
flux tubes located in the magnetic network.
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