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Abstract. An analytic approach to the generation of torsional magnetic tube waves in stellar convection zones is presented.
The waves are produced in a thin, vertically oriented magnetic flux tube embedded in a magnetic field-free, turbulent and
compressible external medium and are excited by external turbulent flows. A theory for this interaction is developed and used
to compute the wave energy spectra and fluxes carried by torsional tube waves in the solar atmosphere. We find that these tube
waves have a characteristic cutoff frequency.
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1. Introduction

In the magnetic regions of the solar and stellar atmospheres,
isolated small-scale magnetic structures (flux tubes) are present
(e.g., Solanki 1993; Saar 1996). These tubes are rooted in the
solar and stellar convection zones where they interact with the
external turbulent motions. This interaction leads to the gener-
ation of waves that carry energy along the tubes to the over-
lying atmosphere (Spruit & Roberts 1983). It has been shown
that three different types of waves can be supported by these
flux tubes, namely, longitudinal, transverse and torsional tube
waves (see Spruit 1981, 1982). These waves can dissipate the
carried energy and heat the atmosphere to temperatures higher
than those corresponding to the radiative equilibrium. As a re-
sult of this heating, the Sun and other late-type stars are sources
of chromospheric activity (e.g., Linsky 1991).

Significant theoretical and observational efforts have been
made to estimate the amount of energy carried by longitudinal
(Musielak et al. 1989, 1995; Ulmschneider & Musielak 1998;
Ulmschneider et al. 2001) and transverse (Muller et al. 1989,
1994; Choudhuri et al. 1993a,b; Huang et al. 1995; Musielak &
Ulmschneider 2001) tube waves. Analytical studies are based
on the Lighthill-Stein theory of sound generation (Lighthill
1952; Stein 1967), which has been modified to include the
magnetic flux tube structure, and also its treatment of turbu-
lence has been improved (Musielak et al. 1994). Among the
three different tube waves, only the generation of longitudinal
and transverse tube waves have been analytically investigated
(Musielak et al. 1995; Musielak & Ulmschneider 2001), and
the resulting stellar wave energy spectra and fluxes have been
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calculated (Musielak et al. 2000, 2002; Musielak &
Ulmschneider 2002a,b). To complement this series of analyt-
ical studies, we now investigate the efficiency of the genera-
tion of torsional tube waves in the solar and stellar convection
zones.

Recently, Ulmschneider et al. (2001) and Fawzy et al.
(2002a,b) have shown that longitudinal and transverse tube
waves do not carry enough energy to heat the upper chromo-
spheric layers of active and moderately active stars, and sug-
gested that the energy carried by torsional tube waves must be
taken into account. These authors have constructed theoreti-
cal models of stellar chromospheres based on the heating of
non-magnetic regions by acoustic waves and magnetic regions
by longitudinal and transverse tube waves (see also Buchholz
et al. 1998; Cuntz et al. 1998, 1999). The models have been
used to predict theoretically the level of chromospheric activity.
By comparing the theoretical predictions with observations, the
authors concluded that other heating mechanisms must be in-
cluded in their models. Among many different heating mecha-
nisms (e.g., Narain & Ulmschneider 1996), the most promising
additional heating mechanisms are those that heat by reconnec-
tion events and by torsional tube waves. In order to include dis-
sipation of torsional tube waves into these theoretical chromo-
spheric models, the initial wave energy fluxes carried by these
waves into the solar and stellar atmospheres must be known.
The main goal of this series of papers is therefore to calculate
the spectra and wave energy fluxes of torsional Alfv´en waves
in magnetic flux tubes.

We consider a thin magnetic flux tube that is embedded in
a non-magnetic, compressible and convectively unstable (tur-
bulent) medium. We assume that the tube is oriented verti-
cally and that there are no turbulent motions inside the tube.
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This means that the only source of torsional tube waves is the
turbulent flow outside the tube; the flow is assumed to be sub-
sonic, so that the generated waves have small amplitudes. The
fact that the tube is vertical and the generated waves are linear
allows us to separate the excitation of torsional tube waves from
the other two tube wave modes. It must be also mentioned that
our approach automatically includes the correlation effects of
cancellation and amplification that are always present when the
magnetic flux tube is excited at many points along its length. As
a result of the interaction between the flux tube and the exter-
nal turbulent motions torsional tube waves are excited and the
wave energy carried by these waves propagates outward where
it is dissipated in the overlying atmosphere. The processes of
the wave propagation and dissipation will be discussed in sep-
arate papers.

In this paper, we develop a theory describing the generation
of torsional tube waves in solar and stellar convection zones,
and apply it to the Sun; the wave energy spectra and fluxes for
other late-type stars of Population I and II will be presented in
two forthcoming papers. Our approach is analytical and its first
step is to derive and solve the inhomogeneous wave equation,
and then obtain the basic expressions for the wave energy spec-
tra and fluxes (see Sect. 2). Application of the obtained results
to the Sun and their discussion are given in Sect. 3. The main
conclusions of the paper are summarized in Sect. 4.

2. Inhomogeneous wave equation and energy
fluxes

2.1. Model and assumptions

We consider an isolated magnetic flux tube, which is assumed
to be thin and with a circular cross-section. The tube is em-
bedded in a magnetic field-free, turbulent, compressible and
isothermal external medium. The tube is in temperature equi-
librium with the external medium and it remains vertically
oriented under the assumption that there are strong buoyancy
forces in the upper layers of the convection zones. Because of
this vertical orientation, the three fundamental (longitudinal,
transverse and torsional) tube wave modes can be separated
and, as a result, the generation of torsional tube waves can be
treated independently from the other two tube waves. It is as-
sumed that the torsional waves are excited only by the external
turbulent motions and that there are no fluid motions inside the
tube that could affect the generation and propagation of these
waves. Our approach is limited to subsonic turbulence, which
means that the turbulent Mach numberMt = ut/cS < 1, where
ut is the rms turbulent velocity andcS is the sound speed both
inside and outside the flux tube. This subsonic turbulence leads
to the generation of linear torsional waves, which show negli-
gible coupling to other tube wave modes in the region of wave
excitation. However, this coupling may become much more ef-
fective in higher atmospheric layers where nonlinear effects are
important (e.g., Ulmschneider et al. 1991; Hollweg et al. 1982).

To describe torsional tube waves, we adopt a cylindri-
cal coordinate system (R, φ, z) and determine the height de-
pendence of the internal tube parameters by using the thin
flux tube approximation. This allows us to write the magnetic

field strength, gas density and gas pressure inside the tube as
Bo = Bo(z) ẑ, ρo = ρo(z) and po = po(z), respectively, where
the subscript “o” indicates internal parameters andẑ is the unit
vector in thez-direction. Outside the tube, the magnetic field
is zero,Be = 0, the gas density and pressure are expressed as
ρe = ρe(z) andpe = pe(z), respectively, with the subscript “e”
denoting external parameters. A plane-parallel and isothermal
atmosphere is assumed with uniform gravitational acceleration
given byg = −g ẑ.

By assuming that the tube axis is always oriented along the
z-axis, the torsional waves are completely described by per-
turbations of the magnetic fieldb = bφ(z, t)φ̂ and tube wave
velocity given byu = vφ(z, t)φ̂ with φ̂ being the unit vector in
theφ-direction; note that the tube is being twisted by the exter-
nal turbulent motions, however, no fluid motions in the exter-
nal medium are due to torsional oscillations of the tube. This
makes the total magnetic field for the purely torsional mode
B = Boẑ+ bφφ̂. Because the considered torsional tube waves
are linear, the turbulent density and pressure perturbations as-
sociated with these waves can be neglected (δρ = δp = 0).
This allows the internal total gas densityρ and total gas pres-
surep to be replaced with their equilibrium valuesρo and po,
and the waves to be considered incompressible, which means
that∇ · u = 0.

2.2. Wave equation

If the magnetic flux tube is to remain stable there must be a
balance of the internal and external pressures across the tube
boundary. The sum of the internal gas and magnetic pres-
sures must be equal to the external gas pressure at the inter-
face: po + B2

o/8π = pe + δpt + δpw, whereδpt andδpw are
pressure fluctuations in the external medium due to turbulence
and external acoustic waves. Since the latter are compressible
waves, we neglect their contribution to the generation of purely
incompressible torsional tube waves by takingδpw << δpt

which also implies thatδρw << δρt (Spruit 1982; Musielak
& Ulmschneider 2001). Thus, the horizontal pressure balance
can be written as

po +
B2

o

8π
= pe+ δpt. (1)

The momentum equation for a magnetic flux tube oscillating
with velocityu is given by

ρo
∂u

∂t
+ ρo(u · ∇)u = −∇po +

1
c

J × B + ρog, (2)

where the link between fluid equations and electromagnetic
equations isJ × B = c

4π (∇ × B) × B, and wherec is the light
speed. For linear waves, Eq. (2) can be expanded and written as

ρo
∂u

∂t
= −∇

(
po +

B2
o

8π

)
+

1
4π

(Bo · ∇)Bo

+
1
4π

[(∇ × Bo) × b+ (∇ × b) × Bo] + ρ0g. (3)

Using the conditions specified above, the linearized momentum
equation for the external medium with velocityu is

ρte
∂u
∂t
+ ∇pte − ρteg = 0 , (4)
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whereρte = ρe + δρt and pte = pe + δpt contain fluctuating
components caused by the turbulence. Again, since the tube is
twisted but does not move horizontally, no motion is due to the
tube in the external medium and Eq. (4) can be written in the
following form:

∇(pe+ δpt) = −δρt
∂u
∂t
+ (ρe+ δρt)g, (5)

with ρe(∂u/∂t) = 0 because the external medium is in dynami-
cal steady-state.

Combining Eqs. (1), (3) and (5), yields

ρo
∂u

∂t
− δρt

∂u
∂t
=

1
4π

(Bo · ∇)Bo + (ρo − ρe)g − δρtg

+
1
4π

[(∇ × Bo) × b+ (∇ × b) × Bo] . (6)

Since Bo is a function ofz only, taking theφ-component of
Eq. (6) gives

ρo

(
∂u

∂t

)
φ

− δρt

(
∂u
∂t

)
φ

=

1
4π

[(∇ × Bo) × b+ (∇ × b) × Bo]φ . (7)

Defining (u)φ = vφ and (u)φ = uφ, and rearranging the terms,
Eq. (7) can be written as

∂vφ

∂t
− Bo

4πρo

∂bφ
∂z
=
δρt

ρo

∂uφ
∂t
· (8)

To eliminatebφ from the above equation, it is necessary to
take the induction equation into consideration. Assuming that
Ohm’s law holds and displacements current are negligible
when compared to conduction currents, we obtain(
∂b
∂t

)
φ

− [∇ × (u × Bo)]φ = 0, (9)

where only linear terms are kept. From Eq. (9), we find

bφ = Bo

(
∂

∂t

)−1 (
∂vφ

∂z

)
· (10)

Combining Eqs. (8), (10), and taking∂/∂t of the result yields

∂2vφ

∂t2
− c2

A

∂2vφ

∂z2
− c2

A

B′o
Bo

∂vφ

∂z
=
∂

∂t

[
δρt

ρo

(
∂uφ
∂t

)]
, (11)

whereB′o = dBo/dzand

c2
A =

B2
o

4πρo
, (12)

which remains constant along the tube because of the thin flux
tube approximation.

The physical properties of torsional tube waves and the fact
that their characteristic velocitycA is the same as the Alfv´en ve-
locity clearly imply that these waves are very similar to Alfv´en
waves in ideal MHD with uniform magnetic fields. There are
also similarities between transverse tube waves and Alfv´en
waves, however, the propagation velocity of the former is af-
fected by the presence of the external medium (see Spruit 1981)

and, therefore, it differs from the Alfvén velocity. Longitudinal
tube waves are essentially acoustic waves guided by the tube
magnetic field lines, so they resemble slow MHD waves prop-
agating along the field lines; note that no mode of the flux tube
geometry corresponds to fast MHD waves.

From the definition of the Alfv´en velocity (see Eq. (12))
and the fact thatcA = const. in the approach considered here,
we obtain

B′o
Bo
=

1
2
ρ′o
ρo
, (13)

whereρ′o = dρo/dz. In addition, we have

ρ′o
ρo
= − 1

H
, (14)

with H being the density (pressure) scale height of the internal
and external atmosphere. Hence, Eq. (11) can be written as ∂2

∂t2
− c2

A
∂2

∂z2
+

c2
A

2H
∂

∂z

 vφ(z, t) = Sφ(z, t), (15)

and the source function is

Sφ(z, t) =
∂

∂t

[
δρt

ρo

(
∂uφ
∂t

)]
· (16)

In the case of no turbulent external motions, the source func-
tion is zero and the wave equation describes freely propagating
torsional tube waves.

Now, it must be noted that the derived inhomogeneous
wave Eq. (15) has similar form to that obtained for transverse
tube waves (see Musielak & Ulmschneider 2001, and their
Eq. (12)). The presence of the first order derivative ofvφ with
respect to height implies that a cutoff frequency can be intro-
duced for torsional tube waves propagating along a diverging
magnetic flux tube (see Sect. 2.3). As shown by Eqs. (11), (13)
and (14), the existence of this cutoff is caused by the gradi-
ent of the magnetic fieldB′o. Obviously, this cutoff frequency
would not be present if a homogeneous slab would be con-
sidered instead of a flux tube with exponentially diverging
magnetic fields.

2.3. Klein-Gordon equation and the cutoff frequency

To derive the cutoff frequency for torsional tube waves, we cast
Eq. (15) into its Klein-Gordon form by using the following
transformation:

vφ = ρ
−1/4
o v, (17)

which yields(
∂2

∂t2
− c2

A
∂2

∂z2
+ Ω2

T

)
v = St(z, t), (18)

whereSt(z, t) = ρ
1/4
o Sφ(z, t) and the cutoff frequencyΩT for

torsional tube waves is defined as

ΩT =
cA

4H
· (19)

In order to avoid conflicting notations compared to our previ-
ous work (e.g. Musielak et al. 1995), the cutoff frequency of
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longitudinal tube waves, sometimes called Defouw frequency,
instead of termedΩt is from now on denoted byΩD. Since both
the propagation velocitycA of torsional waves and the scale
heightH are constant along the tube, the cutoff frequencyΩT

is a global cutoff as it is the same along the entire length of
the (exponentially spreading) tube. Torsional waves are prop-
agating waves when their frequencyω satisfies the condition
ω > ΩT, and they are evanescent whenω ≤ ΩT. It is interest-
ing to note that in the previous work (e.g., Spruit 1981, 1982;
also Roberts & Ulmschneider 1997, and references therein),
the cutoff frequency for torsional waves has not been explicitly
introduced. Our results clearly show that this cutoff must al-
ways be taken into account when magnetic flux tube structures
embedded in the solar and stellar atmospheres are considered.

The definitions of the cutoff frequency for torsional,ΩT,
and transverse (kink),ΩK (Spruit 1981; also Musielak &
Ulmschneider 2001), tube waves are very similar in form, how-
ever, the ratio of these cutoffs is

ΩT

ΩK
=

cA

cK
=

√
1+
ρo

ρe
=

√
(2β + 1)/β , (20)

whereβ = 8πpo/B2
o. HerecK = cA

√
ρo/(ρo + ρe) is the kink

speed. Forβ >> 1, we haveΩT/ΩK ≈
√

2, and forβ << 1,
one findsΩT/ΩK ≈ 1/

√
β. This clearly shows that torsional

tube waves always propagate faster than transverse tube waves,
and also that the cutoff frequency for the former is higher than
for the latter (see Fig. 2); the higher cutoff implies that the wave
energy spectra for torsional tube waves are not as broad as those
for transverse tube waves (see Sect. 3).

We may also compare the torsional and longitudinal,ΩD

(see Defow 1976; also Musielak et al. 1995), cutoff frequen-
cies. The ratio of these two cutoffs is

ΩT

ΩD
=

√
2+ γβ
γβ

(
9− 8
γ
+ 8β
γ − 1
γ

)−1

, (21)

with ΩT/ΩD ≈
√
γ/8β(γ − 1) ≈ 0.56/

√
β whenβ >> 1

andΩT/ΩD ≈
√

2/(9γ − 8)β ≈ 0.53/
√
β whenβ << 1.

This shows that the ratio is very sensitive to the value of
plasmaβ; for typical values ofβ considered hereΩT is always
lower thanΩD (see Fig. 2), which implies that the wave energy
spectra for torsional tube waves are always broader than those
obtained for longitudinal tube waves (Musielak et al. 1995).
Finally, the comparison of the cutoff frequency for torsional
and acoustic,ΩS (Lamb 1908), waves shows thatΩT is always
marginally lower thanΩS and, therefore, the generated acous-
tic wave energy spectra are broader (e.g., Ulmschneider et al.
1996).

2.4. Source function

We now consider the source function given by

St(z, t) = ρ1/4
o
∂

∂t

[
δρt

ρo

(
∂uφ
∂t

)]
· (22)

The continuity equation for the external medium allowsδρt to
be expressed as a function ofuz alone. Thus, we have

St(z, t) = ρ
1/4
o
ρe

ρo

(
∂uφ
∂t

) (
1
H
− ∂
∂z

)
uz

+ρ1/4
o
ρe

ρo

(
∂2uφ
∂t2

) (
∂

∂t

)−1 (
1
H
− ∂
∂z

)
uz, (23)

which is completely known when the external velocity field is
specified.

The derived source function depends on both thez and
φ components of the turbulent velocity but does not depend
explicitly on thex andy components of this velocity; however,
the 3-D nature of turbulence is formally accounted for by us-
ing a 3-D turbulent energy spectrum to calculate the spectral
tensors (see Sect. 3.7). This one-dimensional approach is con-
sistent with the thin flux tube approximation considered in this
paper. As a result of this approximation, the ratio of the tube
diameter to a characteristic length scale of the turbulence is not
explicitly present in the expression for the source function.

Comparison of the source function derived here to that ob-
tained by Musielak & Ulmschneider (2001, see their Eq. (20))
for the generation of transverse tube waves shows that gravity
is not present in Eq. (23). This simply means that the gener-
ation of torsional tube waves is not effected by the presence
of the fluctuating buoyancy force (Goldreich & Kumar 1988).
From a physical point of view, this is obvious as torsional oscil-
lations of the tube are not directly effected by gravity; however,
the propagation of these waves depends indirectly on gravity
through stratification, which requires the tube magnetic field to
diverge and, as shown in Sect. 2.3, this field divergence is re-
sponsible for the existence of the cutoff frequency. The compar-
ison also shows that the terms depending on the second deriva-
tive of the turbulent velocity with respect to time are missing
in the expression for the source function derived by Musielak
& Ulmschneider for transverse tube waves. Since these terms
are of the same order of magntitude as the terms proportional to
the first derivative of the turbulent velocity with respect to time,
they cannot be neglected. By retaining these terms, all wave
energy spectra and fluxes given by Musielak & Ulmschneider
(2001, 2002a,b) must be multiplied by a factor of 4; the correc-
tion is already taken into account in the transverse wave energy
fluxes presented in Table 1 of this paper.

The dependence of the source function on theφ-compo-
nent of the turbulent velocity clearly implies that torsional tube
waves are generated by turbulent motions in theφ direction.
The underlying assumption here is that these motions twist the
tube magnetic field at the tube surface and that once this twist
occurs all remaining magnetic field lines across the tube be-
come twisted in the same way. Here our picture is that the ex-
ternal turbulence occurring at all scales will not allow the tube
surface to be smooth but have a rough appearance on which
tangential flows will work to twist the surface field lines. This
rugosity is assumed to extend into the tube such that the field
lines in the tube are also twisted together with the surface fields.
To simplify our analysis, we therefore assume that the turbulent
motions twist the magnetic field lines at the surface without
“slipping”, which means that at the tube boundaryvφ = uφ (for
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more discussion see Sect. 2.6). The resulting torsional waves
are fully described by the inhomogeneous wave Eq. (18) with
the source function given by Eq. (23). By specifying the tur-
bulent motions, we determine the form of the source function,
solve the wave equation, and calculate the generation rate for
torsional tube waves (see below).

2.5. Wave equation solutions

Since the inhomogeneous wave Eq. (18) has constant coeffi-
cients, a space and time Fourier transform can be used to ob-
tain its solutions. By defining angular temporal,ω, and spatial,
k, frequencies, we get

v(k, ω) =
St(k, ω)

c2
Ak2 − (ω2 − Ω2

T)
, (24)

wherek is the wave number in thez-direction, and

St(k, ω) =
1

(2π)2

∫ ∫
St(z, t)e

−i(ωt−kz)dzdt (25)

is the Fourier transform of the source function. Using Eq. (23),
we may write Eq. (25) in the following form:

St(k, ω) =
ρ1/4

(2π)2

ρe

ρo
χ(k, ω)

×
∫ ∫

uz(z, t)uφ(z, t)e
−i(ωt−kz)dzdt (26)

where

χ(k, ω) = 2ω
( i
H
+ k

)
. (27)

Note that whenSt(k, ω) = 0 the dispersion relation [(ω2−Ω2
T)−

c2
Ak2 = 0] for torsional tube waves is obtained from Eq. (24).

According to this relation, the lower bound of the frequency
domain for freely propagating torsional tube waves is the cut-
offΩT; we will use this result to compute the wave energy spec-
tra and fluxes carried by torsional tube waves.

2.6. Wave energy spectra and fluxes

The general expression for the MHD wave energy flux car-
ried by Alfvén waves isF(z, t) = −Bob(z, t)v(z, t)/4π (e.g.,
Anderson 1963; Musielak & Rosner 1987). Because of the sim-
ilarities between Alfvén waves and torsional tube waves (see
Sect. 2.2), the wave energy flux for the latter in thez-direction
can be written as

F(z, t) = −Bo

4π
bφ(z, t)vφ(z, t). (28)

Substituting Eq. (10) into Eq. (28) and taking the time average
yields

< F(z, t) >t= −B2
o

4π

〈
vφ

(
∂

∂t

)−1 (
∂

∂z

)
vφ

〉
t

· (29)

Using the transformation given by Eq. (17), the mean wave
energy flux is

< F(z, t) >t = − B2
o

4πρ1/2
o

×
〈
v(z, t)

(
∂

∂t

)−1 (
∂

∂z
+

1
4H

)
v∗(z, t)

〉
t

· (30)

The results found here are very similar in form to those ob-
tained by Musielak & Ulmschneider (2001) for transverse tube
waves. For the benefit of readers who are unaware of the math-
ematical treatment previously used to derive the mean wave
energy generation rate, an outline of the method is now pre-
sented. Expressingv and its complex conjugatev∗ in terms of
Fourier transforms and taking the time average over time scale
to yields

< F(z, t) >t= − B2
o

4πρ1/2
o

lim
t0→∞

1
t0

×
∫ +t0/2

−t0/2
dt

∫ ∫ ∫ ∫
dk′dk′′dω′dω′′v(k′, ω′)

× v∗(k′′, ω′′) −1
iω′′

(
ik′′ +

1
4H

)
ei(ω′−ω′′)t−i(k′−k′′)z. (31)

The time-integration is performed by using theδ-function∫ +∞

−∞
ei(ω′−ω′′)tdt = 2πδ(ω′ − ω′′),

and then theω′′-integration is also performed analytically.
Since

< F(z) >t=

∫ +∞

−∞
dω < F(z, ω) >t, (32)

the wave energy flux for a given atmospheric heightzand wave
frequencyω is

< F(z, ω) >to= lim
to→∞

B2
o

2toωρ
1/2
o c4

A

I1(ko, ω) I2(ko, ω), (33)

where

I1(ko, ω) =
∫ +∞

−∞
St(k′, ω)e−ik′z

k′2 − k2
o

dk′, (34)

and

I2(ko, ω) =
∫ +∞

−∞
St(k′′, ω) (k′′ − i/4H)eik′′z

k′′2 − k2
o

dk′′, (35)

with

k2
o =
ω2 −Ω2

T

c2
A

, (36)

where for the propagating wavesk2
o is always positive. It is also

seen that the wave energy flux must be real, therefore, the term
(−i/4H) is dropped from the calculations.

The fact that the asymptotic Fourier transformsI1 and I2

can be evaluated analytically for both longitudinal and trans-
verse tube waves has been shown by Musielak et al. (1995) and
Musielak & Ulmschneider (2001), respectively. Here, we use
the latter results to write

< F(z, ω) >to= lim
to→∞

π2

8to

B2
o

ρ1/2
o

1

ωkoc4
A

|St(ko, ω)|2, (37)

where

|St(ko, ω)|2 = ρ
1/2
0

(2π)4
η2|χ(ko, ω)|2

∫ ∫ ∫ ∫
dzdz′dtdt′

× < uφuzu
′
φu
′
z > eiω(t−t′)−iko(z−z′), (38)
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with

η =

(
ρe

ρo

)
(39)

and

|χ(ko, ω)|2 = 4
ω2

H2

(
1+ k2

oH2
)
. (40)

Following Stein (1967), we average position and time by using

zo =
1
2

(z+ z′), to =
1
2

(t + t′), (41)

and the relative separation and time interval quantities

r = z− z′, τ = t − t′. (42)

Integrating overzo andto yields

|St(ko, ω)|2 = ρ
1/2
o

(2π)4
η2|χ(ko, ω)|2zoto

×
∫ ∫

drdτ < uφuzu
′
φu
′
z > ei(ωτ−kor). (43)

Based on the properties of isotropic and homogeneous turbu-
lence, the fourth-order velocity correlations can be reduced to
the torsional (< uφu′φ >) and longitudinal (< uzu′z >) second
order-correlations (see Batchelor 1960; Hinze 1975). So far,
the derived wave energy flux and source function are given in
the cylindrical coordinate system introduced in Sect. 2.1 to de-
scribe torsional tube waves. Now, we introduce a Cartesian co-
ordinate system (x, y, z) and use it to describe the external tur-
bulence and calculate the second-order velocity correlations.
In this new coordinate system, the turbulent velocityuφ can be
expressed asuφ = −ux sinθ + uy cosθ, whereθ is the polar an-
gle and the tube cross-section is assumed to be circular with
radiusRt (see Fig. 1a). Because of the full symmetry between
the x andy-directions, we may assume thatθ = 90◦ and that
uφ(z, t) = −ux(z, t) andu′φ(z+ r, t+ τ) = −u′x(z+ r, t+ τ). Hence,
we have< uφu′φ > = < uxu′x > and the evaluation of the second-
order velocity correlations for torsional tube waves becomes
similar to that discussed by Musielak & Ulmschneider (2001)
for transverse tube waves. In Fig. 1, we show typical settings
for calculating the correlation< uxu′x > for the generation of
both torsional and transverse tube waves.

Taking the Fourier transforms of the second-order velocity
correlations defines the convolution integral

Jc(ko, ω) =
1

(2π)2

∫ +∞

−∞
dr

∫ +∞

−∞
dτ Rxx(r, τ)Rzz(r, τ)

× ei(ωτ−kor), (44)

where the correlation tensors are given by

Rxx(r, τ) = << ux(z, t) ux(z+ r, t + τ) >z>t , (45)

and

Rzz(r, τ) = << uz(z, t) uz(z+ r, t + τ) >z>t . (46)

This allows writing the source function in the following form:

|St(ko, ω)|2 = tozo
ρ1/2

o

(2π)2
η2 |χ(ko, ω)|2 Jc(ko, ω). (47)

φ

θ

Fig. 1. Typical settings for calculating the velocity correlation
< uxu′x > for the generation of torsionala) and transverseb) tube
waves.

Since only propagating waves are considered in this paper, it is
necessary to examine the source function’s dependency onko,
which has been defined as the condition for freely propagat-
ing torsional tube waves (see Eq. (36)). Upon the condition
ω → ΩT, it is seen thatko → 0 and the waves are evanescent.
However, even forko = 0 the source function is formally not
zero because|χ(ko = 0, ω)|2 = ω2/H2 andJc(ko = 0, ω) , 0.
This implies that|St(ko = 0, ω)|2 , 0 and that some wave en-
ergy is being generated at the cutoff frequency. Clearly, this en-
ergy cannot propagate to the overlying atmospheric layers and,
therefore, it must be removed (see Sect. 3.2).

Finally, we combine Eqs. (37) and (47), and de-
rive the mean wave energy generation rate [in units of
erg cm−2 s−1 Hz−1]

<< F(ω) >to>zo = 4π
∫ zturb

o
dz
ρ2

e

ρo

ω

ko

Ω2
T

c4
A

(
1+ k2

oH2
)

×Jc(ko, ω) , (48)

wherezturb is the thickness of the turbulent region in the solar
convection zone. In deriving this expression, we have taken into
account the fact that onlyhalf of the total generated flux propa-
gates upward. In Sect. 3, we use Eq. (48) to compute the wave
energy spectra carried by torsional tube waves propagating up-
ward along a given flux tube embedded in the solar atmosphere.

2.7. Treatment of turbulence

The correlation tensorRi j is defined as

Ri j (r, τ) ≡ << ui(x, t)uj(x + r, t + τ) >x>t, (49)

where the average is taken over all pointsx of a large volume,
which can be considered infinite, and over all timest, which
are long compared to all other time scales, and thus can also
be considered infinite. A situation in whichRi j is independent
of x andt is called time-independent homogeneous turbulence.
Introducing the spectral tensor,Φi j (k, ω), and the Fourier trans-
form Ri j (r, τ), gives

Φi j (k, ω) =
1

(2π)4

∫
d3r

∫ +∞

−∞
dτRi j (r, τ)ei(ωτ−k·r) (50)
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and its inverse transform

Ri j (r, τ) =
∫

d3k
∫ +∞

−∞
dωΦi j (k, ω)e−i(ωτ−k·r). (51)

For homogeneous and isotropic turbulence,Ri j (r, τ) = Ri j (r, τ)
andΦi j (k, ω) = Φi j (k, ω). The correlation tensors can be eval-
uated when the corresponding spectral tensors are known. The
spectral tensors for homogeneous and isotropic turbulence can
be expressed by a 3-D turbulent energy spectrumE(k, ω), given
by (Batchelor 1960)

Φi j (k, ω) =
E(k, ω)
8πk2

(
δi j − kikj

k2

)
· (52)

Performing the integration yields

Rxx(r, τ) =
∫ ∞

0
dω cosωτ

∫ ∞

0
dkE(k, ω)

×
(
sinkr

kr
+

coskr
k2r2

− sinkr
k3r3

)
, (53)

and

Rzz(r, τ) = 2
∫ ∞

0
dω cosωτ

∫ ∞

0
dkE(k, ω)

×
(
sinkr
k3r3

− coskr
k2r2

)
· (54)

Clearly, the correlation tensors can only be calculated when the
turbulent energy spectrumE(k, ω) is known. In the following,
we discuss the procedure of specifyingE(k, ω).

In general, there is no completely accepted theory of turbu-
lence within the stellar convection zones. In order to describe
turbulence at or below a stellar surface it is assumed that a tur-
bulent energy spectrum, which is the distribution of energy per
unit mass that is stored in eddies of different wave numbers,
must be chosen (e.g., Musielak et al. 1994). The description of
turbulence for our analysis is primarily phenomenological and
based on two-point, two-time velocity correlation functions.
Energy supplied at the largest eddy scale is dissipated by the
smallest eddies thereby cascading energy through the medium
size eddies. Constraining the turbulent flow to be isotropic and
homogeneous, which is an idealization that may not describe
correctly real flows, allow the correlation tensors (Eqs. (45)
and (46)) to be computed once the form of the turbulent en-
ergy spectrum is established. For the specific purpose of this
work it is a requirement to factor the turbulent energy spectrum
E(k, ω) into spatial and temporal parts (Stein 1967)

E(k, ω) = E(k)∆

(
ω

kuk

)
(55)

where the average eddy velocity is given by

uk =

[∫ 2k

k
E(k′)dk′

]1/2

. (56)

The specific forms ofE(k) and ∆(ω/kuk) are then pre-
scribed and used to determine the source function (Eq. (45)).
Therefore, the problem of describing the external turbulent mo-
tions is reduced here to choosing thecorrect form of the turbu-
lent energy spectrum.

As discussed thoroughly by Musielak et al. (1994), some
modifications are needed to apply the Kolmogorov hypothe-
sis to the turbulent motions in the solar and stellar convection
zones. Definingkt as the wave number of the energy-containing
eddies andkd as the wave number of the eddies at scales where
viscous effect become important (in other words, where the
turbulent cascading ends), the spatial turbulent energy spec-
trum E(k) is given by

E(k) =


0 0< k < 0.2kt

au2
t

kt

(
k
kt

)
0.2kt ≤ k < kt

au2
t

kt

(
k
kt

)−5/3
kt ≤ k ≤ kd

, (57)

where the factora = 0.758 is determined by the normalization
condition∫ ∞

0
E(k)dk =

3
2

u2
t , (58)

andut is the rms turbulent velocity defined as

ut =

√
ux(r, t)2 =

√
uz(r, t)2. (59)

The temporal part of the turbulent energy spectrum∆(ω/kuk) is
motivated by the Prandtl mixing length picture. This flow field
is an idealization in which the turbulent eddies are in a super-
position (Musielak et al. 1994). Each eddy is at a well-defined
spatial scalel such that the power of all eddies in that scale
contribute to the power spectrum at wave numberk = 2π/l.
If the eddy lifetime can be approximated by a timescale such
that τ(k) ≡ 2π/kuk, whereuk is the characteristic velocity of
the eddy with wave numberk determined by Eq. (56), then the
eddy has a unique characteristic frequency associated with it
and described byω(k) = 2π/τ = kuk. The temporal turbu-
lent energy spectrum would be a delta function centered at this
characteristic frequency

∆(ω/kuk) = δ(ω − kuk). (60)

However, it is more realistic to assume that eddies of wave
numberk have different lifetimes. This implies that there is a
distribution of eddy lifetimes. Examining the limiting behavior
of Eq. (60) it is seen that the modified Gaussian turbulent fre-
quency factor described by Musielak et al. (1994) is physically
appropriate and given by

∆(ω/kuk) =
b√
π|kuk|

e−[(|ω|−|kuk|)/|kuk|]2
(61)

whereb = 1.78 and is a normalization factor determined by

∫ ∞

0
∆(ω/kuk)dω = 1. (62)

The results computed and presented in Sect. 3 utilize the above
assumptions as well as the described spatial and temporal
forms of the turbulent energy spectrum.
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3. Results and discussion

3.1. Solar model

The computer code for the solar convection zone model is a
modified version of stellar envelope code used originally by
Bohn (1981, 1984) and Ulmschneider et al. (1996). It is as-
sumed that the main energy-containing eddies are comparable
in size to the local pressure scale heightH given from a mixing-
length description of convection. The mixing length parameter
α = lmix/H, wherelmix is the mixing-length, is assumed to be of
order unity. The best current value for the solar convection zone
presently isα = 2.0 (Trampedach et al. 1997). However, to in-
vestigate the dependence of the torsional wave generation on
the mixing-length we have selected three values of the mixing-
length parameter,α = 1.0, 1.5 and 2.0 in our present work.

The code also requires that the surface gravityg and ef-
fective temperatureTeff are specified. In all calculations, they
are taken to beTeff = 5770 K, andg = 2.736× 104 cm s−2.
Hydrogen molecule formation is included and a gray radiation
transport is used. The turbulent velocity scaleut is identified
with the convective velocity of the model. Finally, it is impor-
tant to note that all presented results are obtained for a single
magnetic flux tube embedded in the solar convection zone. The
number of magnetic flux tubes on the solar surface, or the so-
called filling factor, that is, the ratio of the area covered by mag-
netic fields to the total surface area of the Sun, is not discussed
here.

It has been shown observationally (Stenflo 1978; Solanki
1993) that at the solar surface magnetic field strengths are of
the orderBo = 1500 G. However, the equipartition magnetic
field strengthBeq =

√
8πpe, where pe is the fluid pressure

outside the tube. Withpe = 1.17 × 105 dyn cm−2 (Vernazza
et al. 1981) one finds the field strengthBeq = 1715 G. The ratio
Bo/Beq = 0.875 therefore indicates a typical strength for solar
magnetic flux tubes. To investigate the dependence of the wave
generation rate on the magnetic field, we consider three differ-
ent values of the field strength, namely,Bo/Beq = 0.75, 0.85
and 0.95.

3.2. Propagating waves

The cutoff frequencyΩT for torsional tube waves was de-
rived for an isothermal atmosphere inside and outside the tube
(see Sect. 2.1). However, models of the solar convection zone
are not isothermal and the cutoff frequency does change with
depth. The problem is treated here by formally dividing the
tube into layers that can be considered isothermal and where
H and the characteristic wave velocitycA are constant. This
allowsΩT to be considered locally as a constant.

So far in the paper we have always assumed an exponen-
tially spreading magnetic flux tube where one has horizontal
pressure balance according to Eq. (1) where in the stable
photospheric layers above the convection zone the external tur-
bulent pressure fluctuationsδpt become zero. It is interest-
ing to illustrate flux tube models which extend to the chro-
mosphere where the horizontal pressure balance after Eq. (1)
is no longer valid because neighboring flux tubes exert an

Fig. 2. Cutoff periodsPT for torsional,PK for transverse,PD for lon-
gitudinal andPS for acoustic waves are plotted as a function of height
in the an isothermal solar atmosphere model withTeff = 5770 K. The
magnetic field strength is taken to beBo = 1500 G at the bottom. The
tube geometry is of a “wineglass” shape, spreading exponentially up
to a height of 500 km and then expanding to a constant tube radius
of 300 km. The tube radiusR and magnetic field strengthBo are indi-
cated.

additional external magnetic pressure to constrain the tube to a
constant cross-section determined by the magnetic filling fac-
tor. Figure 2 shows such “wineglass” shaped magnetic tube
model which spreads exponentially up to a height of 500 km
and thereafter approaches a constant tube radius of 300 km.
Such tubes are thought to exist in the chromospheric network
at the boundary of supergranulation cells.

We have computed the acousticΩS = cS/2H, longitudi-
nal ΩD, torsionalΩT and transverseΩK = cK/4H cutoff fre-
quencies by takingBo/Beq = 0.85 and plotted in Fig. 2 the
corresponding cutoff periods PS = 2π/ΩS, PD = 2π/ΩD,
PT = 2π/ΩT andPK = 2π/ΩK as a function of height. It is seen
that below 500 km height the four cutoff periods are constant
because of the height-independent values of the sound speedcS

and the Alfvén speedcA in this exponentially spreading range.
Here it is seen thatPS andPD are essentially identical because
cA = 1.1× 106 cm s−1 > cS = 7.8× 105 cm s−1. The kink wave
cutoff period PK is largest and the torsional wave cutoff pe-
riod PT is intermediate. This is because the height-independent
kink speedcK = 5.9× 105 cm s−1 is smaller thancA which in
turn is smaller that 2cS. The scale heightH = 1.35× 107 cm
remains constant over the entire tube.

In the constant cross-section part of the tube, the magnetic
field strength atBo = 42 G becomes independent of height,
while the density decreases rapidly with height leading to a
rapidly increasing Alfvén speed and kink speed, whilecS and
cT remain constant. At 2000 km height one hascA = 5.1 ×
107 cm s−1 andcK = 2.7× 107 cm s−1. This decreases both the
the torsional wave cutoff periodPT = 8πH/cA (see Eq. (19))
and the kink cutoff periodPK = 8πH/cK. For some frequencies
these tube waves could become trapped. BecauseΩT is lower
thanΩS and also lower thanΩD, the wave energy spectra of
torsional tube waves are broader than those obtained for acous-
tic (e.g., Ulmschneider et al. 1996) and longitudinal (Musielak
et al. 2000) waves.
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Fig. 3. Torsional tube wave energy spectra computed for different
mixing-length parametersα = 1.0, 1.5 and 2.0. The magnetic field
strength is taken asBo/Beq = 0.85 in all models.

Torsional tube waves are considered propagating waves if
their frequencies are above the cutoff ΩT. As already discussed
in Sect. 2.6, the source function given by Eq. (47) is not equal
to zero asω → ΩT. This implies that energy is being gener-
ated in the form of non-propagating (evanescent) waves. Since
the non-propagating waves are not treated in this model, we
eliminate them from the total energy spectrum by introducing
the factor (1− Ω2

T/ω
2)2; this factor reduces the contribution of

evanescent waves to zero asω → ΩT. We utilize this factor in
all computed wave energy spectra and fluxes. This guarantees
that the generated torsional tube waves are always propagating
and that they carry their energy away from the convection zone.

3.3. Wave energy spectra

The dependence of the computed wave energy spectra on the
mixing-length parameterα is shown in Fig. 3. It is clearly seen
that the torsional wave energy spectrum’s overall shape is not
greatly effected by the choice of this parameter, as there is no
significant shift in the primary wave generation frequency do-
main and also the maximum remains the same.

The dependence of the wave energy spectra on the strength
of the tube magnetic field is shown in Fig. 4. The presented
results were obtained by takingBo/Beq = 0.75, 0.85 and 0.95,
and for a fixed value ofα = 2.0. It is seen that the spectra
are much broader for weak fields than for strong fields, and
that the maximum shifts toward higher frequencies as the field
strengthBo increases. Both effects can be attributed to an in-
crease in the cutoff frequency for stronger fields.

Finally, it is of some interest to compare the wave energy
spectra generated by torsional tube waves to those generated
by transverse and longitudinal tube waves. This comparison
is shown in Fig. 5. It is seen that the rate of generation of
transverse tube waves significantly exceeds that for torsional
tube waves, especially, for low frequency waves. The trans-
verse wave energy spectrum is also broader than the torsional
wave and is a result of the lower cutoff frequency of the

Fig. 4.Torsional tube wave energy spectra computed for three different
field strengthsBo/Beq. The mixing-length parameterα = 2 is the same
for all three cases.

Fig. 5.Transverse, longitudinal and torsional tube wave energy spectra
computed for field strengthsBo/Beq = 0.85 and the mixing-length pa-
rameterα = 2. All spectra were obtained by using analytical methods
only.

transverse tube wave (see Fig. 2). The main reason for this sig-
nificant difference in the efficiency of the wave excitation is the
lack of contributions from the fluctuating buoyancy force to the
generation of torsional tube waves. According to Musielak &
Ulmschneider (2001), this force plays the dominant role in gen-
erating transverse tube waves in the solar convection zone. It is
seen that this force does not make any contribution to the exci-
tation of torsional tube waves because these waves are not in-
fluenced (at least, in the first-order approximation) by the pres-
ence of gravity.

The results presented in Fig. 5 also show that the efficiency
of generation for torsional tube waves is much higher than
that for longitudinal tube waves. In addition, it is seen that the
torsional wave energy spectrum is broader than the longitudi-
nal one; again, the main difference exists for low frequency
waves because the cutoff period for torsional tube waves is
lower than the corresponding one for longitudinal tube waves
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Table 1. Total wave energy fluxesFtors (erg/ cm2 s) generated as tor-
sional waves in a single magnetic flux tube embedded in the solar
convection zone are compared to the fluxes for transverse tube waves,
Ftrans and longitudinal tube waves,Flong; note that the factor 4 (see
discussion below Eq. (23)) was included in the computation of the
wave energy fluxes for transverse tube waves. All presented fluxes
were computed by using analytical methods only.

α Bo/Beq Ftors Ftrans Flong

1.0 0.85 6.0× 107 1.2× 108 6.3× 106

1.5 0.85 1.4× 108 2.9× 108 1.4× 107

2.0 0.85 2.6× 108 5.6× 108 2.4× 107

2.0 0.75 4.4× 108 8.8× 108 5.5× 107

2.0 0.95 1.3× 108 3.6× 108 5.9× 106

(see Fig. 2). The differences become important when the role
played by each one of these waves in the atmospheric heating
is investigated; we briefly discuss this problem in the following
subsection.

3.4. Energy fluxes

Considering a single magnetic flux tube, the total torsional
wave energy flux is computed by integrating the wave energy
spectra over the rangeΩT ≤ ω ≤ 25ΩT. The results are pre-
sented in Table 1, which shows that for the same value of
α and Bo/Beq transverse tube waves are two times more effi-
ciently generated than torsional tube waves; however, the effi-
ciency of the excitation of the latter is one order of magnitude
higher than longitudinal tube waves. These are expected results
as it is much easier for the external turbulent motions to shake
and twist the tube than to twist it (e.g., Spruit & Roberts 1983;
Musielak & Ulmschneider 2001).

From the results presented in Table 1, one also finds that
theα-dependence scales with the efficiency of the wave gen-
eration process: the higher the efficiency the stronger is theα-
dependence. Since higher values ofα give larger convective
velocities, the effect is stronger for the waves that are easier
to generate. It is seen that the wave energy flux for a mixing-
length parameter,α = 2.0 is 4.4 times larger than forα = 1.0;
this increase is caused by much higher convective velocities in
the former case than in the latter. The approximate dependence
on the parameterα is found to be

Ftors ≈ 6.0× 107α2.1 erg cm−2 s−1. (63)

Thisα-dependence can be compared to that obtained for trans-
verse (∼α2.4) and longitudinal (∼α1.8) tube waves by Musielak
et al. (2001) and Musielak et al. (2000), respectively.

According to the results given in Table 1, one sees that the
torsional wave energy flux decreases with increasing magnetic
field strengthBo. An approximate fitting to these data yields
the followingBo-dependence

Ftors ≈ 1.0× 108(Bo/Beq)
−4.9 erg cm−2 s−1. (64)

By comparing this dependence to that previously derived
for transverse (∼B−3.6

o ) and longitudinal waves (∼B−9.4
o ), one

clearly sees that the efficiency of the generation of longitudinal

tube waves depends very strongly on the strength of the tube
magnetic field. The affect is also important for the generation of
torsional tube waves and transverse tube waves, however trans-
verse waves are the least effected.

The fact that the efficiency of generation of different tube
waves depends so differently on the strength of the tube mag-
netic field can easily be explained by the role played by “stiff-
ness” of magnetic flux tubes in the wave generation. This “stiff-
ness” is obviously greater for stronger magnetic field strength
(for example, it is much greater forBo/Beq = 0.95 than for
Bo/Beq = 0.75). The “stiffer”, the more resistant the tube be-
comes to external motions. The fact that the longitudinal wave
generation is more affected than the other processes is directly
related to the amount of gas inside the tube: the stronger the
field, the less gas one has inside and the more difficult it is to
excite the wave. In the case of torsional waves, the strength of
the field determines how difficult it is for the external motions
to twist the tube. This is similar in the generation of transverse
tube waves where stiffer fields inhibit bending by the same
weak external turbulent flows. However, because of their high
efficiency of generation they are less effected. In summary, it
is harder to twist the magnetic flux tubes than shake them but
it is easier to twist the tube than to squeeze it. In other words,
one finds that the lower the efficiency of the wave generation
the stronger the dependence on the tube magnetic field.

3.5. The role of torsional tube waves in atmospheric
heating

We have computed the wave energy spectra and fluxes carried
by torsional tube waves in the solar atmosphere, and compared
them to those previously obtained for longitudinal and trans-
verse tube waves. Our approach is analytical, which means
that the calculated fluxes represent only lower bounds for the
realistic fluxes. The obtained results show that torsional tube
waves propagating in the solar atmosphere carry less energy
than transverse tube waves but more energy than longitudinal
tube waves. This implies that torsional tube waves could sig-
nificantly contribute to the atmospheric heating and that the
energy fluxes carried by these waves must be included into the-
oretical models of stellar chromospheres and coronae.

The problem of heating stellar chromospheres and coronae
is not yet fully understood despite significant observational and
theoretical progress (e.g., Narain & Ulmschneider 1996, and
references therein). As already mentioned in Sect. 1, recent re-
sults obtained by Ulmschneider et al. (2001) and Fawzy et al.
(2002a,b) clearly show that the wave heating mechanism based
on longitudinal and transverse tube waves can explain the ob-
served level of stellar activity in late-type stars only up to the
level of the Ca IIH andK line formation, while to explain the
emission of the higher chromospheric layers, where the Mg II h
and k lines originate, another non-wave magnetic (e.g., recon-
nective) heating mechanism seems to be required.

The results presented in this paper demonstrate that the
contribution of torsional tube waves to solar and stellar atmo-
spheric heating can be important because the amount of en-
ergy carried by these waves significantly exceeds the amount
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of energy dissipated by longitudinal tube waves. Even though,
torsional waves, carrying more energy than longitudinal waves
but appreciably less than transverse waves, are found to be
difficult to damp similarly as the transverse waves. However,
for both wave modes energy dissipation can occur via nonlin-
ear mode-coupling to longitudinal tube waves (for transverse
waves, see Zhugzhda et al. 1995, and for torsional waves, see
Hollweg et al. 1982). These mode-couplings are particularly
efficient when in the transverse wave case kink shocks and
in the torsional wave case switch-on shocks occur. Therefore,
the amount of energy carried by torsional and transverse tube
waves should be included into the theoretical models of stellar
chromospheres, and the efficiency of mode-coupling studied.

4. Conclusions

The following conclusions can be drawn from the analytic
study of linear torsional wave generation in magnetic flux tubes
embedded in the solar convection zone.

1. Torsional magnetic tube waves have a cutoff frequency
ΩT = cA/4H wherecA the Alfvén velocity andH the scale
height. Typical values of the cutoff periodsPT = 2π/ΩT

are 100 to 300 s. Long period torsional waves could show
trapping due to this cutoff frequency.

2. The typical wave energy flux carried by torsional tube
waves in the solar atmosphere is approximately 2×
108 erg/cm2s. This is one order of magnitude more than
the longitudinal wave energy flux and 2 times less than the
transverse wave energy flux. This comparison is based on
the wave energy fluxes obtained by using analytical meth-
ods only.

3. For different values of the mixing length parameterα, the
shapes of the computed wave energy spectra remain prac-
tically the same. However, the amount of generated wave
energy strongly increases with increasingα.

4. The computed wave energy spectra and fluxes are sensitive
to the strength of the tube magnetic field. For weak fields,
the spectra are much broader than for strong fields – this is
caused by the cutoff frequency dependence of the magnetic
field. The total amount of energy carried by torsional tube
waves decreases when the strength of the tube magnetic
field is increased.

5. The total amount of energy carried by torsional tube waves
does not depend as strongly on the strength of the tube mag-
netic field as the longitudinal wave energy fluxes. The dif-
ference can be easily explained due to the role played by the
“stiffness” of flux tubes in the process of wave excitation.

6. Our results are only valid for linear generation of torsional
tube waves. Therefore, the presented wave energy fluxes
must be regarded as lower bounds for realistic energies car-
ried by these waves. Despite this, the fluxes carried by tor-
sional tube waves are likely to play important role in solar
and stellar atmospheric heating.
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ApJ, 559, L167
Vernazza, J. E., Avrett, E. H., & Loeser, R. 1981, ApJS, 45, 635
Zhugzhda, Y. D., Bromm, V., & Ulmschneider, P. 1995, A&A, 300,

302


