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Torsional magnetic tube waves in stellar convection zones
|. Analysis of wave generation and application to the Sun
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Abstract. An analytic approach to the generation of torsional magnetic tube waves in stellar convection zones is presented.
The waves are produced in a thin, vertically oriented magnetic flux tube embedded in a magnetic field-free, turbulent and
compressible external medium and are excited by external turbulent flows. A theory for this interaction is developed and used
to compute the wave energy spectra and fluxes carried by torsional tube waves in the solar atmosphere. We find that these tube
waves have a characteristic cfitivequency.
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1. Introduction calculated (Musielak et al. 2000, 2002; Musielak &

Ulmschneider 2002a,b). To complement this series of analyt-

_In the magneic regions of '_[he solar and stellar atmospherlggﬂ studies, we now investigate th&ieiency of the genera-
isolated small-scale magnetic structures (flux tubes) are pre of torsional tube waves in the solar and stellar convection

(e.g., Solanki 1993; Saar 1996). These tubes are rooted in Bes
solar and stellar convection zones where they interact with the R ' | | hneid | (2001 dF |
external turbulent motions. This interaction leads to the gener- ecently, Ulmschneider et al ( ) ) and Fawzy et al.
ation of waves that carry energy along the tubes to the ov 002a,b) have shown that longitudinal and transverse tube
lying atmosphere (Spruit & Roberts 1983). It has been sholfiVes do not carry e_nough energy to heat Fhe upper chromo-
that three dierent types of waves can be supported by theSBheric layers of active anc_l moderat(_aly active stars, and sug-
flux tubes, namely, longitudinal, transverse and torsional tuf Sted, that the energy carried by torsional tube waves must b.e
waves (see Spruit 1981, 1982). These waves can dissipate n into account. These authors have constructed thgoretl-
carried energy and heat the atmosphere to temperatures hi models of stellar chromospheres based on the heating of
than those corresponding to the radiative equilibrium. As a Qn-ma_gne_tlc regions by acoustic waves and magnetic regions
sult of this heating, the Sun and other late-type stars are sourdgdongitudinal and transverse tube waves (see also Buchholz
of chromospheric activity (e.g., Linsky 1991). et al. 1998; Cuntz et al. 1998, 1999). The models have been
Significant theoretical and ,observationﬁ’oets have been used to predict theoretically the level of chromospheric activity.
made to estimate the amount of energy carried by Iongitudir?a}f comparing the theoretical predictions with observations, the
(Musielak et al. 1989, 1995; Ulmschneider & Musielak 19ggauthors concluded that other heating mechanisms must be in-
Ulmschneider et al. 2001) and transverse (Muller et al. 19EFQSUded in their m(_)dels. Among manyfﬂarent heating mech_aT
1994; Choudhuri et al. 1993a,b; Huang et al. 1995; Musielak%ﬁém.s (e.g., Na_ram & Ulms_chne|der 1996), the most promising
Ulmschneider 2001) tube waves. Analytical studies are ba itional heating mechanisms are those that heat by reconnec-

on the Lighthill-Stein theory of sound generation (Lighthiﬁ'.on events and by torsional tube waves. In order to include dis-

1952: Stein 1967), which has been modified to include ﬂ%oation of torsional tube waves into these theoretical chromo-

magnetic flux tube structure, and also its treatment of turbﬁphenc models, the initial wave energy fluxes carried by these

lence has been improved (Musielak et al. 1994). Among t ﬁves into the solar and stellar atmospheres must be known.

three diferent tube waves, only the generation of longitudingl e main goal of this series of papers is th(_erefore to,calculate
and transverse tube waves have been analytically investiga e%spectrg and wave energy fluxes of torsional eifwiaves
(Musielak et al. 1995; Musielak & Ulmschneider 2001), and magnet|cflux tubgs. ] ) )
the resulting stellar wave energy spectra and fluxes have beenVe consider a thin magnetic flux tube that is embedded in
a non-magnetic, compressible and convectively unstable (tur-
Send gprint requests toP. Ulmschneider, bulent) medium. We assume that the tube is oriented verti-

e-mail:ulmschneider@ita.uni-heidelberg.de cally and that there are no turbulent motions inside the tube.
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This means that the only source of torsional tube waves is fiiedd strength, gas density and gas pressure inside the tube as

turbulent flow outside the tube; the flow is assumed to be suB; = By(2)Z po = po(2) andp, = po(2), respectively, where

sonic, so that the generated waves have small amplitudes. THeesubscript “0” indicates internal parameters aiglthe unit

fact that the tube is vertical and the generated waves are lineactor in thezdirection. Outside the tube, the magnetic field

allows us to separate the excitation of torsional tube waves fragrzero,B. = 0, the gas density and pressure are expressed as

the other two tube wave modes. It must be also mentioned that= pe(2) and pe = pe(2), respectively, with the subscript “e”

our approach automatically includes the correlatiiects of denoting external parameters. A plane-parallel and isothermal

cancellation and amplification that are always present when titenosphere is assumed with uniform gravitational acceleration

magnetic flux tube is excited at many points along its length. &s/en byg = —gZ

a result of the interaction between the flux tube and the exter- By assuming that the tube axis is always oriented along the

nal turbulent motions torsional tube waves are excited and thexis, the torsional waves are completely described by per-

wave energy carried by these waves propagates outward wlierkations of the magnetic field = by(z, t)¢ and tube wave

it is dissipated in the overlying atmosphere. The processesvefocity given byv = v4(z t)¢ with ¢ being the unit vector in

the wave propagation and dissipation will be discussed in séipe ¢-direction; note that the tube is being twisted by the exter-

arate papers. nal turbulent motions, however, no fluid motions in the exter-
In this paper, we develop a theory describing the generatioal medium are due to torsional oscillations of the tube. This

of torsional tube waves in solar and stellar convection zon@sakes the total magnetic field for the purely torsional mode

and apply it to the Sun; the wave energy spectra and fluxes Bor= BoZ + byé. Because the considered torsional tube waves

other late-type stars of Population | and Il will be presented @re linear, the turbulent density and pressure perturbations as-

two forthcoming papers. Our approach is analytical and its fisiciated with these waves can be neglectigd£ 5p = 0).

step is to derive and solve the inhomogeneous wave equatibhis allows the internal total gas densjtyand total gas pres-

and then obtain the basic expressions for the wave energy sggece p to be replaced with their equilibrium valugs and po,

tra and fluxes (see Sect. 2). Application of the obtained resuitsd the waves to be considered incompressible, which means

to the Sun and their discussion are given in Sect. 3. The m#iatVv -v = 0.

conclusions of the paper are summarized in Sect. 4.

2.2. Wave equation

2. Inhomogeneous wave equation and energy If the magnetic flux tube is to remain stable there must be a

fluxes balance of the internal and external pressures across the tube
boundary. The sum of the internal gas and magnetic pres-
sures must be equal to the external gas pressure at the inter-
We consider an isolated magnetic flux tube, which is assumfede: p, + B2/87 = pe + dp; + pw, Wheresp, andsp, are
to be thin and with a circular cross-section. The tube is empressure fluctuations in the external medium due to turbulence
bedded in a magnetic field-free, turbulent, compressible aadd external acoustic waves. Since the latter are compressible
isothermal external medium. The tube is in temperature equiaves, we neglect their contribution to the generation of purely
librium with the external medium and it remains verticallfjncompressible torsional tube waves by takifg, << 6p
oriented under the assumption that there are strong buoyang)ch also implies thasp, << 6p: (Spruit 1982; Musielak
forces in the upper layers of the convection zones. Becauseoflimschneider 2001). Thus, the horizontal pressure balance
this vertical orientation, the three fundamental (longitudinatan be written as
transverse and torsional) tube wave modes can be separated g2
and, as a result, the generation of torsional tube waves canfbe- 8_0 = Pe + pt. (1)
treated independently from the other two tube waves. It is as- g . . _—
sumed that the torsional waves are excited only by the exte?r[lag mom_entu_m e_quatlon for a magnetic flux tube oscillating
turbulent motions and that there are no fluid motions inside tHa&" velocityv is given by
tube that could fiect the generation and propagation of these 9
waves. Our approach is limited to subsonic turbulence, whiCRat
means that the turbulent Mach numidér = u/cs < 1, where where the link between fluid equations and electromagnetic
U is the rms turbulent velocity anc is the sound speed bothequations is] x B = 4—‘;(V x B) x B, and where is the light
inside and outside the flux tube. This subsonic turbulence leagged. For linear waves, Eq. (2) can be expanded and written as
to the generation of linear torsional waves, which show negli- 2
. . ) . v B 1

gible coupling to other tube wave modes in the region of wayg— = -V (pO + —°) + —(Bo - V)Bo
excitation. However, this coupling may become much more ef- 8] An
fecnve in higher atmosphe_rlc layers wher.e nonlingBgcts are +i [(V x Bo) X b+ (V x b) x Bo] + pog. 3)
important (e.g., Uimschneider et al. 1991; Hollweg et al. 1982). 4n

To describe torsional tube waves, we adopt a cylindiidsing the conditions specified above, the linearized momentum
cal coordinate systemR(¢,z) and determine the height de-equation for the external medium with velocitys
pendence of the internal tube parameters by using the thing,
flux tube approximation. This allows us to write the magnetige s + VPte ~pteg = 0. (4)

2.1. Model and assumptions

1
+po(v- V)o =-Vpo + E\] X B + pog, 2
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wherepe = pe + dpr and pe = Pe + dp; contain fluctuating and, therefore, it diers from the Alfen velocity. Longitudinal
components caused by the turbulence. Again, since the tubtulse waves are essentially acoustic waves guided by the tube
twisted but does not move horizontally, no motion is due to theagnetic field lines, so they resemble slow MHD waves prop-
tube in the external medium and Eq. (4) can be written in tlagating along the field lines; note that no mode of the flux tube

following form: geometry corresponds to fast MHD waves.
ou From the definition of the Alfeh velocity (see Eq. (12))
V(pe + 6pt) = —6pt— + (pe + Ip1)g. (5) and the fact thata = const in the approach considered here,
ot we obtain
with pe(du/at) = 0 because the external medium is in dynamig, 10,
cal steady-state. go = E—O, (13)
Combining Egs. (1), (3) and (5), yields o <Po
wherepf, = doo/dz In addition, we have
@—6a—u—i(8 V)Bo + (00 — pe)g — 6
Po ot Ot 9t age 0 o — Pe)d — 0ptg Po _ _1 (14)

Po H’
with H being the density (pressure) scale height of the internal
Since B, is a function ofz only, taking theg-component of and external atmosphere. Hence, Eq. (11) can be written as

Eq. (6) gives [32 , &2 Ci P

v au e Roz ﬁa_z} vo(20) = Sy(2.1). (15)
Pol 5| ~ oot i
¢ ¢ and the source function is

4L [(VxBo) xb+(Vxb)xB.  (6)
4

1
(VX Bo) X b+ (¥ x b) x Bl M s,00- % [% (%)} (16)

Defining @), = vy, and (), = u,, and rearranging the terms,

Eq. (7) can be written as In the case of no turbulent external motions, the source func-

tion is zero and the wave equation describes freely propagating
torsional tube waves.

Now, it must be noted that the derived inhomogeneous
- S wave Eg. (15) has similar form to that obtained for transverse
To eliminateb, from the above equation, it is necessary tP . . )

. . L . . . ube waves (see Musielak & Ulmschneider 2001, and their
take the induction equation into consideration. Assuming that

Ohm’s law holds and displacements current are negligib o (12)). The presence of the first order derivative,ofith

X . respect to height implies that a ctitérequency can be intro-
when compared to conduction currents, we obtain ; : . .
duced for torsional tube waves propagating along a diverging

%__BO %:%%. (8)

b magnetic flux tube (see Sect. 2.3). As shown by Egs. (11), (13)
or) ~ IV x@xBo)l, =0, (9)  and (14), the existence of this ctités caused by the gradi-
¢ ent of the magnetic fiel@®;,. Obviously, this cutff frequency
where only linear terms are kept. From Eq. (9), we find would not be present if a homogeneous slab would be con-
Lo sidered instead of a flux tube with exponentially diverging
U¢ . .
b, = B, [ = ). 10) Mmagnetic fields.
v=8(%) (5] (10)
Combining Egs. (8), (10), and takiyat of the result yields 2 3. Klein-Gordon equation and the cutoff frequency
oy 2 vy 2B _ 9 [ opt (9 1) To derive the cutfi frequency for torsional tube waves, we cast
o2 A2 ABydz  dt|po\ at)| Eq. (15) into its Klein-Gordon form by using the following
transformation:
whereB; = dB,/dz and
2 00 = 5% )
2
Ca = 47T;o’ (12)  which yields
. . . 2 62
which remains constant along the tube because of the thin f(u§<_2 22 a2)o=s(2. (18)
tube approximation. ot 0z
The physical properties of torsional tube waves and the fact 1

that their characteristic velocity is the same as the Aléri ve- whe_reSt(z, B =p 0/4875(2’ 0 _and the cutff frequencyQr for
locity clearly imply that these waves are very similar to Aify” t0rsional tube waves is defined as

waves in ideal MHD with uniform magnetic fields. There argy; — Ca (19)
also similarities between transverse tube waves andealfy”  4H

waves, however, the propagation velocity of the former is dafi order to avoid conflicting notations compared to our previ-

fected by the presence of the external medium (see Spruit 198a¥ work (e.g. Musielak et al. 1995), the cfitirequency of
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longitudinal tube waves, sometimes called Defouw frequendyhe continuity equation for the external medium allayws to
instead of termef; is from now on denoted b§p. Since both be expressed as a functionwgfalone. Thus, we have

the propagation velocitga of torsional waves and the scale

heightH are constant along the tube, the diifeequencyQr Sz t) = pé/‘l& (%)(1 _ ﬁ) Uy

is a global cutff as it is the same along the entire length of po\ Ot J\H oz
the (_exponentially sprea(_jing) tube. Tors_io_nal waves are prop- 1aPe ug\ (0 11 4 -
agating waves when their frequengysatisfies the condition 0o P_o a2 N\at H oz Uz, (23)

w > Qr, and they are evanescent wherc Q. It is interest-
ing to note that in the previous work (e.g., Spruit 1981, 198®hich is completely known when the external velocity field is
also Roberts & Ulmschneider 1997, and references therepecified.
the cutdf frequency for torsional waves has not been explicitly The derived source function depends on both zhend
introduced. Our results clearly show that this dfifmust al- ¢ components of the turbulent velocity but does not depend
ways be taken into account when magnetic flux tube structueseplicitly on thex andy components of this velocity; however,
embedded in the solar and stellar atmospheres are considetbé. 3-D nature of turbulence is formally accounted for by us-
The definitions of the cutd frequency for torsionalQ)y, ing a 3-D turbulent energy spectrum to calculate the spectral
and transverse (kink)2x (Spruit 1981; also Musielak & tensors (see Sect. 3.7). This one-dimensional approach is con-
Ulmschneider 2001), tube waves are very similar in form, hoistent with the thin flux tube approximation considered in this
ever, the ratio of these cufs is paper. As a result of this approximation, the ratio of the tube
diameter to a characteristic length scale of the turbulence is not
Q C explicitly present in the expression for the source function.
Q_l = é =41t Z_Z = V(28+1)/B, (20) Comparison of the source function derived here to that ob-
tained by Musielak & Ulmschneider (2001, see their Eq. (20))
for the generation of transverse tube waves shows that gravity
is not present in Eq. (23). This simply means that the gener-
ation of torsional tube waves is noffected by the presence

onbe ﬁndSQT/lQK ~ 1/VB. Thi? clearlryl/ shows that torstionalof the fluctuating buoyancy force (Goldreich & Kumar 1988).
tube waves always propagate faster than transverse tube w a physical point of view, this is obvious as torsional oscil-

and also that the cufioirequency for the former is higher thanIations of the tube are not directlyfected by gravity; however,

forthe latter (see Fig. 2.); the higher cffnplies that the wave the propagation of these waves depends indirectly on gravity
energy spectra for torsional tube waves are notas broad as trm?@ugh stratification, which requires the tube magnetic field to
for transverse tube waves (see Sec_t. 3)- o diverge and, as shown in Sect. 2.3, this field divergence is re-
We may also compare the torsional and longitudi®®), sponsible for the existence of the cfititequency. The compar-
(see Defow 1976; also Musielak et al. 1995), dhifeequen- ison also shows that the terms depending on the second deriva-

whereg = 8rpo/B2. Hereck = ca +/po/ (0o + pe) is the kink
speed. Fop >> 1, we haveQ1/Qx ~ V2, and forg << 1,

cies. The ratio of these two cufe is tive of the turbulent velocity with respect to time are missing
in the expression for the source function derived by Musielak

Qr 2+B 8 y-1 -1 & Ulmschneider for transverse tube waves. Since these terms

Qp = VB 9~ ; + y ’ (21)  are of the same order of magntitude as the terms proportional to

the first derivative of the turbulent velocity with respect to time,

. o TTRATY they cannot be neglected. By retaining these terms, all wave
with Qr/Qp ~ yy/86(y — 1) ~ 0.56/ V5 whenjs >> 1 energy spectra and fluxes given by Musielak & Ulmschneider

aanT/QD ~ \2/(9y - 8)_B ~ 0.53/ B whgpﬁ <<l (2001, 2002a,b) must be multiplied by a factor of 4; the correc-
This shows that the ratio is very sensitive to the value b, is already taken into account in the transverse wave energy
plasmag; for typical values off considered her@r is always f,xes presented in Table 1 of this paper.

lower thanQp (s_ee Fig. 2), which implies that the wave energy ¢ dependence of the source function on gheompo-
spectra for torsional tube waves are always broader than thasg of the turbulent velocity clearly implies that torsional tube
optamed for Iongltu_dlnal tube waves (Musielak et al.. 1995),5ves are generated by turbulent motions in dheirection.
Finally, the comparison of the cuftofrequency for torsional The ynderlying assumption here is that these motions twist the
and acousticQ2s (Lamb 1908), waves shows th@f is always  ne magnetic field at the tube surface and that once this twist
marginally lower thar2s and, therefore, the generated acougycyrs all remaining magnetic field lines across the tube be-

tic wave energy spectra are broader (e.g., Uimschneider el@lne wisted in the same way. Here our picture is that the ex-

1996). ternal turbulence occurring at all scales will not allow the tube
surface to be smooth but have a rough appearance on which
2 4. Source function tange_ntia_ll flows will work to twi_st the surface field lines. Thi_ss
rugosity is assumed to extend into the tube such that the field
We now consider the source function given by lines in the tube are also twisted together with the surface fields.
To simplify our analysis, we therefore assume that the turbulent
S 140 | Gpr (O 9 motions twist the magnetic field lines at the surface without
(2 1) =po at| po \ot || (22) “slipping”, which means that at the tube boundagy= u, (for
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more discussion see Sect. 2.6). The resulting torsional wavdee results found here are very similar in form to those ob-
are fully described by the inhomogeneous wave Eq. (18) withined by Musielak & Ulmschneider (2001) for transverse tube
the source function given by Eq. (23). By specifying the tuwaves. For the benefit of readers who are unaware of the math-
bulent motions, we determine the form of the source functiosnatical treatment previously used to derive the mean wave
solve the wave equation, and calculate the generation ratedoergy generation rate, an outline of the method is now pre-
torsional tube waves (see below). sented. Expressingand its complex conjugaté in terms of
Fourier transforms and taking the time average over time scale

2.5. Wave equation solutions o yields

. . BZ
Since the inhomogeneous wave Eq. (18) has constaffi-coe: F(z t) >j= ———— lim 1
4

. . . 1/2
cients, a space and time Fourier transform can be used to ob- mpg < oo lo

tain its solutions. By defining angular temporal,and spatial, +lo/2 S
k, frequencies, we get X It dtffffdk dk”do’dew”v(K', )
0/2
St(k, w) - . .
vk, w) = 5——"——, (24) 1 ’ (=" )t=i(K'-K")z
22 — (w? - Q2) xv"(K’, w” o ik 4H € : (31)
wherekis the wave number in thedirection, and The time-integration is performed by using théunction
1 .
Stk w) = =— Si(z t)e KA gzt 25 oo
'[( UJ) (2]T)2 ff t(zv ) ( ) 3.[ el(w - )tdt — 2]T6(u)/ _ (A)”),
is the Fourier transform of the source function. Using Eq. (23);
we may write Eq. (25) in the following form: and then thes”-integration is also performed analytically.
o Since

S'[(k’ U_)) = (k, ) +00

(2”)2 <F@ >= f do < F(z w) >, (32)

—i(wt—k2) 2 -

% ffuz(z, Dus(z e dzc (26) the wave energy flux for a given atmospheric heigdid wave

where frequencyw is
i 2
= — B;

x(k @) = 20 (12 +K). C <P = im 2o g o) lod). (3

Note that wherS;(k, w) = 0 the dispersion relationd¢-Q2) -
czk? = 0] for torsional tube waves is obtained from Eq. (24)where

According to this relation, the lower bound of the frequency 0 S (K, w)e k2
domain for freely propagating torsional tube waves is the ctt{ko, w) = f ik dk, (34)
off Qr; we will use this result to compute the wave energy spec- -
tra and fluxes carried by torsional tube waves. and
o Sk, w) (K" —i/4H)eKZ

1Ko, ) = f (k) f/z 2/ ST e, (35)
2.6. Wave energy spectra and fluxes —o0 k72 — K3
The general expression for the MHD wave energy flux capith
ried by Alfvén waves isF(zt) = -Bob(z hu(zt)/4r (e.9., , w?-Q2
Anderson 1963; Musielak & Rosner 1987). Because of the sife-— 2> (36)

ilarities between Alfeh waves and torsional tube waves (see A

Sect. 2.2), the wave energy flux for the latter in hdirection Where for the propagating wavksis always positive. It is also

can be written as seen that the wave energy flux must be real, therefore, the term
Bo (-i/4H) is dropped from the calculations.
Flzt) = _Eb‘/’(z’ Doy (2.0). (28) The fact that the asymptotic Fourier transfortasand |,
Substituting Eq. (10) into Eq. (28) and taking the time avera§an be evaluated analytically for both longitudinal and trans-
yields verse tube waves has been shown by Musielak et al. (1995) and
1 Musielak & Ulmschneider (2001), respectively. Here, we use
82 0 d :
<Fzt) >= -2 —|vg) - (29) the latter results to write
at 0z ¢ 2 g 1
Using the transformatlon given by Eq. (17), the mean waveF (z w) >i,= I|m _W ko ISt(Ko, w) P2, (37)
energy flux is 8o p
B2 where
<F(zt)> = —4—01/2 P12
TTPo 2 2
S dzdZ dtdt’
) Sl = et [ [ [ [

a\* 1),
X <v(z, t) (E) (6_2 + m)v (z t)>t- (30) X < Ul > det-t)-iko(z2) (38)
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with . y y
u
- (P_) @) ~
Po \r
and ‘ Uy
) -—
w Y
b (kor ) = 475 (1+ KGH?).. (40) R r
Following Stein (1967), we average position and time by usin U
1 1 X S
Z==(z+2Z), to==(t+1), (41)
2 2
and the relative separation and time interval quantities (b)
r=z-7, r=t-t. (42) Fig.1. Typical settings for calculating the velocity correlation
< WU, > for the generation of torsional) and transversé) tube
Integrating oveg, andt, yields waves.
pl/2
2 _ [¢] 2 2
ISt(ko, )I” = n)A"  (ko, )I"Zoto Since only propagating waves are considered in this paper, it is
‘ necessary to examine the source function’s dependenky, on
X ffdrdT < Uiyl > gron), (43) which has been defined as the condition for freely propagat-

ing torsional tube waves (see Eq. (36)). Upon the condition
Based on the properties of isotropic and homogeneous turii-, o it is seen thak, — 0 and the waves are evanescent.
lence, the fourth-order velocity correlations can be reducedf@wever, even fok, = 0 the source function is formally not
the torsional £ usu; >) and longitudinal £ u;u; >) second zero becaush/(k, = 0, w)|? = w?/H? and Je(k, = 0, w) # O.
order-correlations (see Batchelor 1960; Hinze 1975). So fahjs implies thatS;(k, = 0, w)[? # 0 and that some wave en-
the derived wave energy flux and source function are givendpyy s being generated at the cfifoequency. Clearly, this en-
the Cylindl’ical coordinate System introduced in Sect. 2.1 to d&’gy cannot propagate to the Over|ying atmOSpheriC |ayers and’
scribe torsional tube waves. Now, we introduce a Cartesian ¢Rerefore, it must be removed (see Sect. 3.2).
ordinate systemx y, z) and use it to describe the external tur-  Finglly, we combine Egs. (37) and (47), and de-
bulence and calculate the second-order velocity correlatiof$e the mean wave energy generation rate [in units of
In this new coordinate system, the turbulent velodifycan be  grgcnr2 st Hz Y
expressed as; = —Uy Sing + u, cosd, whered is the polar an-

gle and the tube cross-section is assumed to be circular with B 2 p2 ) QF 2,12
radiusR; (see Fig. 1a). Because of the full symmetry between F(w) >,>7 = 47 o dzp—ogg (1+ kH )
the x andy-directions, we may assume théat= 90° and that xJe(Ko, @) | (48)

Us(zt) = —ux(z t) andu;)(z+ r,t+7) = —U(z+r,t+7). Hence,
we have< usU, > = < uxly, > and the evaluation of the secondwherez,, is the thickness of the turbulent region in the solar
order velocity correlations for torsional tube waves becomesnvection zone. In deriving this expression, we have taken into
similar to that discussed by Musielak & Ulmschneider (200&kcount the fact that onlyalf of the total generated flux propa-
for transverse tube waves. In Fig. 1, we show typical settingates upward. In Sect. 3, we use Eq. (48) to compute the wave
for calculating the correlatior uyu; > for the generation of energy spectra carried by torsional tube waves propagating up-
both torsional and transverse tube waves. ward along a given flux tube embedded in the solar atmosphere.
Taking the Fourier transforms of the second-order velocity

correlations defines the convolution integral
2.7. Treatment of turbulence

1 +00 +00
Je(Ko, w) = Wf dff dr Rux(r, T)RAT, 7) The correlation tensd®; is defined as
x gllwr—kan), (44) Rj(r,7) = << Ui DUj(X + T+ 7) >y, (49)
where the correlation tensors are given by where the average is taken over all poirtsf a large volume,

(45) which can be considered infinite, and over all tinies/hich

are long compared to all other time scales, and thus can also
and be considered infinite. A situation in whid®; is independent
of x andt is called time-independent homogeneous turbulence.
Introducing the spectral tensdy; (k, w), and the Fourier trans-

This allows writing the source function in the following form: form R (r, ), gives

Rux(r, 7) = << U(Z ) Ux(z+ 1t + 1) >>¢,

R AN T) = << U(Z ) U(z+ 1t +T) >>¢ . (46)

1/2 -+00 .
1St(ko, W) = toZo (pij)Z 7 (Ko ) Je(ko, ). 47) ok w) = (;)4 f o’ f deR;(r, 7)) (50)
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and its inverse transform As discussed thoroughly by Musielak et al. (1994), some
+oo _ modifications are needed to apply the Kolmogorov hypothe-
Rj(r,7) = fd3kf dwd;j (K, w)e @k, (51) sis to the turbulent motions in the solar and stellar convection

zones. Definindg as the wave number of the energy-containing
For homogeneous and isotropic turbulerRg(r, 7) = Rj(r,7) eddies andy as the wave number of the eddies at scales where
and®;j(k, w) = @jj(k, w). The correlation tensors can be evalviscous &ect become important (in other words, where the
uated when the corresponding spectral tensors are known. fifl®ulent cascading ends), the spatial turbulent energy spec-
spectral tensors for homogeneous and isotropic turbulence @& E(k) is given by
be expressed by a 3-D turbulent energy spectfkiw), given

by (Batchelor 1960) 0 0< k < 0.2k
@ (K
o Eke) (. kk EM =%k (k) 0Zk<k<k, (57)
@,l(k,w)—w( IJ_W)‘ (52) a%z(%)—5/3 K < K < kg

Performing the integration yields
g g y where the factoa = 0.758 is determined by the normalization

Rl 7) = f dw coswr f dkE(K, ) condition
0 0
. . 0 3
sinkr  coskr  sinkr f E(K)dk = =12, 58
X( ke T k3r3)’ 53 Jo ® 2™ (8)
and andy is the rms turbulent velocity defined as

RAr, 1) = 2f dwCOSwa dkE(k, w)
0 0

sinkr  coskr
K33 k2 )

U = \/ux(r, t)2 = \/uz(r, t)2. (59)

(54) The temporal part of the turbulent energy specti(m/ku) is

. iv he Prandtl mixing length picture. This flow fiel
Clearly, the correlation tensors can only be calculated when {Hgt ated by the Prandt g length picture s flow field

wurbulent ener trUB(k o) is known. In the followin s an idealization in which the turbulent eddies are in a super-
urbulent energy spectrut(k, w) is known. In the following, i (Musielak et al. 1994). Each eddy is at a well-defined
we discuss the procedure of specifyiafk, w).

%Patial scald such that the power of all eddies in that scale
0

lence within the stellar convection zones. In order to descri %he eddy lifetime can be approximated by a timescale such
turbulence at or below a stellar surface it is assumed that a ttlﬁrélt #(K) = 2r/ku,, whereu is the characteristic velocity of
bulent energy spectrum, which is the distribution of energy PRle eddy with wav,e numbérdetermined by Eq. (56), then the
unit mass that is stored in eddies offdrent wave numbers, ) '

must be chosen (e.g., Musielak et al. 1994). The description:c()jfgy dgzirﬁjggIg;e(k(;hira;?:sicgfqﬁgcé r?]SpS;(;F :S(rjbxv_'th it
turbulence for our analy3|s_ IS pnmarl_ly phenomgnologmgl a%ﬂ]t energy spectrum would be a delta function centered at this
based on two-point, two-time velocity correlation funcuons'haracteristic frequency

Energy supplied at the largest eddy scale is dissipated by the

smallest eddies thereby cascading energy through the medi _

size eddies. Constraining the turbulent flow to be isotropic amy®/ Kt = 6(w = k). (60)

homogeneous, which is an idealization that may not descr"%e

In general, there is no completely accepted theory of turb Sntribute to the power spectrum at wave numbes 2/,

correctly real flows, allow the correlation tensors (Egs. (4 owever, it is more realistic to assume that eddies of wave

and (46)) to be computed once the form of the turbulent e ﬂ'g?i%ii?oﬁagfegﬁirl?fgiIrirziimlzeié;?r:?nigmrflltieelisrr:i?iﬁgtgirheai\zoe:
i lished. For th ifi f o ) i :
ergy spectrum is established. For the specific purpose of t EEq (60) it is seen that the modified Gaussian turbulent fre-

work it is a requirement to factor the turbulent energy spectr . X ) .
E(k, o) into sgatial and temporal parts (Stein 1967;‘” P guency factor described by Musielak et al. (1994) is physically
’ appropriate and given by

w
Bk w) = E(k)A(_) (55)
K Aw/Ku) = Le—[(le—\kud)/lkudl2 61)
where the average eddy velocity is given by VKl
% 12 whereb = 1.78 and is a normalization factor determined by
Uk = [f E(k/)dk/:| (56)
The specific forms ofE(k) and A(w/ku) are then pre- ﬁ Alw/Ku)dw = 1. (62)

scribed and used to determine the source function (Eq. (45)).

Therefore, the problem of describing the external turbulent mbhe results computed and presented in Sect. 3 utilize the above
tions is reduced here to choosing tta@rectform of the turbu- assumptions as well as the described spatial and temporal
lent energy spectrum. forms of the turbulent energy spectrum.
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3. Results and discussion 1E3 . ' '

3.1. Solar model C N <

The computer code for the solar convection zone model is.a el N N Ps
modified version of stellar envelope code used originally .
Bohn (1981, 1984) and Ulmschneider et al. (1996). It is ag-
sumed that the main energy-containing eddies are comparable .
in size to the local pressure scale heigitgiven from a mixing- 3 1E1 PNL N
length description of convection. The mixing length parameter
a = Imix/H, wheréel ik is the mixing-length, is assumed to be of
order unity. The best current value for the solar convection zone | | | |
presently isx = 2.0 (Trampedach et al. 1997). However, to in- 1E°0 500 1000 1500 2000 2500
vestigate the dependence of the torsional wave generation on Height (km)

the mixing-length we have selected three values of the mixi

length parameter; = 1.0,_ 1.5and 2.0in our prese”_t work. gitudinal andPs for acoustic waves are plotted as a function of height
The code also requires that the surface grayignd ef- , the an isothermal solar atmosphere model Wigh= 5770 K. The

fective temperatur@ey are specified. In all calculations, theymagnetic field strength is taken to Bg = 1500 G at the bottom. The
are taken to b@er = 5770 K, andy = 2.736x 10 cm 2. tube geometry is of a “wineglass” shape, spreading exponentially up
Hydrogen molecule formation is included and a gray radiatiam a height of 500 km and then expanding to a constant tube radius
transport is used. The turbulent velocity scajds identified of 300 km. The tube radiuR and magnetic field strength, are indi-

with the convective velocity of the model. Finally, it is imporcated.

tant to note that all presented results are obtained for a single

maggenc ::qu tubet_e rr;lbeq[dgd n th(;:‘hsolarlconvefc tion ZOTﬁ ' Tenfditional external magnetic pressure to constrain the tube to a
numboer of MAgnetic Tiux wbes on the soiar surtace, or the x4t cross-section determined by the magnetic filling fac-
called filling factor, that is, the ratio of the area covered by mags, Figure 2 shows such “wineglass” shaped magnetic tube
netic fields to the total surface area of the Sun, is not discus§ﬁgde| which spreads exponentially up to a height of 500 km

here. and thereafter approaches a constant tube radius of 300 km.

It has been shown observationally (Stenflo 1978; Solanij,ch, tupes are thought to exist in the chromospheric network
1993) that at the solar surface magnetic field strengths are,pf,e boundary of supergranulation cells.

the orderB, = 1500 G. However, the equipartition magnetic
field strengthBeq = +/87pe, Wherepg is the fluid pressure

outside the tube. Wittpe = 1.17 x 10° dyncnt? (Vernazza quencies by takingo/Beq = 0.85 and plotted in Fig. 2 the
etal. 1981) one finds the flelc_j strendgky, = 1715 G. The ratio corresponding cutb periodsPs = 27/Qs, Po = 2r/Qp,
Bo/Beq = 0.875 thereforg |nd|c_:ates a typical strength for solqu — 27/Qr andPx = 27/Q as a function of height. It is seen
magneu_c flux tubes. To mvestlgat(_a the depend(_ance of the WY&t below 500 km height the four cferiods are constant
generation rate on_the magnetic field, we consider thierdi ,.ouse of the height-independent values of the sound speed
ent values of the field strength, nameB/Beq = 0.75, 0.85 514 the Alfvén speedt, in this exponentially spreading range.
and 0.95. Here it is seen thd®s andPp are essentially identical because
ca=11x10cms?! > cg=7.8%x10° cms?. The kink wave
3.2. Propagating waves cutdf period Py is largest and the torsional wave cfitpe-
riod Pt is intermediate. This is because the height-independent
The cutdf frequencyQr for torsional tube waves was de-kink speedck = 5.9 x 10° cms™ is smaller tharca which in
rived for an isothermal atmosphere inside and outside the tube is smaller that &. The scale heightl = 1.35x 10’ cm
(see Sect. 2.1). However, models of the solar convection zaaenains constant over the entire tube.
are not isothermal and the ctitdrequency does change with  |n the constant cross-section part of the tube, the magnetic
depth. The problem is treated here by formally dividing thigeld strength a8, = 42 G becomes independent of height,
tube into layers that can be considered isothermal and wheiigile the density decreases rapidly with height leading to a
H and the characteristic wave velocity are constant. This rapidly increasing Alfen speed and kink speed, while and
allows Q1 to be considered locally as a constant. cr remain constant. At 2000 km height one f@as= 5.1 x
So far in the paper we have always assumed an expong@-cms? andck = 2.7 x 10’ cms*. This decreases both the
tially spreading magnetic flux tube where one has horizonthk torsional wave cufbperiod P+ = 87H/ca (see Eq. (19))
pressure balance according to Eq. (1) where in the stahled the kink cutff periodPx = 87H/ck. For some frequencies
photospheric layers above the convection zone the external these tube waves could become trapped. Bec@yse lower
bulent pressure fluctuation®; become zero. It is interest-thanQs and also lower thaf)p, the wave energy spectra of
ing to illustrate flux tube models which extend to the chrdersional tube waves are broader than those obtained for acous-
mosphere where the horizontal pressure balance after Eq.t{d)e.g., Uimschneider et al. 1996) and longitudinal (Musielak
is no longer valid because neighboring flux tubes exert ahal. 2000) waves.
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F|g3 Torsional tube wave energy Spectra Computed fofedbnt Fig.4.TOrSiOnaI tube wave energy Spectl’a Computed forth'ﬁerdnt
mixing-length parameters = 1.0, 1.5 and 2.0. The magnetic fieldfield strength,/Beq. The mixing-length parameter= 2 is the same

strength is taken a8,/ Beq = 0.85 in all models. for all three cases.
1010 T T T T T 1T T T T3
Torsional tube waves are considered propagating waves if e ]
their frequencies are above the diif@r. As already discussed £ i T transverse ]

in Sect. 2.6, the source function given by Eq. (47) is not equal
to zero asw — Qr. This implies that energy is being gener-5 107 £
ated in the form of non-propagating (evanescent) waves. Singe F
the non-propagating waves are not treated in this model, we -
eliminate them from the total energy spectrum by introducing
the factor (1- QF/w?)?; this factor reduces the contributionof §  10° =
evanescent waves to zeroas— Qr. We utilize this factor in W - .
all computed wave energy spectra and fluxes. This guarantees - . .
that the generated torsional tube waves are always propagating -

and that they carry their energy away from the convection zone. 107 : Lol : Lol
0.01 0.1
Frequency (Hz)

3.3. Wave energy spectra ) o
Fig. 5. Transverse, longitudinal and torsional tube wave energy spectra

The dependence of the computed wave energy spectra oncifreputed for field strengttB,/Beq = 0.85 and the mixing-length pa-

mixing-length parameter is shown in Fig. 3. Itis clearly seenrameterr = 2. All spectra were obtained by using analytical methods

that the torsional wave energy spectrum’s overall shape is Q6.

greatly dfected by the choice of this parameter, as there is no

significant shift in the primary wave generation frequency do-

main and also the maximum remains the same. transverse tube wave (see Fig. 2). The main reason for this sig-
The dependence of the wave energy spectra on the strengticant diference in theficiency of the wave excitation is the

of the tube magnetic field is shown in Fig. 4. The presentéatk of contributions from the fluctuating buoyancy force to the

results were obtained by takirg,/Beq = 0.75, 0.85 and 0.95, generation of torsional tube waves. According to Musielak &

and for a fixed value ofr = 2.0. It is seen that the spectradlmschneider (2001), this force plays the dominantrole in gen-

are much broader for weak fields than for strong fields, aedating transverse tube waves in the solar convection zone. Itis

that the maximum shifts toward higher frequencies as the fidden that this force does not make any contribution to the exci-

strengthB, increases. Bothffects can be attributed to an in-tation of torsional tube waves because these waves are not in-

crease in the cutbfrequency for stronger fields. fluenced (at least, in the first-order approximation) by the pres-
Finally, it is of some interest to compare the wave energyice of gravity.

spectra generated by torsional tube waves to those generated he results presented in Fig. 5 also show that thieiency

by transverse and longitudinal tube waves. This comparisohgeneration for torsional tube waves is much higher than

is shown in Fig. 5. It is seen that the rate of generation tfat for longitudinal tube waves. In addition, it is seen that the

transverse tube waves significantly exceeds that for torsiot@isional wave energy spectrum is broader than the longitudi-

tube waves, especially, for low frequency waves. The transal one; again, the main ftierence exists for low frequency

verse wave energy spectrum is also broader than the torsiomales because the ctitgeriod for torsional tube waves is

wave and is a result of the lower ctitdrequency of the lower than the corresponding one for longitudinal tube waves
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Table 1. Total wave energy fluxeBs (erg cn? s) generated as tor- tube waves depends very strongly on the strength of the tube
sional waves in a single magnetic flux tube embedded in the sofaagnetic field. Theféect is also important for the generation of

convection zone are compared to the fluxes for transverse tube wayggsional tube waves and transverse tube waves, however trans-
Fuans and longitudinal tube waves;ong; note that the factor 4 (see yerse waves are the leasfexted.

discussion below Eq. (23)) was included in the computation of the . .
wave energy fluxes for transverse tube waves. All presented fluxes The fact that the fiiciency of generation of derent tube

were computed by using analytical methods only. waves depends sqfﬁrently on the strength of the tube mag-
netic field can easily be explained by the role played byf*sti
ness” of magnetic flux tubes in the wave generation. Thi“sti
ness” is obviously greater for stronger magnetic field strength
(for example, it is much greater f@,/Beq = 0.95 than for
Bo/Beq = 0.75). The “stifer”, the more resistant the tube be-
comes to external motions. The fact that the longitudinal wave
generation is morefBected than the other processes is directly
related to the amount of gas inside the tube: the stronger the
field, the less gas one has inside and the mafecdlt it is to

(see Fig. 2). The dierences become important when the rof@Xcité the wave. In the case of torsional waves, the strength of
played by each one of these waves in the atmospheric heafftfgfield determines how fliicult it is for the external motions

is investigated; we briefly discuss this problem in the followinp tWist the tube. This is similar in the generation of transverse
subsection. tube waves where $fer fields inhibit bending by the same

weak external turbulent flows. However, because of their high
efficiency of generation they are lesfeeted. In summary, it
3.4. Energy fluxes is harder to twist the magnetic flux tubes than shake them but

Considering a single magnetic flux tube, the total torsioniiS €asier to twist the tube than to squeeze it. In other words,
wave energy flux is computed by integrating the wave enerﬁ?e finds that the lower thefiziency of the wave ger_1erat|on
spectra over the ranger < w < 25Q. The results are pre- 1€ stronger the dependence on the tube magnetic field.
sented in Table 1, which shows that for the same value of

@ andBo/Beq transverse tube waves are two times mdfe € 3 5 The rofe of torsional tube waves in atmospheric

ciently generated than torsional tube waves; however, ftire e heating

ciency of the excitation of the latter is one order of magnitude
higher than longitudinal tube waves. These are expected reswshave computed the wave energy spectra and fluxes carried
as it is much easier for the external turbulent motions to shal§gtorsional tube waves in the solar atmosphere, and compared
and twist the tube than to twist it (e.g., Spruit & Roberts 1988&em to those previously obtained for longitudinal and trans-
Musielak & Ulmschneider 2001). verse tube waves. Our approach is analytical, which means

From the results presented in Table 1, one also finds thigét the calculated fluxes represent only lower bounds for the
the a-dependence scales with thiiieiency of the wave gen- realistic fluxes. The obtained results show that torsional tube
eration process: the higher thiiieiency the stronger is the:  waves propagating in the solar atmosphere carry less energy
dependence. Since higher valueseofive larger convective than transverse tube waves but more energy than longitudinal
velocities, the #ect is stronger for the waves that are easi@libe waves. This implies that torsional tube waves could sig-
to generate. It is seen that the wave energy flux for a mixingificantly contribute to the atmospheric heating and that the
length parametety = 2.0 is 4.4 times larger than fer = 1.0;  energy fluxes carried by these waves must be included into the-
this increase is caused by much higher convective velocitiesgifetical models of stellar chromospheres and coronae.
the former case th.an in the latter. The approximate dependencerp,o problem of heating stellar chromospheres and coronae
on the parameter is found to be is not yet fully understood despite significant observational and
Fiors ~ 6.0 10702t erg cmi2 s°L. (63) theoretical progress (e.g., Narain & _Ulmsghneider 1996, and

references therein). As already mentioned in Sect. 1, recent re-
This a-dependence can be compared to that obtained for tragsits obtained by Ulmschneider et al. (2001) and Fawzy et al.
verse ¢a?%) and longitudinal {a*8) tube waves by Musielak (2002a,b) clearly show that the wave heating mechanism based
et al. (2001) and Musielak et al. (2000), respectively. on longitudinal and transverse tube waves can explain the ob-

According to the results given in Table 1, one sees that tberved level of stellar activity in late-type stars only up to the
torsional wave energy flux decreases with increasing magnegigel of the Ca IIH andK line formation, while to explain the
field strengthB,. An approximate fitting to these data yieldgmission of the higher chromospheric layers, where the Mg Il h
the following B,-dependence and k lines originate, another non-wave magnetic (e.g., recon-
nective) heating mechanism seems to be required.

The results presented in this paper demonstrate that the
By comparing this dependence to that previously derivedntribution of torsional tube waves to solar and stellar atmo-
for transverse 4B,3%) and longitudinal waves~B,%4), one spheric heating can be important because the amount of en-
clearly sees that thefficiency of the generation of longitudinalergy carried by these waves significantly exceeds the amount

4 Bo/ Beq Frors Firans Flong

1.0 Q85 60x 10 12x10° 63x10°
15 Q85 14x10® 29x10° 14x10
2.0 Q85 26x10® 56x10° 24x10
2.0 Q75 44x10F 88x10° 55x10
2.0 Q95 13x10¢ 36x10° 59x10¢°

Fiors & 1.0 x 10°(Bo/Beg) *° erg cm? s (64)
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