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ABSTRACT

We propose a new numerical method to compute one-dimensional time-dependent wave propagation in
stellar atmospheres that incorporates the time-dependent treatment of hydrogen ionization together with an
evaluation of radiation losses under departures from local thermodynamic equilibrium (NLTE). The method
permits us to calculate acoustic waves and longitudinal magnetohydrodynamic (MHD) tube waves. We have
tested the method for the solar atmosphere by calculating the propagation of three types of waves, namely, a
monochromatic acoustic wave, a stochastic acoustic wave, and a stochastic longitudinal tube wave. It was
found that with a time-dependent treatment of the hydrogen ionization (as well as the Mg ionizations) the
degree of ionization (H+/H) and theMg ii/Mg ratio become insensitive to the temperature fluctuations, even
in the presence of weak and moderately strong shocks. Only when strong shocks appear do the transition
rates become large enough to cause a high correlation between the degree of ionization and the high post-
shock temperatures. Our calculations show that a mean degree of ionization gets established that increases
with height and is very little perturbed by the local temperature fluctuations of the wave. In stochastic
calculations, strong shocks appeared periodically (roughly every 3 minutes), which in their postshock regions
carried a zone of high or complete ionization. Tests with different numbers of frequency and height points, as
well as of the rate of convergence of the�-iteration, were performed.

Subject headings: atomic processes — hydrodynamics — MHD — stars: atmospheres —
Sun: atmosphere — waves

1. INTRODUCTION

Kneer & Nakagawa (1976) for the Sun and Klein, Stein,
& Kalkofen (1976) for an A0 main-sequence star were
among the first to attempt acoustic wave calculations where
the time-dependent ionization of hydrogen and the treat-
ment of radiation under departures from local thermo-
dynamic equilibrium (NLTE) were consistently treated.
The fact that the ionization of hydrogen does not instantly
adjust to the hot postshock temperature after a shock has
traversed a chromospheric gas element was pointed out
by Kneer (1980), who found that the relaxation time for
the ionization of hydrogen varies from about 100 s in the
middle solar chromosphere to about 1000 s in the upper
chromosphere.

In the following decade not much had been done to imple-
ment this in chromospheric wave calculations (see, e.g.,
Herbold et al. 1985; Ulmschneider, Muchmore, & Kalkofen
1987; Rammacher & Ulmschneider 1992) because these
computations were concerned with the physics of the lower
and middle chromosphere where hydrogen is only very little
ionized. However, with the intense interest in the time
behavior of the Ca ii H and K line profiles and in the cross-
correlations between the Doppler shift fluctuations of the
Ca ii infrared triplet (IRT) lines, with the sights set on
explaining the onset of the transition layer to the corona, it
was felt absolutely essential to include the correct time-
dependent treatment of hydrogen ionization into an acous-
tic wave code (Carlsson & Stein 1992, 1994, 1997, 2002;
Skartlien, Carlsson, & Stein 1994; Hansteen 1993).

Carlsson & Stein (1992) found that when including the
ionization of hydrogen in the energy conservation equation
used in the wave computation and assuming local thermo-
dynamic equilibrium (LTE), most of the wave energy goes
into the hydrogen ionization and very little into heating.
This situation is very different when one considers NLTE
and computes the hydrogen ionization with time-dependent
rate equations. Here the radiative transition rates delay the
ionization, which leads to a much stronger chromospheric
temperature rise. Using an empirical acoustic spectrum
from observations of a low-lying Fe line as input in their
wave calculations, Carlsson & Stein (1994, 1997) were able
to find reasonable agreement with the observed Ca ii H line
profile variations, which are caused by isolated strong
shocks that roughly periodically (with a period around 3
minutes) propagate through the outer solar atmosphere. In
addition, these calculations showed essentially zero phase
shifts between the velocity fluctuations in the Ca ii IRT
lines, a phenomenon that is attributed to the fact that these
lines are generated in the same hot postshock layer
(Skartlien et al. 1994). This corrected the suggestion by
Fleck & Deubner (1989) that the zero phase shift
phenomenon ought to be explained by standing waves.

While the simulations of Carlsson & Stein (1994, 1997)
agree in an overall manner with the observedCa iiH line pro-
file variations, there has also been much discussion about
some significant discrepancies (Kalkofen 2001; Kalkofen,
Ulmschneider, & Avrett 1999; Kalkofen & Ulmschneider
1999). Although these authors agree with Carlsson & Stein
(1994, 1997) that the H line profile variations are probably
caused by acoustic shocks, they point out that the simulated
H line cores appear to be too deep by about an order of mag-
nitude and that the intensities of the blue peaks are too high
by roughly an order of magnitude. In addition, Kalkofen
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(2003) pointed out that in reality acoustic waves propagate as
spherical waves or at least in a cone. He warns that therefore
the plane-parallel wave computations of Carlsson & Stein
(1994, 1997) appear to be highly idealized if not inappropri-
ate and the strong solitary shock picture might be an artifact
of the plane wave computation.

That plane wave calculations with an acoustic wave spec-
trum invariably lead to strong shocks with a 3 minute–type
wave period is also found in our present work and attributed
to the overtaking of shocks. We confirm the strong shocks
found in the computations of Carlsson & Stein (1994, 1997).
However, recent observations by Wunnenberg, Kneer, &
Hirzberger (2002) show that the acoustic energy generation is
nonuniformly distributed over the solar surface, a fact that
was already suggested long ago by Kuperus (1972). In a real-
istic situation, therefore, one has a large number of acoustic
sources at discrete locations distributed all over the solar sur-
face fromwhich spherically or conically propagating acoustic
waves emanate. As pointed out byUlmschneider (2003), such
waves will intersect at oblique angles and cannot produce
shock overtakings. Therefore, plane wave computations with
shock overtakings are a poor representation of the mechani-
cal heating mechanism of the chromosphere. If plane wave
computations cannot be avoided as a result of the present
lack of computational power to fully simulate a three-dimen-
sional situation with multiple discrete acoustic sources, then
Ulmschneider (2003) suggests that the use of monochromatic
waves might be the next best choice because they produce the
weak shock heating but do not generate shock overtakings.

However, the discussion of the structure and modeling of
the solar chromosphere is not the topic of the present paper.
Our present work aims to describe a method for treating the
full time dependence of the hydrogen ionization, which is an
essential feature of any hydrodynamic and magnetohydro-
dynamic (MHD) wave simulation. Our present plane wave
computations should be taken as test calculations to illus-
trate the method and explain its consequences and therefore
should not be seen as proposed theoretical chromosphere
models. In their recent work, Carlsson & Stein (2002) dis-
cussed the time behavior of the hydrogen ionization in more
detail. These authors showed that the strong shocks in their
computations generated a mean degree of hydrogen ioniza-
tion that continuously increases with height. They also
found that the relaxation times responsible for the delayed
ionization and recombination are quite large, in the order of
103–105 s, and therefore much longer than typical fluctua-
tions in the acoustic wave, but that behind strong shocks
these relaxation times became very small.

The fact that noninstantaneous ionization processes are
essential for the explanation of chromospheric phenomena
has also been found by analyzing observations. Judge,
Carlsson, & Wilhelm (1997) suggested that anomalous
behavior of He i �584 may result from long ionization/
recombination timescales. That nonequilibrium ionization
will severely alter the properties of C ii emission lines has
been predicted by Judge & Carpenter (1998). Moreover,
Carlsson, Judge, & Wilhelm (1997) pointed out that the
whole foundation for using spectral features in static models
to infer physical properties in the chromosphere such as the
Ca ii emission or the CO absorption must be called into
question.

In this paper (the first of a series) we discuss a complete
revision of our time-dependent plane-parallel acoustic and
MHD wave code, which is based on the method of charac-

teristics and which by treating shocks as discontinuities
allows the computation of a large number of shocks
(Ulmschneider et al. 1977, 1987; Ulmschneider & Kalkofen
1978; Herbold et al. 1985; Cuntz & Ulmschneider 1988;
Cuntz 1990; Rammacher & Ulmschneider 1992; Fawzy et
al. 2002). We now treat the hydrogen ionization in a fully
time-dependent manner by solving the statistical rate equa-
tions. This treatment at first is for a three-level hydrogen
atomic model (two bound levels and the continuum) in
which the computation of the Ly� line is simplified using an
escape probability method. We also treat the ionization of
the first three ionization stages ofMg in a fully time-depend-
ent manner. The details of the treatments of elements other
than hydrogen, such as Mg, Ca, and C, will be given in W.
Rammacher (2003a, in preparation, hereafter Paper II).
The analytical results on relaxation times are going to be
presented in W. Rammacher (2003b, in preparation, here-
after Paper III).

Our present paper is organized as follows. In x 2 we
summarize the basic hydrodynamic and MHD equations
and discuss the shock treatment, the boundary and initial
conditions, the treatment of the NLTE radiative transfer,
and the treatment of the time-dependent statistical rate
equations. Four different wave calculations were per-
formed and described in x 3 together with various tests
of the accuracy and convergence of the method. Our con-
clusions are given in x 4. Appendix A describes the par-
ticle conservation equations, the time-dependent rate
equations, and the thermodynamic derivatives, while
Appendix B outlines the polynomial solution for deter-
mining the electron density. In Appendix C we discuss
the generalization of our method to an N-level atomic
model of hydrogen.

2. HYDRODYNAMIC AND
MAGNETOHYDRODYNAMIC

EQUATIONS

2.1. Acoustic Waves

A continuous one-dimensional flow is described by the
following hydrodynamic equations in the Euler (laboratory)
frame, namely, the continuity equation, momentum equa-
tion, and energy equation (e.g., Zeldovich & Raizer 1967;
Landau & Lifshitz 1959):

A
@�

@t
þ @�uA

@x
¼ 0 ; ð1Þ

�
@u

@t
þ u

@u

@x

� �
þ @p

@x
þ �gðxÞ ¼ 0 ; ð2Þ

@S

@t
þ u

@S

@x
¼ dS

dt

����
rad

; ð3Þ

where, as functions of Euler height x and time t, � is the den-
sity, u is the gas velocity, p is the gas pressure, g(x) is the
gravity, and S is the specific entropy; dS=dtjrad is the radia-
tive heating function that describes the net increase of
entropy in the gas by absorption of photons. These equa-
tions are valid for spherical flows where A(x) is the area,
while for flows in a tube, A(x) is the tube cross section. For
plane-parallel geometry equation (1) is replaced by taking
A ¼ 1, dA=dx ¼ 0, and by using constant gravity gðxÞ ¼ g0.
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We assume that the physical state can be described by the
velocity u and two thermodynamic variables T and p, where
T is the kinetic temperature. In order to solve the above set
of equations, we use the method of characteristics that
rewrites the three partial differential equations (1)–(3) into a
set of six ordinary differential equations. Following, e.g.,
Ulmschneider et al. (1977) or Cuntz & Ulmschneider
(1988), the following set of compatibility relations can be
derived:

du� 1

�cS
dp

þ �cS�
@T

@p

� �
S

dS

dt

����
rad

� cSu
1

A

dA

dx
þ gðxÞ

� �
dt ¼ 0 ; ð4Þ

valid along the C+ and C� characteristics given by

dx

dt
¼ u� cS ; ð5Þ

where the top sign is for the C+ and the bottom sign for the
C� characteristic, and

dS ¼ dS

dt

����
rad

dt ; ð6Þ

which can be written

dT � @T

@p

� �
S

dp� @T

@S

� �
p

dS

dt

����
rad

dt ¼ 0 ; ð7Þ

valid along the fluid path, the characteristic C0 given by

dx

dt
¼ u : ð8Þ

These equations are written in the Euler (x, t) frame, and
in order to write the thermodynamic relations and thermo-
dynamic derivatives in terms of T and p, they must be aug-
mented by the particle conservation equations, which in the
case of time-dependent ionization of hydrogen requires
the solution of the time-dependent rate equations along the
fluid path. The calculation of the density �, the adiabatic
sound speed cS, and @T=@Sð Þp and @T=@pð ÞS is discussed in
x 2.6 and Appendix A.

In the Lagrange (a, t) frame the Lagrange height
a ¼ xðt ¼ 0Þ marks mass elements in the initial atmosphere
that has an initial density distribution �0(a) and an initial
tube cross sectionA0(a). Mass conservation requires that

@x

@a

� �
t

¼ �0A0

�A
; ð9Þ

and the transformation equations between the Euler and
Lagrange frames are given by

@
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@
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t

: ð10Þ

The local gas velocity is defined by

u ¼ @x

@t

� �
a

: ð11Þ

Since the density in the element changes because its upper
and lower boundaries move with different speed or because
the area varies, the continuity equation in the Lagrange

frame can be written as

@�

@t

� �
a

þ �2A

�0A0

@u

@a

� �
t

þ �u

A

dA

dx
¼ 0 : ð12Þ

In addition, one has the momentum and energy conserva-
tion equations
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� �
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þ A

�0A0
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þgðxÞ ¼ 0 ; ð13Þ
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a

¼ dS

dt

����
rad

: ð14Þ

Equations (12)–(14) in the Lagrange frame correspond to
equations (1)–(3) in the Euler frame. They can be brought in
characteristic form and provide the same two compatibility
relations given by equation (4) along the C+ and C� charac-
teristics. However, these two characteristics in the Lagrange
frame are now given by

da

dt
¼ �cS

�A

�0A0
: ð15Þ

From equation (14) we get the compatibility relation given
by equation (6) along the fluid path characteristic C0, which
is now given by a ¼ const. Our code is able to use both the
Euler and Lagrange frames.

2.2. Longitudinal TubeWaves

To describe longitudinal MHD tube waves that propa-
gate in vertically directed magnetic flux tubes in a stellar at-
mosphere, we use the thin flux tube approximation. The
equations (Herbold et al. 1985; Fawzy, Ulmschneider, &
Cuntz 1998; Fawzy et al. 2002) for continuous one-
dimensional flows are then given in the Euler frame by

@�A

@t
þ @�uA

@x
¼ 0 ; ð16Þ

@u

@t
þ u

@u

@x
þ 1

�

@p

@x
þ g xð Þ ¼ 0 ; ð17Þ

@S

@t
þ u

@S

@x
¼ dS

dt

����
rad

; ð18Þ

� ¼ AB ¼ const ; ð19Þ

B2 ¼ 8� pe � pð Þ : ð20Þ

Here p and pe are the gas pressures inside and outside the
tube, respectively, and B is the magnetic field strength. In
addition, the cross section A is now also time-dependent,
which allows breathing (distensibility; see Lighthill 1978, p.
93) of the tube. Equations (16)–(18) correspond to equa-
tions (1)–(3) for acoustic waves, while equations (19) and
(20) represent the conservation of the magnetic flux � and
the horizontal pressure balance between inside and outside
the tube. All quantities are considered to be both functions
of height x and time t except for pe. Because of the thin flux
tube approximation, we assume that the external pressure is
not perturbed by the wave in the tube and therefore
pe ¼ peðxÞ is independent of time.

Similarly as for the acoustic wave case, the system of
equations can be transformed into characteristic form.With
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the Alfvén speed

cA ¼

ffiffiffiffiffiffiffiffi
B2

4��

s
ð21Þ

and tube speed cT given by

1

c2T
¼ 1

c2S
þ 1

c2A
; ð22Þ

the following compatibility relations are found:

du� 1

�cT
dp� cT�

@T

@p

� �
dS

dt
þ cTu

c2A�

dpe
dx

� gðxÞ
� �

dt ¼ 0 ;

ð23Þ

along the two C+ and C� characteristics given by

dx

dt
¼ u� cT ; ð24Þ

plus identical equations as equations (6)–(8). In the
Lagrange frame equation (16) is replaced by

A
@�

@t

� �
a

þ�
@A

@t

� �
a

þ �2A2

�0A0

@u

@a

� �
t

¼ 0 ; ð25Þ

which reduces to equation (12) if the time dependence of A
is dropped and the term ð@A=@tÞja is transformed using
equation (10). The Lagrange equations corresponding to
equations (17) and (18) are the same as equations (13) and
(14). They can be transformed into the same compatibility
relations given by equation (23) along the C+ and C�

characteristics given in the Lagrange frame by

da

dt
¼ �cT

�A

�0A0
; ð26Þ

whereas for acoustic waves, one has equation (6) along the
fluid path characteristic C0 given by a ¼ const.

2.3. Shocks and Rankine-Hugoniot Relations

In the method of characteristics, hydrodynamic and
MHD shocks are treated as discontinuities that interrupt
the regions of continuous flows. Here we follow earlier work
of Ulmschneider et al. (1977), Herbold et al. (1985), and
Cuntz & Ulmschneider (1988). At the shock we solve the
Rankine-Hugoniot relations, which represent the conserva-
tion of mass, momentum, and energy flows across the
discontinuity. Using parameters a and b, the Rankine-
Hugoniot relations can be written as

�1v1A1 ¼ �2v2A2 ; ð27Þ
A1 �1v

2
1 � aþ bp1

� �
¼ A2 �2v

2
2 � aþ bp2

� �
; ð28Þ

1

2
v21 þ E1 þ

p1
�1

¼ 1

2
v22 þ E2 þ

p2
�2

; ð29Þ

with

v1 ¼ u1 �Ush ; ð30Þ
v2 ¼ u2 �Ush ; ð31Þ

where v1 and v2 are the flow velocities in the shock frame
moving with the shock and Ush is the shock speed. Here �1,
�2 are the densities, u1, u2 are the flow velocities, A1, A2 are

the tube cross sections, p1, p2 are the gas pressures, and E1,
E2 are the internal energies in front of and behind the shock,
respectively.

For acoustic waves one has a ¼ 0, b ¼ 1, and
A1 ¼ A2 ¼ 1 in plane-parallel, spherical or tube geometry.
For longitudinal tube waves (Herbold et al. 1985) we have
a ¼ 2pe, b ¼ 2, and from horizontal pressure balance
together with magnetic flux conservation the relationships

A1 ¼
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8� pe � p1ð Þ
p ; A2 ¼

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� pe � p2ð Þ

p : ð32Þ

To solve for the shock position at the new time level and to
determine the physical variables in front of and behind the
shock discontinuity, we have to determine 15 unknowns.
These are E1, �1, p1, T1, A1, v1, u1, E2, �2, p2, T2, A2, v2, u2,
and Ush. For these unknowns we have exactly 15 relations,
namely, the four equations given by equations (30)–(32);
the four thermodynamic relations �1 ¼ �1ðp1;T1Þ, �2 ¼
�2ðp2;T2Þ, E1 ¼ E1ðp1;T1Þ, E2 ¼ E2ðp2;T2Þ; the three
Rankine-Hugoniot relations given by equations (27)–(29);
and four compatibility relations along four characteristics.
The latter is because the shock runs faster than any distur-
bances propagating with sound speed (or tube speed) in
front of the shock; one thus has three characteristics (C+,
C0, C�) in front of the shock, and as the sound speed (or
tube speed) behind the shock is greater than the shock
speed, we have one (C+) characteristic behind the shock
path (e.g., Ulmschneider et al. 1977).

For a rapid solution we eliminate unknowns as far as
possible. We first eliminate the shock speed Ush by using
equations (27), (30), and (31) and find

Ush ¼ u1�1A1 � u2�2A2

�1A1 � �2A2
: ð33Þ

Note that in the special case of weak shocks, equation (33) is
numerically unstable because of �1A1 ’ �2A2. In this case,
Ush needs to be calculated using well-known weak shock
formulae available for acoustic waves (Ulmschneider 1970)
and longitudinal tube waves (Cuntz 1999). Second, from
equations (27), (28), (30), and (31) we derive a quadratic
equation for the postshock density �2,

k1�
2
2 þ k2�2 þ k3 ¼ 0 ; ð34Þ

with

k1 ¼ A2
2

	
�1A1 u2 � u1ð Þ2þa A2 � A1ð Þ þ b p1A1 � p2A2ð Þ



;

ð35Þ

k2 ¼ � A2�1A1

	
�1A1 u2 � u1ð Þ2þ2a A2 � A1ð Þ

þ 2b p1A1 � p2A2ð Þ


; ð36Þ

k3 ¼ A2
1�

2
1 a A2 � A1ð Þ þ b p1A1 � p2A2ð Þ½ � : ð37Þ

This equation has two solutions,

�2 ¼
�1A1

A2

k

�1A1 u2 � u1ð Þ2þk
; �2 ¼

�1A1

A2
; ð38Þ

with

k ¼ a A2 � A1ð Þ þ b p1A1 � p2A2ð Þ : ð39Þ

The second solution is irrelevant as it represents the trivial
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case u2 ¼ u1 as seen from equations (27), (30), and (31). In
addition, we use the energy conservation in the form

E2 p2;T2ð Þ � E1 þ u1 � u2ð ÞUsh þ
1

2
u22 � u21
� �

þ p2
�2

� p1
�1

¼ 0 :

ð40Þ

The procedure of determining the 15 unknowns at the new
shock point is now as follows. We first assume a new value
Ush. With this the shock position at the new time level can
be calculated. Using the three front-shock characteristics
and the thermodynamic routines, the values E1, �1, p1, T1,
A1, v1, and u1 are then determined. Now a value u2 is
assumed that allows using equations (32), (33), and (38) to
write equation (40) as a function f ðp2;T2Þ ¼ 0, which
together with the thermodynamic relation �2 ¼ �2ðp2;T2Þ
provides two equations for the two unknowns p2 and T2,
which are solved with a Newton-Raphson iteration. This
gives new estimates for Ush, v2, A2, and E2. Finally, the C

+

characteristic behind the shock provides a new estimate for
u2. With these new values Ush and u2 the entire procedure is
repeated until convergence.

The thermodynamic relations depend on the number den-
sities of the particles (atoms, ions, electrons), which are pro-
vided as solutions of the time-dependent rate equations
(x 2.6). At the shock discontinuity, where we have a jump in
the physical variables, we assume that this jump occurs so
rapidly that the ratios between the bound level populations
and the degree of ionization are identical on both sides of
the shock. With enough points in the postshock region, care
is taken that the level populations and degree of ionization
can subsequently adjust to the jump of the kinetic
temperature.

2.4. Initial and Boundary Conditions

For our wave calculations we need initial atmosphere
models into which the waves propagate. Starting from such
an initial atmosphere, our aim is that the wave code after
minimal computation time generate a final state where the
atmosphere together with the wave has come to dynamical
equilibrium, where major velocity and temperature fluctua-
tions, as well as strong shocks resulting from the onset of
our calculation, have left the computational domain. Only
in such a situation is it possible to study the introduced wave
independently of these so-called switch-on effects. To mini-
mize switch-on effects, we start with radiative and hydro-
static equilibrium models constructed by specifying the
stellar parameters effective temperature Teff and gravity g.
These models are generated using temperature correction
methods (Cuntz, Rammacher, & Ulmschneider 1994) to
ensure that the specified total radiation flux �T4

eff is correctly
reproduced. Here identical emitters of radiation as in the
wave code are employed. It has to be noted, however, that
because of the absence of mechanical heating, these initial
atmosphere models are quite unrealistic. This is due to the
low radiative equilibrium temperatures, which lead to
small-scale heights by which the mass is initially concen-
trated near the bottom of the atmosphere. To achieve a real-
istic mass distribution over height, wave heating must act
for a considerable time, until the dynamical equilibrium
state is reached.

For MHD wave computations, magnetic flux tube mod-
els are subsequently embedded in this external atmosphere

by specifying a magnetic field strength B and a tube diame-
ter d (usually equal to the scale height) at the stellar surface.
The shape of the flux tube is determined by magnetic flux
conservation and horizontal pressure balance. After first
spreading exponentially, the tube at greater height attains a
constant cross section determined by the assumed magnetic
filling factor f, when the magnetic field fills out the entire
available space ( f is the ratio of the area covered by mag-
netic fields divided by the total surface area of the star). To
achieve constant cross section at great height, the external
gas pressure is assumed to be augmented by magnetic pres-
sure from neighboring tubes. For details see, e.g., Fawzy et
al. (1998, 2002). The temperature in the flux tube is again
determined by employing temperature correction methods.
It is typically close to the external temperature.

At the bottom boundary of such models the wave is
introduced by assuming a piston boundary condition. For
monochromatic waves the piston velocity is prescribed by

uð0; tÞ ¼ �u00 sin
2�

P
t ; ð41Þ

where u00 is the wave amplitude, P is the period, and t is the
time. For acoustic waves the wave amplitude is given by

u00 ¼

ffiffiffiffiffiffiffiffiffi
2FA

c0�0

s
; ð42Þ

where FA is the initial wave energy flux, �0 is the density, and
c0 is the sound speed at the bottom boundary. For longitudi-
nal tube waves, these equations hold if FA is replaced by the
longitudinal wave flux FL and c0 by the tube speed cT0. The
minus sign in equation (41) is taken to minimize switch-on
effects at the start of the wave computation.

For acoustic frequency spectra the piston velocity is
prescribed byN � 100 partial waves

uð0; tÞ ¼
XN
n¼0

un sinð!ntþ ’nÞ ; ð43Þ

where un are the amplitudes of the partial waves, !n are the
chosen frequencies from the partial wave spectrum, and ’n

are arbitrary but constant phase angles. The wave ampli-
tudes are directly related to the selected turbulent energy
spectrum and to the total wave energy fluxes FA or FL. For
details see Sutmann, Musielak, & Ulmschneider (1998) and
Fawzy et al. (2002).

Acoustic wave energy generation calculations to specify
FA and the acoustic wave spectrum on the basis of the
Lighthill-Stein theory for a wide range of late-type stars
with various Teff, g, and metallicities were performed by
Ulmschneider, Theurer, & Musielak (1996) and Ulmsch-
neider et al. (1999). In addition, using magnetic tube models
as described above, longitudinal wave energy fluxes FL and
wave spectra were calculated using an analytical approach
by Musielak, Rosner, & Ulmschneider (1989, 2000, 2002)
and Musielak et al. (1995) and a numerical approach by
Ulmschneider & Musielak (1998) and Ulmschneider,
Musielak, & Fawzy (2001).

The mentioned bottom boundary conditions are strictly
valid only for the Lagrange frame where the piston repre-
sents the lowest mass element in the atmosphere. Here the
specification of the velocity replaces the information from
the missing C+ characteristic arriving from below the
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computational domain (Ulmschneider et al. 1977). In the
Euler frame it is correct to take one boundary condition
when the fluid path (C0 characteristic) is in the computa-
tional domain. However, if this is not the case, two boun-
dary conditions must be specified. Since the piston motion
at the lowest grid point is small, one can extrapolate this sec-
ond boundary condition (e.g., the temperature) from the
two next internal grid points, which can lead to secular
motions of the piston in monochromatic wave computa-
tions but does not cause problems in a stochastic wave cal-
culation. A better solution is to follow Theurer (1998) and
use a previous run of a wave calculation conducted over a
very short computational domain in the Lagrange frame
and then interpolate the two boundary conditions at the
lowest grid point for the Euler calculation. In the case of
supersonic inflows even more variables have to be specified
as boundary conditions (see, e.g., Cuntz & Ulmschneider
1988). As mentioned above, our wave code allows
computations in both the Euler and the Lagrange frames.

Other boundary conditions must be specified at the top of
the atmosphere. Here the situation is in principle similar to
the lower boundary, except that we cannot prescribe a pis-
ton velocity. Instead, following Ulmschneider et al. (1977)
and Ulmschneider (1986), a transmitting boundary condi-
tion is employed by specifying the velocity in accordance to
the behavior of simple waves.

2.5. Treatment of Radiative Transfer

In our wave computations knowledge of radiation fields
of lines and continua is required for two reasons, to evaluate
the radiative heating function dS=dtjrad in the energy equa-
tion (3) and to compute the radiative absorption and emis-
sion rates in the statistical rate equations to determine the
populations of the energy levels and the electron density. As
the ratios of the number densities are essentially the source
functions of the radiative transfer equations, a consistent
time-dependent computation of the radiation fields is
complicated.

To accurately evaluate the radiative heating function for
a given wave phase, a large number of photospheric and
chromospheric emitters, lines, and continua of the most
abundant elements would have to be computed. Such an
approach is not reasonable for a time-dependent wave cal-
culation as it would require excessive amounts of computer
time. This is because a typical wave calculation requires the
height distribution of the radiative heating rates for about
100,000 wave phases. Therefore, an approximation that
provides both reasonable speed and accuracy is required.
This we attempt by concentrating on a few emitters. These
are the H� and Lyman continua as well as the Mg ii k and
Ca iiK lines, where the line losses are scaled upward to rep-
resent the total chromospheric radiative losses and gains.

For the treatment of the H� contribution we follow
Ulmschneider & Kalkofen (1978) (employing a precom-
puted electron density table as a function of T and p), while
theMg ii k and Ca iiK lines were treated in a two-level atom
approximation according to Ulmschneider et al. (1987)
using line data of Kalkofen, Ulmschneider, & Schmitz
(1984). In all cases we solve the radiative transfer equations
and the statistical equilibrium equations for the NLTE pop-
ulations. Different from previous work, however, we treat
the ionizations ofMg i toMg ii andMg ii toMg iii as well as
the similar Ca ionizations in a time-dependent manner (for

details see Paper II). Because the energies of the first and
second ionization stages of these elements are smaller than
(or comparable to) the Balmer and Lyman edge energies,
respectively, we use the mean intensities of the Balmer and
Lyman continua as the dominating radiation fields for the
calculation of the radiative rate integrals. This implies that
we first compute the hydrogen ionization and then treat the
other elements for which the electron densities are then
known. For these Mg and Ca ionization calculations we use
three-level atomic models consisting only of the ground lev-
els of the first three ionization stages. Ionization treatments
for additional elements such as C are also implemented (see
Paper II). We assume that the treatment of the Mg ii and
Ca ii lines using a two-level atomic model and employing
the statistical equilibrium equations is appropriate because
the bound-bound transitions are orders of magnitude faster
than the bound-continuum transitions.

The correct treatment of the radiative losses in the chro-
mospheric emission lines necessitates the use of partial
redistribution (PRD) because the line wings are formed by
coherent scattering and only the line cores contribute to the
radiative energy loss. However, a line treatment implement-
ing PRD (Ulmschneider 1994) leads to excessive computa-
tion times that cannot be tolerated in time-dependent wave
calculations. We thus follow Hünerth & Ulmschneider
(1995) by employing so-called pseudo-PRD, which com-
putes the line assuming complete frequency redistribution
(CRD) but artificially removes the damping wings from the
lines by multiplying the damping parameter a in the Voigt
function by a factor of 1/100. Simulations of solarMg ii line
cooling with full PRD show that pseudo-PRD works very
well (Hünerth &Ulmschneider 1995).

The total chromospheric radiation losses are simulated
by multiplying our Mg ii pseudo-PRD k line computa-
tion by a factor of 2 to also account for the Mg ii h line
and the similar Ca ii K line computation by a factor of 5
to take into account the H line and the three IRT lines.
We found that the Fe ii emission can also be crudely
taken into account by simply doubling the Ca ii losses.
In our computations we therefore multiply the Ca ii K
line pseudo-PRD losses by a factor of 10. For the com-
putations of the single lines we use a revised operator
splitting method (Buchholz et al. 1994), which allows for
the proper handling of shocks. We use 19 frequency
points for H� and 29 frequency points each for the two
lines. For the exploratory test calculations in the present
paper we use an even simpler approach and follow our
previous work (e.g., Buchholz, Ulmschneider, & Cuntz
1998), replacing the Ca and Mg line losses by computing
only the Mg ii k line with CRD and without further scal-
ing. The overestimation made by using ordinary CRD
(instead of pseudo-PRD) amounts roughly to the total
chromospheric line radiation losses.

The computation of the Lyman and Balmer continua of
hydrogen must be specially discussed as these continua are
required for the radiative rates in our treatment of time-
dependent ionization of hydrogen. The Lyman continuum
is also important for time-dependent ionization effects of
Mg and Ca. In cases in which the flow speed is orders of
magnitude smaller than the speed of light the radiative
transfer equation for these continua reads

l
@I�
@��

¼ I� � S� ; ð44Þ
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where I� ¼ Iðl; x; �Þ is the specific intensity, S� ¼ Sðx; �Þ is
the source function, � is the frequency, l is the angle cosine,
and �� ¼ �ðx; �Þ is the optical depth. Neglecting stimulated
emission the Lyman continuum source function is given by

S�Ly ¼
B�

b1
¼ B�

n�1
n�3

n3
n1

; ð45Þ

where b1 ¼ n1n
�
3 =n

�
1 n3 is the departure coefficient for the

ground level. For the Balmer continuum, one has

S�Ba ¼
B�

b2
¼ B�

n�2
n�3

n3
n2

; ð46Þ

where b2 ¼ n2n
�
3 =n

�
2 n3 is the departure coefficient for the

second level. Here B� is the Planck function while n1, n2, and
n3 are the number densities for the ground level, second
level, and continuum level of hydrogen, respectively,
whereas the quantities with asterisks denote LTE number
densities (see eqs. [70]–[72]). In our present work we take an
atomic model of hydrogen that consists of only these three
levels.

The transfer equation can be solved using the integral for-
malism of Kalkofen &Ulmschneider (1984). With the depth
index i, running from inside to outside, the intensities I+ and
I� can be expressed as follows:

Iþ� ið Þ ¼ aIþ� i � 1ð Þ þ bS� ið Þ þ cS� i � 1ð Þ ; ð47Þ
I�� ið Þ ¼ aI�� i þ 1ð Þ þ bS� ið Þ þ cS� i þ 1ð Þ ; ð48Þ

with

a ¼ 2� 	

2þ 	
; b ¼ c ¼ 	

2þ 	
; if 	 � 1 ; ð49Þ

a ¼ c ¼ 1

2	 þ 1
; b ¼ 2	 � 1

2	 þ 1
; if 	 > 1 ; ð50Þ

where 	 is the optical depth between neighboring grid
points. It can be seen that equations (47) and (48) with given
source functions allow us to compute the unknown Lyman
and Balmer continuum intensities that would permit us to
calculate the radiative absorption and emission rates (eqs.
[65]–[68]), while with given intensities, the solution of the
time-dependent rate equations would allow us to compute
the populations and with it the source functions. As
unfortunately both intensities and source functions are
unknown, one has two possibilities: either to attempt a com-
plete linearization of the problem in terms of the level popu-
lations (Carlsson 1986) or to apply a�-iteration.

The �-iteration assumes an arbitrary initial source
function, for instance, from the last time step of the wave
computation, and calculates the intensity, from which an
improved source function is computed, etc. It is well
known that this iteration has poor convergence (e.g.,
Buchholz et al. 1994), yet in our case this iteration was
found to converge rapidly (see x 3.7). This is very likely
due to the long relaxation times for all ionization and
recombination processes in the chromosphere by which
the change of the radiation field in time and space is only
small and works essentially as a ‘‘ rarefaction ’’ of the
optically thick Lyman continuum. In optically thin cases
the �-iteration is known to converge rapidly. Small relax-
ation times in the chromosphere are confined to the post-
shock regions of strong shocks (see also Carlsson & Stein

2002). In these cases, rapid ionization takes place and
again leads locally to an optically thin Lyman
continuum.

The great advantage of using the �-iteration is computa-
tional speed (see Figs. 8 and 9) by which, e.g., 100,000 itera-
tions can be executed in a few seconds of computer time. A
similar procedure as for the Lyman continuum can be used
for the computation of the Balmer continuum. However, it
was found to be a good approximation to compute the
radiative rates using a Planck function with a radiation
temperature Trad (see x 2.6).

2.6. Time-dependent Rate Equations

In a wave calculation with time-dependent ionization we
have to solve the statistical rate equations. Considering
radiative processesR and collisional processesC and assum-
ing that the hydrogen atom consists ofN ¼ 3 levels, namely,
two bound levels plus the continuum level, the population
for level i is given by

@ni
@t

þ @niu

@x
¼

XN
i 6¼j

njPji � niPij

� �
; ð51Þ

where Plk denotes the rate of transitions (per cm
3 and s) tak-

ing place from level l to level k and Plk ¼ Rlk þ Clk. This
equation is the usual conservation equation for the particle
density ni, except that one now has to consider also creations
and destructions due to transitions from and to other levels.
Therefore, the left-hand side of equation (51) would be zero
if the particles of species i were conserved. Here the first
term on the left-hand side of equation (51) gives the change
of ni with time, while the second term gives the change of ni,
which occurs because at the top boundary of a volume ele-
ment a different particle flux leaves the element than enters
at the bottom boundary. As a result of transitions from and
to other levels, however, particles ni can also be created (first
term on the right-hand side) or destroyed (second term on
the right-hand side).

Mass conservation in the Lagrange frame after equation
(25) reads

@�

@t

� �
a

þ �

A

@A

@t

� �
a

þ �2A

�0A0

@u

@a

� �
t

¼ 0 : ð52Þ

As we want to use p and T as independent thermodynamic
variables, we write

@�

@t

� �
a

¼ @�

@p

� �
S

@p

@t

� �
a

þ @�

@S

� �
p

@S

@t

� �
a

¼ 1

c2S

@p

@t

� �
a

��2
@T

@p

� �
S

dS

dt

����
rad

; ð53Þ

where we have used equations (A16), (A19), and (14). Intro-
ducing equation (53) in equation (52) and dividing by �
gives

�A

�0A0

@u

@a

� �
t

¼ � 1

�c2S

@p

@t

� �
a

þ�
@T

@p

� �
S

dS

dt

����
rad

� 1

A

@A

@t

� �
a

:

ð54Þ

Now the left-hand side of equation (51) in the Lagrange
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frame can be written as

@ni
@t

� �
a

þ ni
A

@A

@t

� �
a

þ ni�A

�0A0

@u

@a

� �
t

; ð55Þ

which with help from equation (54) reads

@ni
@t

� �
a

�ni
1

�c2S

@p

@t

� �
a

��
@T

@p

� �
S

dS

dt

����
rad

� �
: ð56Þ

Defining the advection term

W ¼ �
@T

@p

� �
dS

dt

����
rad

� 1

�c2S

dp

dt
; ð57Þ

we therefore get for the populations of our three levels,
where n3 ¼ nHþ and where ð@ni=@tÞja is written in the more
usual form dni/dt,

dn1
dt

¼ n2ðR21 þ C21Þ þ n3ðR31 þ C31Þ

� n1ðR12 þ C12 þ R13 þ C13Þ � n1W ; ð58Þ
dn2
dt

¼ n1ðR12 þ C12Þ þ n3ðR32 þ C32Þ

� n2ðR21 þ C21 þ R23 þ C23Þ � n2W ; ð59Þ
dn3
dt

¼ n1 R13 þ C13ð Þ þ n2ðR23 þ C23Þ

� n3ðR31 þ C31 þ R32 þ C32Þ � n3W : ð60Þ

In addition, we have total particle conservation (see eq.
[A6]),

n1 þ n2 þ n3ð Þ 1þ zel
Xel

þ n3 ¼
p

kT
¼ ntot ; ð61Þ

where ntot is the total particle density, and the conservation
of electrons (see eq. [A5]),

ne ¼ n3 þ n1 þ n2 þ n3ð ÞZel

Xel
: ð62Þ

Xel and Zel are the element abundances of hydrogen and the
metals, respectively (for details see Appendix A).

Equations (58)–(62) represent five equations for the four
unknowns n1, n2, n3, and ne. In calculations with time-
independent ionization (for which W ¼ 0 and dni=dt ¼ 0)
usually the rate equation for level 3 is dropped; however, in
our case with time-dependent ionization we find it numeri-
cally advantageous (to avoid the occasional appearance of
unrealistic negative populations) to retain the three rate
equations and at first drop the particle conservation equa-
tion. The numerical solution of the rate equations (plus the
conservation equation for ne) leads to a result that closely
approaches total particle conservation. We subsequently
enforce particle conservation to computer accuracy by
applying a small correction using

niðcorrÞ ¼ ni
ntotP
i ni

: ð63Þ

These corrections have an average relative error in the range
10�4 to 10�5. The main sources of the errors are the
computations of the numerical derivatives needed for the
calculation of the thermodynamic quantities (see Appendix
A). The use of equation (63) ensures perfect particle

conservation and does not change the ratios of the
occupation numbers.

Before we explain how to solve equations (58)–(62), we
must discuss the radiation and collisional rates in more
detail. As in the present work we are not interested in the
details of the Ly� line, we treat it using an escape
probability method given by

n2R21 � n1R12 ¼ n2A21
1

1þ �Ly�
; ð64Þ

where �Ly� is the Ly� optical depth. For the Lyman and
Balmer continuum, we have

R13 ¼
1

2

Z þ1

�1

Z 1

�1

4�

h�
�13I�l d� dl ; ð65Þ

R31 ¼
1

2

n�1
n�3

Z þ1

�1

Z 1

�1

4�

h�
�13

2h�3

c2
þ I�l

� �
e�h�=kT d� dl ;

ð66Þ

where h is the Planck constant, c is the light speed, and l is
the angle cosine, and

R23 ¼
1

2

Z þ1

�1

Z 1

�2

4�

h�
�23I�l d� dl ; ð67Þ

R32 ¼
1

2

n�2
n�3

Z þ1

�1

Z 1

�2

4�

h�
�23

2h�3

c2
þ I�l

� �
e�h�=kT d� dl ;

ð68Þ

respectively. Here �13 and �23 are the Lyman and Balmer
radiative cross sections and �1 and �2 are the Lyman and
Balmer ionization frequencies, respectively. The starred
number densities indicate the number densities under LTE
conditions (see eqs. [70] and [71]). In our present work the
Balmer continuum is treated employing a radiation temper-
ature Trad ¼ 5400 K (Noyes & Kalkofen 1970) assuming
I� ¼ B�ðTradÞwith

B�ðTÞ ¼ 2h�3

c2
1

eh�=kT � 1
: ð69Þ

For the radiation temperature in the Balmer continuum
Ayres (1975) gave a handy estimate Trad ¼ 
Teff with 

between 0.72 and 0.88 that depends only weakly on the
stellar spectral type and luminosity class.

For later use, we also define ~RR31 ¼ R31=ne and
~RR32 ¼ R32=ne. Note that ~RR31 and ~RR32 depend only on radia-
tive quantities and the temperature, but not on the electron
density, which is also the case forR13 andR23. The Saha and
Boltzmann factors are given by

n�1
n�3

¼ ne
h2

2�mekT

� �3=2

eE1=kT ; ð70Þ

n�2
n�3

¼ 4ne
h2

2�mekT

� �3=2

eE2=kT ; ð71Þ

n�2
n�1

¼ 4e�E12=kT ; ð72Þ

where E1 ¼ EH, E2 ¼ 1
4EH, and E12 ¼ 3

4EH. For the
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collisional rates we find

C13 ¼ ne�1e
�EH=kT ; C31 ¼

n�1
n�3

C13 ; ð73Þ

C23 ¼ ne�2e
�EH=4kT ; C32 ¼

n�2
n�3

C23 ; ð74Þ

C12 ¼ ne�21e
�E12=kT ; C21 ¼

n�1
n�2

C12 ¼ ne
1

4
�21 : ð75Þ

The �-values are collisional cross sections, which slowly
vary with temperature T. Following Vernazza, Avrett, &
Loeser (1981; see their eqs. [3] and [4] and Table 7), �1, �2,
and �21 can be approximated by �1 ¼ 3:92� 10�9,
�2 ¼ 7:59� 10�8, and �21 ¼ 2:38� 10�8 taking the values
at T ¼ 9000 K. It is also possible to take into account the
weak temperature dependence of the�-values by using

�1 ¼ 5:465� 10�11
ffiffiffiffi
T

p
0:3 logT � 0:435ð Þ ; ð76Þ

�2 ¼ 5:465� 10�11
ffiffiffiffi
T

p �
5:444� 107

T2
� 2:8186� 104

T

þ 19:987� 5:891� 10�5T

�
; ð77Þ

�21 ¼ 5:465

� 10�11
ffiffiffiffi
T

p �
� 30:206þ 3:861 logT þ 305:64

log2 T

�
; ð78Þ

following Percival (1966) for �1 and �2 and Burke,
Ormonde, & Whittaker (1967) for �21. In chromospheric
models of solar-type stars, the temperature dependence of
the �-values is usually found to be negligible considering
that usually the radiative rates dominate the collisional rates
by several orders of magnitude.

We now use equations (58)–(62) for the determination
of the four unknowns n1, n2, n3, and ne. As a result of
the dependence of some of the rates on the electron den-
sity, we get a nonlinear system of equations. Because a
simultaneous iterative solution for all four unknowns is
sometimes numerically unstable (occurrence of negative
occupation numbers and electron densities), we reduce
the equation system analytically as far as possible. For
the purpose of integrating equations (58)–(60) along the
fluid path, these equations must be written as difference
equations. As an example, the rate equation for the
ground (first) level reads

n1P � n1T
Dt

¼ 1

2
n2PP21P þ n3PP31P � n1P P12P þ P13P þWPð Þ½ �

þ 1

2
½n2TP21T þ n3TP31T

� n1T P12T þ P13T þWTð Þ� ; ð79Þ

with similar equations for the second and third level. The
subscripts P and T denote the values at the actual time
level (for which we seek the solution) and at the old time
level, respectively. Note that the points T and P mark
the start and end points of the fluid path over the time
interval Dt as described by the C0 characteristic (eq. [8]).
Note that different from the Lagrange frame, in a
Eulerian frame these points are not at the same height.

In a first step, we solve formally the resulting linear sys-
tem of equations for n1, n2, n3, disregarding the fact that ne is
unknown (see eqs. [B8]–[B10]). We then separate the coeffi-
cients of this system in terms with and without ne. The for-
mal solutions for the ni depend now only on ne and known
parameters such as temperature, pressure, transition rates,
etc. Introducing the formal solutions in equation (62), we
get finally a polynomial of fifth order:

v5n
5
e þ v4n

4
e þ v3n

3
e þ v2n

2
e þ v1ne þ v0 ¼ 0 : ð80Þ

Details of this calculation and the polynomial coefficients
are found in Appendix B. Since equation (80) is of fifth
order, five different solutions for ne are obtained. However,
it is always found that only one physical solution exists with
ne in the interval ½0; ntot�. All other mathematical solutions
for ne are negative, larger than ntot, or conjugate complex.
With ne known, the occupation numbers ni can then be cal-
culated by resubstitution. In a last step we apply equation
(63) to enforce perfect particle conservation. In our code
equation (80) is used a large number of times and its
solution using Newton-Raphson iteration is very fast and
stable.

Finally, let us address the question of how equation (80)
would change if we increased the number of bound levels
and consider an N-level atom with N � 1 bound levels plus
the continuum level. It is easy to show (see Appendix C) that
we would then have a polynomial of order N þ 2. This is in
agreement with equation (80), where we have a fifth-order
polynomial for a two bound level plus continuum atomic
model.

3. TRIAL CALCULATIONS AND TESTS

3.1. General Remarks

To show first results based on our method, we perform
several acoustic wave calculations in the solar atmosphere,
both monochromatic waves and waves with an acoustic fre-
quency spectrum. Here we do not attempt tomodel solar sit-
uations but concentrate on working out the fundamental
difference between a fully time-dependent ionization treat-
ment solving the statistical rate equations and a time-inde-
pendent NLTE treatment that solves only the statistical
equilibrium equations. In order to demonstrate that our
fully time-dependent ionization treatment can also be
employed for magnetic wave propagation, we show the
results of a longitudinal tube wave calculation with a
longitudinal wave spectrum.

These calculations allow us to show the basic properties
of fully time-dependent ionization in outer stellar atmos-
pheres. As discussed above, we use a simple hydrogen
atomic model and represent the chromospheric radiation
losses assuming, in addition to H� continuum losses, Mg ii

k line losses in CRD. This leads to a rather fast code, which
allows us to compute a wave with 256 height points (plus
eight shock points) stretching over 2360 km, with 5000 time
steps over 0.5 hr of real time, in about 3 hr of computer time
on a 1.3 GHz desktop PC, and a memory requirement of
less than 128 MB. To use a more elaborate radiation treat-
ment with Mg ii k and Ca ii K line losses, the computation
time would increase only by about a factor of 1.2.

In a second series of calculations we perform several tests.
For the initial atmosphere model we have constructed a
radiative equilibrium solar model with Teff ¼ 5770 K and
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gravity g ¼ 2:736� 104 cm s�2 using Population I–type
solar metal abundances. For our magnetic wave calcula-
tions we have embedded a magnetic flux tube in this atmo-
sphere model that at the solar surface has a field strength of
B ¼ 1500 G and a tube diameter of 130 km. As discussed
above, the tube first spreads exponentially and at about
1000 km height reaches a constant diameter of 390 km.
Figure 1 shows the temperatures (Te, T) and gas pressures
(pe, p) of these external atmosphere and tube models.

3.2. AcousticWaves

Figures 2a–2c show three phases of a monochromatic
sinusoidal wave with period P ¼ 60 s and initial acoustic
flux FA ¼ 1� 108 ergs cm�2 s�1, which has been introduced
into the initial atmosphere by employing a piston. Here the
fully time-dependent hydrogen ionization treatment has
been implemented, as well as the fully time-dependent treat-
ment of the Mg ionizations (discussed in more detail in
Paper II). It can be seen that as a result of the rapid decrease
of the atmospheric density with height, the temperature
amplitude grows rapidly with height and at around 600 km
leads to shock formation. These shocks then quickly attain
a sawtooth shape. In Figure 2a the topmost shock is particu-
larly strong as it runs into the low-density undisturbed at-
mosphere. At the later phases (Figs. 2b and 2c) it is seen that
the wave amplitude decreases when the calculation
approaches a state of dynamical equilibrium where the tem-
perature jumps at the shocks attain a limiting strength,
which is a well-known property of monochromatic waves in
stellar atmospheres.

Also shown in the three figures is the Mg ii/Mg fraction
(with Mg ¼ Mg iþMg iiþMg iii). We find that except
for the high-temperature region near the bottom of the at-
mosphere, Mg is largely in the singly ionized state. At later
times (Fig. 2c) it is seen that there is a slight buildup of
Mg iii similarly to what happens to H+.

The behavior of the hydrogen ionization (H+/H) in Fig-
ure 2a is surprising. From the topmost strong shock near
2200 km, with a 10,000 K temperature jump, we would have
expected an instant ionization of the medium. It can be seen,
however, that it produces only weak ionization and that the
next much weaker shock near 1300 km with a temperature
jump of only 6000 K leads to a higher degree of ionization,
although the degree of ionization behind both shocks is tiny.
About 140 s later (Fig. 2b) the degree of ionization has much
increased, but again it is seen that it apparently does not
react much to the local temperature fluctuation. There is no
instant jump of the degree of ionization behind the strong
shock near 2300 km. Moreover, at the greatest height,
H+/H has still not reacted to the several strong shocks that
approached and have been transmitted at the top boundary.
Apparently, the gas reacts only very slowly to the shock
temperatures and the reaction (relaxation) time increases
with height together with the rapid density decrease of the
atmosphere. This behavior of the radiative relaxation time
that depends on the density is discussed in more detail in
Paper III of this series. It is in good agreement with the
results of Kneer (1980) and Carlsson & Stein (2002).

In Figure 2c, after about twice the time of Figure 2b, a
steady state has been established, where the degree of ion-
ization appears to settle into a permanent outwardly
increasing mean H+/H distribution, over which small
superposed fluctuations associated with the temperature
fluctuations of the wave propagate. This permanent mean
degree of hydrogen ionization is similar to the permanent
meanMg iii/Mg distribution discussed above.

It is interesting to compare these results now with a wave
calculation with similar period and acoustic flux where,
however, the hydrogen ionization is treated in a time-
independent manner, that is, by solving only the statistical
equilibrium equations instead of the time-dependent rate
equations. These calculations are shown in Figures 2d–2f.
We have selected similar wave phases as in Figures 2a–2c to
allow for easy comparison. Comparing Figures 2a and 2d
shows the very different behavior of the time-independent
treatment. Here indeed it is seen, what one would have
naively expected, that the degree of ionization is intimately
correlated with the temperature fluctuation. Behind the
shocks the high postshock temperatures instantly raise the
degree of ionization. Moreover, the strongest shock gener-
ates the highest degree of ionization. But also in front of the
shocks does one get a high degree of ionization. This is due
to the generated intense Lyman continuum radiation that
ionizes hydrogen in the cold regions in front of the shocks.
This is particularly apparent for the topmost shock, in front
of which the Lyman continuum optical depth is very small.
Such a precursor radiation has also been found in the work
of Klein et al. (1976).

Figures 2e and 2f further confirm this behavior. Here
because of the buildup of the mean chromospheric tempera-
ture, a stronger reaction of H+/H to the temperature jump
at the shock is found. In Figure 2f a dynamical equilibrium
is reached. A similar behavior is seen in the distribution of
the Mg ii/Mg fraction where the ionization to Mg iii is also
strongly correlated with the temperature.

Monochromatic waves are well behaved numerically and
quickly lead to a dynamical steady state with a limiting
shock strength behavior in stellar atmospheres, yet these
waves simulate only poorly the violent fluctuations in real
stellar atmospheres that come about when the propagation

Fig. 1.—Initial radiative equilibrium solar atmosphere model. Te and pe
indicate temperature and pressure in the external atmosphere, while T and
p are temperature and pressure inside a magnetic flux tube embedded in the
external atmosphere.
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of acoustic wave spectra is considered. Here the phenom-
enon of shocks overtaking one another comes into play,
which creates strong shocks. These shocks in the solar atmo-
sphere excite 3 minute–type atmospheric resonances, which
in turn influence the shock overtaking process (see also
Rammacher &Ulmschneider 1992).

For our calculation of an acoustic wave with an acous-
tic spectrum (based on the eKmG turbulent energy spec-
trum of Musielak et al. 1994) we assumed the same
initial acoustic energy flux FA ¼ 1� 108 ergs cm�2 s�1 as

for our monochromatic calculations. Figures 3a–3c show
three phases of a stochastic wave computation using such
a spectrum. These phases were selected so that they can
be compared to the phases of Figure 2. Note that the
ordinate scale is 3 times larger. Compared to the mono-
chromatic calculation, it is seen that the shocks in the
stochastic wave calculation occur in a rather irregular
manner and that very strong shocks appear. This phe-
nomenon is in good agreement with the results of
Carlsson & Stein (1994, 1997). The strong shock in

Fig. 2.—Wave phases of monochromatic acoustic waves at indicated times, calculated with different treatments of the hydrogen and Mg ionizations. Left:
Computations with fully time-dependent ionization. Right: calculations with a time-independent ionization treatment. Displayed are temperatures T, as well
asMg ii/Mg andH+/H fractions, vs. Euler height.
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Figure 3a pushes a lot of mass over the top boundary (in
this Euler frame calculation) so that adiabatic expansion
generates a cool region in the top 1000 km of the model
over which the wave propagates. There are also numer-
ous smaller shocks as seen, e.g., in Figure 3b, which have
strengths similar to those of the monochromatic wave.
Shock overtaking in Figure 3c has created another strong
shock with a more than 10,000 K temperature jump.
Such shocks occur in our stochastic wave calculation
roughly every 3 minutes.

Compared to Figure 2a, the strong shock in Figure 3a at
a similar time shows a very different behavior in the degree
of ionization. Note that this is also seen in the Mg iii/Mg
fraction. While H+/H in Figure 2a is only little affected,
there is a fully ionized hydrogen region behind the strong
shock, despite the fact that Figures 3a–3c display a fully
time-dependent ionization calculation. This different behav-
ior is due to the much larger temperature jump where now
the temperature-sensitive collisional ionization rates domi-
nate the ionization. When the temperature jumps are

Fig. 3.—Wave phases of stochastic acoustic and longitudinal magnetic waves at indicated times, calculated with fully time-dependent hydrogen and Mg
ionizations. Left:Acoustic wave. Right: Longitudinal magnetic tube wave. Displayed are temperatures T, as well as Mg ii/Mg and H+/H fractions, vs. Euler
height. Panel f shows the radius and the external and internal gas pressures in the magnetic flux tube for the wave phase displayed in panel d.
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smaller, the radiative rates dominate the collisional rates by
many orders of magnitude, which leads to the slow reaction
to the temperature fluctuation seen in Figure 2. However, a
dominant collisional ionization rate leads to an instant effect
on the degree of ionization similar to the situation in a time-
independent calculation. A similar reaction of H+/H to a
strong shock is seen in Figure 3c, which in this case is mainly
caused by high radiative rates.

Note also that the strong Lyman continuum precursor
radiation from the strong shocks causes extended ionization
in front of the shocks as seen in Figures 3a and 3c. Again as
in the monochromatic calculation, a permanent outwardly
rising distribution of ionized hydrogen gets established (best
seen in Fig. 3b, where the H ionization is comparable to that
in Fig. 2b), which is perturbed by superimposed effects from
the strong shocks but on average shows a higher degree of
ionization than in the monochromatic case. The same
behavior as in the hydrogen ionization is also seen in the
Mg ii/Mg fraction. It can be seen in Figure 3a that behind
the strong shock Mg ii is completely ionized to Mg iii and
that after the shock near 2000 km in Figure 3c both the
Mg iii/Mg fraction and H+/H take time to build up behind
the shock.

3.3. MagneticWaves

Figures 3d–3f show a longitudinal MHD tube wave
calculation with initial energy flux FL ¼ 1� 108 ergs
cm�2 s �1 and an acoustic spectrum for which we take
again the eKmG turbulent energy spectrum of Musielak
et al. (1994) as a basis. Comparison of Figures 3d and 3b
shows that, in principle, the magnetic wave has a similar
behavior as the acoustic wave. It is seen that a permanent
outwardly rising H+/H distribution develops, which is
mirrored in the behavior of the Mg ii/Mg fraction, and
leads to a similar buildup of an outwardly rising Mg iii/
Mg distribution.

Figures 3d and 3e show two wave phases that are close
in time and demonstrate the effect of shock overtaking
on the degree of ionization. While in Figure 3d the degree
of ionization is little affected by the two 2000 and 4000 K
temperature jumps in these weak and moderate-strength
shocks, this is different when the shocks merge into a
strong shock with a 10,000 K temperature jump. The
high temperature of the strong shock, through the transi-
tion rates, affects the degree of ionization in the same
way as found in the stochastic acoustic wave calculation.
In summary, Figures 3d and 3e show the two basic types
of hydrogen ionization processes occurring when fre-
quency spectra are employed: (1) slow ionization proc-
esses in the upper chromosphere for shocks of weak or
moderate strength and (2) fast ionization processes for
the strong shocks formed by shock overtaking in the sto-
chastic flow field. The effects of the wave on the geometry
of the flux tube are shown in Figure 3f. It is seen that the
tube radius is breathing with the wave; that is, there are
radius excursions of the wave superposed over the expo-
nentially spreading tube geometry, which at a height of
about 1000 km reaches a constant radius as a result of
the crowding by neighboring flux tubes. Also seen are the
pressure jumps associated with the shocks. Aside from
this different radius behavior, the longitudinal MHD tube
wave and the acoustic wave are very similar.

3.4. Individual Shock Behavior

So far we have concentrated on how the degree of hydro-
gen and Mg ionizations changes as a result of the different
types of treatments of the ionization. However, there is also
a direct influence on other physical variables of the wave
depending on whether we treat the ionization in a time-
dependent or time-independent manner. This influence is
demonstrated in Figure 4, where we have plotted the devel-
opment of the first shock over height, which enters the
undisturbed initial atmosphere for our monochromatic
acoustic wave calculations. This first shock is very strong,
and Figure 4 shows the postshock temperatures and the
degree of ionization of the two calculations of Figure 2. As
already discussed above, it is seen that the degree of ioniza-
tion remains small in the case with time-dependent hydro-
gen ionization while it is large in the time-independent case.

Initially, when these first shocks are not yet strong and
the postshock temperatures are rather small, the two post-
shock temperatures are almost identical. However, it is seen
that at greater heights, the temperature for the case with
time-dependent ionization is much higher than in the case of
time-independent ionization. This can be attributed to the
high-energy loss that in the time-independent case is spent
to rapidly ionize hydrogen. In the time-dependent case,
where few hydrogen atoms get ionized, the thermal energy
remains as in an adiabatic wave and thus leads to high tem-
perature. Note that for subsequent shocks, the differences in
postshock properties between models with and without
time-dependent ionization become smaller as a result of the
fact that the mean temperature and density structures of the
atmospheres will adjust to different values.

3.5. Frequency Integration Tests

As the radiation field significantly enters the radiative
emission and absorption rates, it is important to know how
sensitively our results depend on the number of frequency
points used in the Lyman continuum. A poorly resolved
radiation field can change the temperature amplitude of the

Fig. 4.—Temperatures and degrees of hydrogen ionization in the hot
postshock region of the first shock entering the initial undisturbed
atmosphere for the two wave calculations of Fig. 2.
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wave and also significantly the radiative absorption rate
R13. In our calculations, the wavelength regime for the
Lyman continuum is taken between 913 and 521 Å. For the
frequency test, we vary the number of frequency points in
this interval frommerely two points to 40 points. The results
obtained with 40 frequency points are regarded as
sufficiently accurate.

In Figure 5 we have taken a wave phase t ¼ 12 s before
the phase shown in Figure 3e and made several continua-
tions of the wave calculation over about 25 additional time
steps until reaching the phase of Figure 3e. For each contin-
uation we took another set of frequency points to cover the
Lyman continuum. Comparing the temperatures of the
resulting wave phases relative to these obtained with 40 fre-
quency points, we find that in order to have reasonable
accuracy we should take at least 15 frequency points. Our
calculations in the present paper were based on this value.
Figure 5 shows only the part of the atmosphere with the
strong shock, which exhibits the largest changes of DT/T
for the different test cases.

Note that in the case of time-dependent ionization, a
comparison of the temperatures after execution of merely
one time step does not constitute a suitable test. The reason
is that the radiative field reacts only very slowly to changes
imposed by alterations of the radiative transfer treatment.
Therefore, it is more appropriate to calculate a larger
number of time steps and then assess the difference of the
relevant quantities.

Another interesting result of this test is the amount of
CPU time needed. This time scales in no way linearly with
the number of frequency points. The calculation with 40
points needs nearly 40% more CPU time than the calcula-
tion with 10 points, but the calculation with only five points
needs the same time as a 10 point case. This is explained by
the strong increase of the number of overall iterations when
the radiation field is poorly resolved.

Another test is the frequency integration of the Lyman
continuum necessary in the absorption rate R13. Interpolat-

ing the Lyman continuum available at the 15 frequency
points, we perform the frequency integral in R13. Figure 6
shows such a test for the wave phase of Figure 3e. Shown is
the temperature distribution and the relative deviations
DR13/R13 for different numbers of frequency points used for
the computation of the radiative rates. The total number of
frequency points, obtained through interpolation, varies
between 15 and 100. In the case of 100 points, the rates R13

are considered to be exact and are used for comparison with
R13 rates found for a lower number of frequencies. It is seen
that to use the 15 frequency points for which the Lyman
continuum is provided gives R13 with relatively poor accu-
racy. We therefore decided to use an interpolation with 100
frequency points to evaluate this absorption rate in all our
calculations. Note that the increase of the frequency points
for the calculation of the radiative rates increases the
required CPU time by only 15%.

3.6. Height Grid Tests

To see how our calculations depend on the selected num-
ber of height points N, we have performed wave computa-
tions with N ¼ 79, 128, 256, and 500 height points. As
mentioned above, there are additional shock points that the
code introduces automatically whenever shocks form.
Therefore, the four phases shown in Figure 7 have the same
number of shocks. For this test we selected monochromatic
waves because here the shock formation was similar in the
four computations and resulted in temperature distribu-
tions only slightly different from the phase with N ¼ 256
points shown in Figure 7. The small differences in the shock
positions are seen in the distribution of the slight postshock
bumps of the H+/H distributions near 1000 and 1500 km
height. In stochastic wave computations, as a result of the
shock overtakings, much more disparate temperature distri-
butions would be found. Recalling that in our wave compu-
tations we use a standard value of N ¼ 256 points, it is seen
in Figure 7 that taking 128 or 79 points would decrease
the accuracy of the ionization treatment considerably.

Fig. 5.—Relative temperature differences for a longitudinal MHD tube
wave calculation using different numbers of frequency points to cover the
Lyman continuum. The test is for the wave phase of Fig. 3e. Also shown is
the temperature of that phase.

Fig. 6.—Accuracy of the evaluation of the radiative absorption rate R13

when using different numbers of interpolation points for the frequency
integration. The test is for the wave phase of Fig. 3e. Also shown is the
temperature of that phase.
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However, to double the number of height points would only
marginally increase the accuracy. Here it has to be noted
that the difference seen in Figure 7 for the four computa-
tions is especially large because the calculations are still
close to the start of the computations. At later times, when a
permanently rising mean H+/H distribution is established,
one expects that the ionization treatment will depend only
very little on the choice of the number of height pointsN.

3.7. The �-Iteration

As mentioned above, there is the problem that both the
level populations and the radiation fields are unknown and
that in a correct solution one must have a consistent set of

both types of quantities. In our present work we use the �-
iteration for the treatment of the Lyman continuum, which
normally (for lines) is well known (e.g., Ulmschneider 1994)
to converge rather slowly. Detailed numerical tests, how-
ever, convinced us that the �-iteration is a viable method
for our wave calculations. In Figure 8 the phase of Figure 3e
is used to show the changes that result when larger numbers
of�-iterations are made. Displayed is the changeDS/S rela-
tive to the source function S� at the Lyman edge (essentially
the ratio n3/n1) obtained for a very large number of �-
iterations. It is seen that after already 40 iterations we have
essentially reached machine accuracy.

That �-iterations in our wave calculations lead to the cor-
rect source function can be also seen in Figure 9, where we
have started the �-iteration using very different initial
source functions. Figure 9 shows (dashed lines) for the wave
phase of Figure 3e how the �-iteration lets the source func-
tion converge from above to a final value when we start orig-
inally with a Planck function S� ¼ B�. That this final state is
not a bad metastable state where the convergence becomes
exceedingly slow is seen from our second set of calculations
(dotted lines) where we started from a source function that
was essentially zero, S� ¼ 1� 10�13. Here the convergence
approaches the final solution from below. It is interesting
that the latter approach converges much more rapidly than
the case with S� ¼ B�.

4. CONCLUSIONS

A new numerical method is presented to compute the
propagation of acoustic and longitudinal MHD tube waves
in stellar atmospheres together with the treatment of time-
dependent hydrogen ionization and the NLTE radiation
losses of various lines and continua. For an N ¼ 3 level
hydrogen atom the time-dependent rate equations and the
hydrodynamic orMHD equations are solved in a consistent
manner with the radiative transfer. The system of equations
for the particle conservations could be reduced to the solu-
tion of a fifth-order polynomial for the electron density that

Fig. 7.—Degree of hydrogen ionization in wave calculations with
different numbers of height points N. All wave phases are shown at time
t ¼ 521 s. The wave phase with N ¼ 256 height points is also shown in
Fig. 2b. Also displayed is the temperature for that phase.

Fig. 8.—Changes in the Lyman edge source function DS�/S� after
different numbers of �-iterations for the wave phase of Fig. 3e. Also shown
is the temperature of that phase.

Fig. 9.—Convergence of the Lyman edge source function S� during �-
iteration starting from initial assumed source functions for the wave phase
of Fig. 3e. Also shown is the temperature of that phase.
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has only one physically acceptable solution. This could be
generalized to atomic models with an arbitrary number ofN
levels, where one hasN � 1 bound levels plus the continuum
level. We found that for an N-level atom one will obtain an
N þ 2 level polynomial for the electron density.

Applying the method to monochromatic and stochastic
acoustic wave calculations and a longitudinal stochastic
MHD tube wave calculation, the following results were
obtained:

1. In a monochromatic wave calculation with the time-
dependent hydrogen and Mg ionization treatment we find
that the wave leads to permanent increase of the degree of
hydrogen and Mg ii ionization with height and that the
temperature fluctuations of the (shock) wave are largely
uncoupled from the degree of ionization.
2. This is very different compared to the case in which the

hydrogen ionization is treated using a time-independent
approach, where the statistical rate equations are solved. In
that case it is found that the degree of ionization is strongly
correlated with the temperature amplitude of the wave.
3. In stochastic acoustic wave calculations strong shocks

appear periodically with roughly a 3 minute period. In the
very hot postshock regions of these shocks the degree of ion-
ization is high and correlated to the temperature. This
behavior is similar to what has been found by Carlsson &
Stein (1997, 2002).

4. Longitudinal MHD tube waves behave very similar to
acoustic waves.
5. Various tests on the number of frequency and height

points, as well as on the rate of convergence of the �-
iteration, show that the present method appears to be
reasonably accurate and reliable.
6. As mentioned in x 1, it is presently not possible, as a

result of inadequate computational power, to perform a full
three-dimensional simulation of a chromospheric acoustic
shock wave field that includes the time-dependent hydrogen
ionization and is generated by a finite set of acoustic sources
at discrete locations distributed over the solar surface. We
suggest that the best avenue to progress toward more realis-
tic theoretical solar chromosphere models might therefore
be to use monochromatic plane wave computations. Such
computations represent fairly well the weak acoustic shock
heating due to many different waves propagating in spheri-
cal or cone geometries, which superpose one another and
intersect at oblique angles. Such computations would avoid
shock overtakings, which generate strong solitary shocks
that typically occur as a peculiarity of plane wave
computations using acoustic spectra.
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and UL57/33-1 and by NSF under grant ATM-0087184.
We also thankM. Cuntz for discussions.

APPENDIX A

PARTICLE EQUATIONS AND THERMODYNAMIC DERIVATIVES

We assume a gas of astrophysical composition consisting of hydrogen, helium, and metals with the abundancesXel,Yel, and
Zel, respectively, and Xel þ Yel þ Zel ¼ 1. For our models we assume Xel ¼ 0:9 and Zel ¼ 10�4Xel. Hydrogen is assumed to be
partially ionized, helium is neutral, and the (representative) metal is singly ionized. This is an appropriate assumption for most
stellar photospheres, chromospheres, and transition regions. In stellar chromospheres and transition regions, the ionization
degree of the metals increases as a function of height, but most of the electrons are supplied by the much more abundant
hydrogen. With the neutral hydrogen density nH ¼ n1 þ n2, the proton density nHþ ¼ n3, the neutral helium density nHe, the
singly ionized metal density nMþ , and the heavy particle density nA, we find

nH þ nHþ ¼ n1 þ n2 þ n3 ¼ nAXel ; ðA1Þ

nHe ¼ nAYel ; ðA2Þ

nMþ ¼ nAZel : ðA3Þ

The heavy particle density is then given by

nA ¼ nH þ nHþ þ nHe þ nMþ ¼ nH þ nHþ

Xel
; ðA4Þ

while for the electron density we get

ne ¼ nHþ þ nMþ ¼ nHþ þ nH þ nHþð ÞZel

Xel
: ðA5Þ

The total particle density by number is then given by

ntot ¼
p

kT
¼ nA þ ne ¼ ðnH þ nHþÞ 1þ Zel

Xel
þ nHþ ; ðA6Þ

where p and T are gas pressure and temperature, respectively, and k is the Boltzmann constant.
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Let us now discuss the thermodynamic variables and derivatives. Only affected by the presence of heavy particles, the
density is given by

� ¼ mAnA ¼ mAðntot � neÞ ¼ mA
p

kT
� ne

� �
; ðA7Þ

where the average mass of a particle is given by

mA ¼ ð1:008Xel þ 4:003Yel þ 16ZelÞmH : ðA8Þ

HeremH ¼ k=< is the atomic mass unit andR the gas constant. For the thermodynamic derivatives one obtains

@�

@p

� �
T

¼ mA
@nA
@p

� �
T

¼ mA
@ntot
@p

� �
T

�mA
@ne
@p

� �
T

¼ mA

kT
�mA

@ne
@p

� �
T

; ðA9Þ

@�

@T

� �
p

¼ mA
@nA
@T

� �
p

¼ mAntot
kT

�mA
@ne
@T

� �
p

: ðA10Þ

The internal energy E per gram is given by

E ¼ 3=2ð Þpþ nHþEH

�
; ðA11Þ

where EH is the ionization energy of hydrogen and where from equations (A3)–(A5) one has

nHþ ¼ ne � nAZel ¼ ne � ðntot � neÞZel ¼ neð1þ ZelÞ � ntotZel ; ðA12Þ

which leads to

@E

@T

� �
p

¼ �E

�

@�

@T

� �
p

þEH

�
1þ Zelð Þ @ne

@T

� �
p

þZel
ntot
T

" #
: ðA13Þ

The entropy S per gram is given by

S ¼ k

(
3

2
ntot lnT þ 5

2
ntot þ n1 þ n2ð Þ ln 2�mHk

h2

� �3=2 2

n1 þ n2

� �" #
þ nHþ ln

2�mHk

h2

� �3=2 1

nHþ

� �" #

þ nHe ln
2�mHek

h2

� �3=2
1

nHe

� �" #
þ ne ln

2�mek

h2

� �3=2
2

ne

� �" #
þ nMþ ln

2�mMk

h2

� �3=2
2

nMþ

� �" #),
� ; ðA14Þ

where mHe and mM are the atomic mass of helium and the representative metal, respectively. Taking the partial derivative
@=@Tð Þp of the combined first and second laws of thermodynamics, T dS ¼ dE � p d�=�2, one obtains

@T

@S

� �
p

¼ T
@E

@T

� �
p

� p

�2
@�

@T

� �
p

" #�1

: ðA15Þ

As the enthalpyH ¼ E þ p=� is a thermodynamic variable, dH ¼ dE þ dp=�� p d�=�2 ¼ T dS þ dp=� is an exact differential
implying @2H=@p@S ¼ @2H=@S@p. This allows us to derive theMaxwell relation

@�

@S

� �
p

¼ ��2
@T

@p

� �
S

; ðA16Þ

where because of

@S

@�

� �
p

¼ @S

@T

� �
p

@T

@�

� �
p

; ðA17Þ

and with equations (A15) and (A16), one has

@T

@p

� �
S

¼ � T

�2
@�

@T

� �
p

@E

@T

� �
p

� p

�2
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: ðA18Þ

The adiabatic sound speed is given by

cS ¼
"

@p

@�

� �
S

#1=2

¼ @�

@p

� �
T

þ @�

@T

� �
p

@T

@p

� �
S

" #�1=2

; ðA19Þ
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and the mean molecular weight by

l ¼ �<T
p

: ðA20Þ

Note that equations (A15)–(A19) can be computed using equations (A9), (A10), and (A13), provided that ð@ne=@TÞp and
ð@ne=@pÞT are given. In the case of time-dependent NLTE, this requires the solution of the time-dependent statistical rate
equations and of the polynomial equation for the electron density ne (see x 2.6 and Appendix B).

APPENDIX B

SOLUTION OF THE TIME-DEPENDENT RATE EQUATIONS

Note that the following equations have been derived using the Maple V mathematics package, which allows a direct TEX
output and thus should be free of typing errors. In a first step, the rate equations (58)–(60) are written as difference equations:

n1P � n1T
Dt

¼ 1

2
n2P21 þ n3P31 � n1 P12 þ P13 þWð Þ½ �Pþ

1

2
n2P21 þ n3P31 � n1 P12 þ P13 þWð Þ½ �T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k1

; ðB1Þ

n2P � n2T
Dt

¼ 1

2
n1P12 þ n3P32 � n2 P21 þ P23 þWð Þ½ �Pþ

1

2
n1P12 þ n3P32 � n2 P21 þ P23 þWð Þ½ �T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k2

; ðB2Þ

n3P � n3T
Dt

¼ 1

2
n1P13 þ n2P23 � n3 P31 þ P32 þWð Þ½ �Pþ

1

2
n1P13 þ n2P23 � n3 P31 þ P32 þWð Þ½ �T|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k3

: ðB3Þ

The subscript P marks the values at (height) grid point P, for which the values ni are unknown, and subscript T denotes the
values at the footpoint of the (fluid path) C0 characteristic going through P. The values at T are all known from the last time
step.We find that equations (B1)–(B3) can be written as an inhomogeneous linear system,

a1n1 � b1n2 � c1n3 ¼ G1 ; ðB4Þ

a2n1 � b2n2 þ c2n3 ¼ �G2 ; ðB5Þ

a3n1 þ b3n2 þ c3n3 ¼ G3 ; ðB6Þ

with

a1 ¼ � ne�21e
�E12=kT þ R13 þ ne�1e

�E1=kT þW þ 2

Dt

� �
; ðB7aÞ

b1 ¼ � A21

1þ �Ly
þ ne

�21

4

� �
; ðB7bÞ

c1 ¼ � ne ~RR31 þ n2eg1�1

� �
; ðB7cÞ

a2 ¼ �
�
ne�21e

�E12=kT
�
; ðB7dÞ

b2 ¼ � A21

1þ �Ly
þ ne

�21

4
þ R23 þ ne�2e

�E2=kT þW þ 2

Dt

� �
; ðB7eÞ

c2 ¼ � ne ~RR32 þ n2eg2�2

� �
; ðB7fÞ

a3 ¼ R13 þ ne�1e
�E1=kT ; ðB7gÞ

b3 ¼ R23 þ ne�2e
�E1=4kT ; ðB7hÞ

c3 ¼ � ne ~RR31 þ n2eg1�1 þ ne ~RR32 þ n2eg2�2 þW þ 2

Dt

� �
; ðB7iÞ

G1 ¼ � 2n1T
Dt

� k1 ; ðB7jÞ

G2 ¼ � 2n2T
Dt

� k2 ; ðB7kÞ

G3 ¼ � 2n3T
Dt

� k3 ; ðB7lÞ
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where we have used the definitions of x 2.6. From this the formal solution of equations (B4)–(B6) is easily found:

n1 ¼
�G2b3c1 þ G1b3c2 þ G2b1c3 þ G1b2c3 þ G3b1c2 þ G3b2c1

DN
; ðB8Þ

n2 ¼
G3a2c1 þ G1a2c3 þ G2a1c3 þ G3a1c2 þ G2a3c1 � G1a3c2

DN
; ðB9Þ

n3 ¼
�G2a1b3 � G3a2b1 � G2a3b1 þ G3a1b2 � G1a2b3 � G1a3b2

DN
; ðB10Þ

with

DN ¼ a1b3c2 � a2b1c3 þ a3b1c2 þ a1b2c3 þ a2b3c1 þ a3b2c1: ðB11Þ

From equation (B7) it is seen that the coefficients of this solution depend on the unknown value of ne. We therefore rewrite the
coefficients by separating the electron density:

a1 ¼ �1 þ ne�2; �1 ¼ �R13 �
2

Dt
�W ; �2 ¼ ��21e

�E12=kT � �1e
�E1=kT ; ðB12aÞ

b1 ¼ �1 þ �2ne; �1 ¼ � A21

1þ �Ly
; �2 ¼ ��21

4
; ðB12bÞ

c1 ¼ �1ne þ �2n
2
e ; �1 ¼ �~RR31; �2 ¼ �g1�1 ; ðB12cÞ

a2 ¼ �3ne; �3 ¼ ��21e
�E12=kT ; ðB12dÞ

b2 ¼ �3 þ �4ne; �3 ¼ � A21

1þ �Ly
� R23 �

2

Dt
�W ; �4 ¼ ��21

4
� �2e

�E2=kT ; ðB12eÞ

c2 ¼ �3ne þ �4n
2
e ; �3 ¼ �~RR32; �4 ¼ �g2�2 ðB12fÞ

a3 ¼ �4 þ �5ne; �4 ¼ R13 �5 ¼ �1e
�E1=kT ; ðB12gÞ

b3 ¼ �5 þ �6ne; �5 ¼ R23; �6 ¼ �2e
�E1=4kT ; ðB12hÞ

c3 ¼ �5 þ �6ne þ �7n
2
e ; �5 ¼ � W þ 2

Dt

� �
; �6 ¼ � ~RR31 þ ~RR32

� �
; �7 ¼ � g1�1 þ g2�2ð Þ : ðB12iÞ

The electron density ne and the occupation numbers ni are connected via equation (62),

ne ¼ n3 þ n1 þ n2 þ n3ð ÞZel

Xel
: ðB13Þ

We substitute equations (B8)–(B10) into equation (B13) using the expressions given by equation (B12) for the coefficients ai,
bi, and ci and obtain an equation only for ne. After some algebra we obtain the polynomial equation (80) already mentioned in
x 2.6:

v5n
5
e þ v4n

4
e þ v3n

3
e þ v2n

2
e þ v1ne þ v0 ¼ 0 ; ðB14Þ

with the coefficients

v5 ¼ �2�4 þ �2�4ð Þ�5 þ ð�2�4 þ �3�2Þ�6 þ �2�7�4 � �3�2�7 ; ðB15aÞ
v4 ¼ ð��1�7 þ �2�5 � �2�6 þ �1�6Þ�3 þ �2�4 þ �1�7 þ �1�5 þ �2�6ð Þ�4 þ ð�2�5 þ �5�1 þ �1�6 þ �4�2Þ�4

þ �2�6�3 þ �2�5�3 þ �5�2�3 þ �2�7�3 ; ðB15bÞ

v3 ¼
ð�G3�2 �G1�7Þ�3 þ ð��2�7 � �2�7 � �2�5 þ �2�6ÞG2 �G3�2�4 þG1�4�5 �G3�2�4 �G1�4�6 �G1�7�4 �G3�2�4½ �Zel

Xel

þ ð�6�4 þ �5�4 þ �6�3 þ �7�3Þ�1 þ ð��1�6 � �2�5 þ �1�5Þ�3 þ ð�1�4 þ �1�4 þ �2�3 þ �2�3Þ�4 þ �2�6�3 þ �1�5�3

þ �5�1�3 þ �2�5�4 þ �2�5�3 ; ðB15cÞ

v2 ¼ ½ðG1�6 þ G3�2 � G3�1 � G1�6Þ�3 þ ð�G3�2 � G1�7Þ�3 þ ð�G3�2 þ G1�5 � G3�1 � G1�6Þ�4

þ ð�G1�5 � G3�1 � G3�1 þ G1�4Þ�4 � G2�2�6 � G2�1�7 þ ðG2�2 � G1�3 þ G2�1Þ�6 � G2�1�7 � G2�2�6

þ G2�5�2 � G2�2�4 þ G2�2�5 � G3�2�3 þ G1�3�5 � G3�2�3 � G2�1�5�Zel=Xel þ ðG1�6 � �1�5 þ G3�2Þ�3

þ ð�1�4 þ �2�5 þ �1�6Þ�3 þ ðG1�5 � G3�2 þ �1�5Þ�4 þ G2�2�6 þ G2�5�2 þ �4�1�3 þ �1�5�3 ; ðB15dÞ
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v1 ¼ ½ð�G3�2 þ G1�5 � G3�1 � G1�6Þ�3 þ ð�G1�5 � G3�1 þ G1�4Þ�4 þ ð�G1�5 � G3�1 � G3�1 þ G1�4Þ�3
þ ðG1�3 þ G2�2 þ G2�1Þ�5 � G2�1�6 þ ð�G1�3 � G2�2 � G2�2Þ�5 þ �3G3�1 þ G2�4�2 � G2�1�4 � G2�1�6 þ G2�1�6

þ G2�5�1�Zel=Xel þ ðG1�5 � G3�2 þ �1�5Þ�3 þ ðG1�4 � G3�1Þ�4 þ ðG1�3 þ G2�2Þ�5 þ G2�5�1 þ G2�1�6

þ G2�4�2 þ �3G3�1 ; ðB15eÞ

v0 ¼
ð�G1�5 � G3�1 þ G1�4Þ�3 þ ð��1�5 þ �4�1 þ �1�5 � �1�5ÞG2½ �Zel

Xel
þ ðG1�4 � G3�1Þ�3 þ ð�1�5 þ �4�1ÞG2 ; ðB15fÞ

APPENDIX C

SOLUTIONS FOR AN N-LEVEL ATOM

We now discuss the generalized case of a hydrogen atom consisting ofN levels,N � 1 bound levels plus the continuum level.
In this case, the electron density is obtained as the solution of a polynomial equation of the order ofN þ 2. This can be shown
as follows. In the general case we start from a set of N equations such as equations (B4)–(B6), which gives us an N �N
coefficient matrix. In this matrix all coefficients depend either linearly or quadratically on ne (or show no explicit dependence
on ne such as all bound-bound radiative rates). The coefficients with n2e occur only in the last column because they appear only
in the collision rates between continuum and bound levels. The solution of the set of equations using Gaussian elimination
leads to expressions of the form

nj ¼
T11 þ T12 þ T13 þ . . .

T21 þ T22 þ T23 þ . . .
; ðC1Þ

where

T1j ¼
YN
k¼1

fk ; T2j ¼
YN
k¼1

gk ; ðC2Þ

and the fk and gk are elements of the coefficient matrix. All products T1j and T2j are of the nature that none of their factors
originate from the same row or column. The highest exponent in ne of the T1j and T2j can thus be calculated as follows. The n2e
terms appear only in theNth column. In all otherN � 1 columns, the electron density appears at most linearly. The maximum
possible ne exponent appearing in the products T1j and T2j is thus given by nN�1

e n2e ¼ nNþ1
e . Moreover, for a hydrogen atom

withN levels one also obtains an equation for the electron density similar to equation (B13), which relates the electron density
to the total number density of the bound levels nj via

ne ¼
XN
j¼1

hjnj ; ðC3Þ

where the hj depend only on Xel and Zel. Introducing equation (C1) in equation (C3) and multiplying with the main
denominator, we obtain a polynomial of the order ofN þ 2.
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