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Abstract

We describe the implementation of the continuous Galerkin (CG) method to solve
the Navier-Stokes equations on a finite element mesh. We demonstrate the success of
the method by solving several 2D model problems, including the backward-facing step,
flow past cylinder, and the bifurcated pipe problem. We also post-process simulated
flows to study pressure and viscous forces.

1 Introduction

The Navier-Stokes equations are a set of partial differential equations describing the flow of
a viscous, incompressible fluid. They represent one of the most physically motivated models
in the field of computational fluid dynamics (CFD) and are widely used to model both liq-
uids and gases in various regimes. Use is widespread in such research fields as astrophysics
and geophysics as well as in industries including aeronautical, biomedical, chemical, and me-
chanical. The Navier-Stokes equations are developed in several commercial software packages
which are then used to design mechanical machines such as airplanes, boats, bicycles, and
cars. In this context the model has been shown to reproduce accurate models of real world
fluid problems of practical importance.

Solutions to the Navier-Stokes equations are in general difficult to obtain. Exact analyt-
ical solutions exist typically only for problems where the non-linear terms vanish, such as
Poiseuille and Couette flow. Mathematical theory of general solutions to N-S in 3D is an
open problem and one of the Clay Millennium Prize Problems.

In general, solutions to the time-dependent equations are computed using numerical
methods designed to be both highly accurate and highly efficient. We discuss in this paper
the implementation of a Navier-Stokes solver using a continuous Galerkin (CG) method
for the time-dependent, incompressible fluid flow problem in 2D. We focus on numerical
correctness and clarity of algorithmic implementation over any speed considerations. In § 2
we review the mathematical model, while § 3 discusses the numerical implementation. In § 4
we present results on several test problems – the backward-facing step, flow past a cylinder,
and bifurcated pipe problem – at various Reynolds numbers and verify the correctness of the
code.

2 Mathematical Background

The dimensionless steady-state Navier-Stokes equations are:

Re ~u · ~∇~u + ~∇p = ∆~u (1)

~∇ · ~u = 0 (2)



where the relations to dimensionful units are:

u = uunits/U0 (3)

x = xunits/L0 (4)

p = punits/P0 (5)

P0 ≡ µU0/L0 (6)

Re ≡ ρU0L0/µ (7)

where µ is the dynamic viscosity. Note that if Re = 0 then we have simple Stokes flow.
Re > 0 makes the above equations non-linear.

The dimensionless time-dependent Navier-Stokes equations are:

∂~u

∂t
+ Re ~u · ~∇~u + ~∇p = ∆~u (8)

~∇ · ~u = 0 (9)

We do not experiment with any additional body forces which could be included as a
source term. As before, the relations to dimensionful units are:

t = tunits/[ReL0/U0] (10)

u = uunits/U0 (11)

x = xunits/L0 (12)

p = punits/P0 (13)

P0 ≡ µU0/L0 (14)

Re ≡ ρU0L0/µ (15)

3 Numerical Method

Our numerical technique for solving the Navier-Stokes equations is based on the finite element
method, where we search for the solutions of the velocity and pressure fields over an arbitrary
computational domain. All code was written in Matlab. The approach is described below.

3.1 Steady-State Incompressible Navier-Stokes Flow

The steady-state Navier Stokes equations given in (1-2) have a weak-formulation form:

∫

Ω

~∇~u : ~∇~w dx + Re

∫

Ω

(~u · ~∇~u) · ~w dx−
∫

Ω

p~∇ · ~w dx =

∫

∂ΩN

(gN,1, gN,2) · ~w ds (16)

∫

Ω

q~∇ · ~u = 0 (17)

where the Neumann boundary conditions on ∂ΩN are given by (gN,1, gN,2), and the weak
formulation must also satisfy the Dirichlet boundary conditions: ~u|∂ΩD

= (gD,1, gD,2). The
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test functions are ~w ∈ V0 × V0 and q ∈ Π. We can set ~w = (w1, 0), ~w = (0, w2) to obtain a
set of scalar equations.

The above has the following simplified weak formulation: we seek uh, vh ∈ Vh and ph ∈ Πh

such that ~uh|∂ΩD
= (uD, vD) and

∫

Ω

~∇uh · ~∇w1,h dx + Re

∫

Ω

(uh
∂uh

∂x1

+ vh
∂uh

∂x2

)w1,h dx−
∫

Ω

ph
∂w1,h

∂x1

dx−
∫

∂ΩN

gN,1w1,h ds = 0

(18)∫

Ω

~∇vh·~∇w2,h dx+Re

∫

Ω

(uh
∂vh

∂x1

+vh
∂vh

∂x2

)w2,h dx−
∫

Ω

ph
∂w2,h

∂x2

dx−
∫

∂ΩN

gN,2w2,h ds = 0 (19)

∫

Ω

qh
~∇ · ~uh = 0 (20)

for all w1,h, w2,h ∈ Vh, qh ∈ Πh.
The discretization is:

uh =

Nvel∑
j=1

Ujφj (21)

vh =

Nvel∑
j=1

Vjφj (22)

ph =

Npres∑
j=1

Pjψj (23)

where U ∈ RNvel , V ∈ RNvel , P ∈ RNpres are the coefficient vectors we want to solve for.
The test functions are set to:

w1,h = φi, i = 1, . . . ,Nvel (24)

w2,h = φi, i = 1, . . . ,Nvel (25)

qh = ψi, i = 1, . . . ,Npres (26)

(27)

This finite element discretization gives us a nonlinear system of algebraic equations:

FNS(U, V, P ) = 0 (28)

where FNS : R2Nvel+Npres → R2Nvel+Npres .
We solve for FNS(U, V, P ) = 0 using Newton’s method. We require an initial guess

(U0, V0, P0) ∈ R2Nvel+Npres , which can typically be the solution to the corresponding Stokes
problem (Re = 0). Then for each iterative step k find the update vector δk ∈ R2Nvel+Npres ,
which satisfies:

JFNS
(Uk, Vk, Pk)δk = −FNS(Uk, Vk, Pk) (29)

where JFNS
(Uk, Vk, Pk) ∈ R(2Nvel+Npres)×(2Nvel+Npres) is the Jacobian of FNS. We give its explicit

formulation in Section 3.2.
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The solution is updated after each iteration:

(Uk+1, Vk+1, Pk+1) ← (Uk, Vk, Pk) + δk (30)

until ‖δk‖ falls below a designated tolerance.

3.2 Jacobian of the Steady-State Navier-Stokes Flow, JFNS

The Jacobian JFNS
(Uk, Vk, Pk) ∈ R(2Nvel+Npres)×(2Nvel+Npres) has the block form:

JFNS
=




Auu Auv Bup

Avu Avv Bvp

BT
up BT

vp 0


 (31)

where:

[Auu]ij =

∫

Ω

~∇φj · ~∇φi dx + Re

∫

Ω

(
uh

∂φj

∂x1

+ φj
∂uh

∂x1

+ vh
∂φj

∂x2

)
φi dx (32)

[Avv]ij =

∫

Ω

~∇φj · ~∇φi dx + Re

∫

Ω

(
vh

∂φj

∂x2

+ φj
∂vh

∂x2

+ uh
∂φj

∂x1

)
φi dx (33)

[Auv]ij = Re

∫

Ω

(
φj

∂uh

∂x2

)
φi dx (34)

[Avu]ij = Re

∫

Ω

(
φj

∂vh

∂x1

)
φi dx (35)

[Bup]ij = −
∫

Ω

ψj
∂φi

∂x1

dx (36)

[Bvp]ij = −
∫

Ω

ψj
∂φi

∂x2

dx (37)

3.3 Time-Dependent Incompressible Navier-Stokes Flow

The time-dependent Navier Stokes equations given in (8-9) have a weak-formulation form:

FNS,TD(U ′, V ′, Un, V n, P n) = 0 (38)

A simple way to solve this is with a backward-Euler method:

FNS,TD(
Un − Un−1

∆t
,
V n − V n−1

∆t
, U, V, P ) = 0 (39)

which makes FNS,TD a map from R2Nvel+Npres to R2Nvel+Npres if we apply discretization of
U, V, P . The map FNS,TD is closely related to the steady-state map FNS and just has the
additional terms:

1

∆t

∫

Ω

Nvel∑
j=1

(Un
j − Un−1

j )φjφi dx i = 1, . . .Nvel (40)
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in the first Nvel entries and

1

∆t

∫

Ω

Nvel∑
j=1

(V n
j − V n−1

j )φjφi dx i = 1, . . .Nvel (41)

in the next Nvel entries of the output.
The Jacobian JFNS,TD

is also closely related to the steady-state Jacobian JFNS
and just

has the additional contribution:

1

∆t




M 0 0
0 M 0
0 0 0


 (42)

where

Mij =

∫

Ω

φjφi dx i, j = 1, . . .Nvel (43)

The equations can be numerically solved by employing Newton’s method at each time
step and taking as an initial guess the solution of the previous time step.

The accuracy of the method can be improved easily by using a higher-order backward
differentiation formula (BDF). In our implementation, we use a second-order BDF:

FNS,TD(
1.5Un − 2Un−1 + 0.5Un−2

∆t
,
V n − V n−1

∆t
, U, V, P ) = 0 (44)

3.4 Domain and Solution Space

We subdivide the computational domain Ω of interest in R2 for each model problem using
the distmesh package. The vertex (node) locations are placed randomly to achieve a typical
spatial resolution within the domain specified by a signed distance functions. A Delaunay
triangulation is iteratively regularized until each triangle is roughly equilateral. This leads
to better numerical performance when compared to an arbitrary triangulation with a wide
range of edge lengths. Note that the distmesh package only produces 3-nodes per triangular
element, and so we post-process the output to add midpoint nodes, since we require aNvel = 2
basis.

We identify boundaries in our mesh by testing whether the physical location of a node
is within a tolerance error of where we expect the boundary to be. We specify inflow
boundary conditions by fixing the values of uh and vh on the boundary at each time step.
We specify no-slip boundary conditions by fixing uh and vh to 0. We specify outflow by using
(gN,1, gN,2) = (0, 0) Neumann boundary conditions.

We discretize the weak formulation of the Navier-Stokes equation in Equation (38) using
the classic Taylor-Hood basis family where the pressure is approximated by linear polyno-
mials (Πh ∈ P1) and the velocity is approximated by quadratic polynomials (Vh ∈ P2). Both
are continuous across element boundaries. This approach satisfies the constraint that the
order of basis of the pressure must be less than that of the velocity in order to avoid singular
matrices during the solution step.
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4 Model Problems

In this section, we apply the numerical methods discussed above to several 2D model prob-
lems.

4.1 Backward-Facing Step

step

height

out�owin�ow

Figure 1: Domain geometry for the backward-facing step problem and a representative low-
resolution mesh. The inflow and outflow boundaries on the left and right faces are indicated,
while the top and bottom faces have no-slip enforced.

This case examines turbulent fluid flow past a “backward-facing step” at increasing
Reynolds number. The geometry of the domain and a representative low-resolution mesh is
shown in Figure (1). We take the rectangular domain Ω such that 0 < x < 2, 0 < y < 1 with
the step vertex at x = 1, y = 0.5 (a step height of 0.5). We specify a parabolic inflow velocity
on the left boundary (peak velocity 1), no-slip on the top and bottom, and outflow on the
right. Characteristic solutions of the steady-state at low Re = 10 for both velocity compo-
nents and the pressure are shown in Figures (2)-(4). The velocity-field is post-processed to
visualize streamlines of the flow in Figure (5) where the laminar turbulent boundary past
the step can be seen in the circulation region.

The size of the turbulent region increases with higher Reynolds number, as expected.
The flow demonstrates the same behavior as in the AM 274 chapter II.5 slides. We consider
this qualitative verification of the correctness of our code.
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Figure 2: Backward-facing
step u solution at Re = 10.
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Figure 3: Same as previous,
for v solution.
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Figure 4: Same as previous,
for p solution.
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Figure 5: Backward-facing
step streamlines for Re = 10.
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Figure 6: Same as previous,
for Re = 50.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Streamlines

Figure 7: Same as previous,
for Re = 100.

4.2 Flow Past a Cylinder

In this test problem, we look at the 2D cross-section flow past a cylinder. We create a mesh as
shown in Figure 8. The domain is [0, 4]× [0, 2] with a circle of radius 0.2 centered at (1.5, 1).
The mesh has higher resolution in regions we expect the flow to be more complicated, such
as around the cylinder and behind it. The left boundary has parabolic inflow (max velocity
1). No-slip boundary conditions are imposed on the top, bottom, and cylinder. Outflow is
imposed on the right boundary.

First, we test the time-dependent Navier Stokes solver. We investigate a Reynolds number
40 flow. We use the Stokes solution as the initial condition and show the evolution of the
fluid (u is plotted) in Figures 9. The fluid adjusts to a steady wake behind the cylinder on
the order of the viscous timescale. The flow is the same as would be obtained by solving the
steady-state Navier Stokes equations with Reynolds number 40. Plots of the pressure and
velocity in the final state are shown in Figures (10)-(12)

We also investigate the forces on the cylinder due to pressure and viscosity as a function
of Reynolds number. Here we consider the forces due to steady state (time-independent)
flow. We investigate Reynolds numbers of in the range 0.1–100. The viscous and pressure
forces on the cylinder (boundary ∂C) are:
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Figure 8: Domain geometry for the flow past a cylinder. There is inflow on the left, outflow
on the right, and no-slip on the top, bottom, and cylinder boundaries.
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Figure 9: Time evolution of flow past cylinder, Re = 40. Initial condition is Stokes flow.
Steady state is reached on order of the viscous timescale. Note the breaking of symmetry in
front and behind the cylinder in the flow with non-zero Reynolds number.

~Fvisc = −µ

∫

∂C

(~∇~u + (~∇~u)T )~n ds (45)
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Figure 10: Flow past cylin-
der, u solution at Re = 40.
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Figure 11: Same as previous,
for v solution.
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for p solution.

~Fpres =

∫

∂C

p(s)~n ds (46)

where ~n is the outward unit normal to the cylinder.
These forces can be normalized by the dynamic pressure Pdynamic ∼ 1

2
ρV 2

0 . This turns

out to be equivalent to dividing the unitless ~Fvisc and ~Fpres by the global Reynolds number.
These normalized values are called drag coefficients, CD.

The pressure and viscous forces are shown in Figure 13 (compare with Figure 1 of Hender-
son [1995]). As expected, the pressure force is larger, and both forces decrease with Reynolds
number relative to the dynamic pressure. In addition, the drag coefficient CD ∝ Re−1 for
Re < 100, shows excellent quantitative agreement with theoretical expectations for a steady
wake.

At high Reynolds numbers of Re & 100, instabilities are expected which lead to vortex
shedding. This will result in the drag coefficient flattening to ∼ 1. In general this phe-
nomenon can be captured by solving the time-dependent flow instead on a high resolution
grid. We attempted to reproduce this interesting effect with uniform “windtunnel” type flow
past both circular and rectangular obstructions but did not immediately see vortex shedding.
The relatively slow performance of our time dependent code prevented any more exhaustive
exploration of the parameter space within which vortex shedding takes place.

4.3 Bifurcated Pipe

In this test problem, we examine flow in symmetric and asymmetric bifurcated pipes. The
geometries of the two domains are shown in Figures (14) and (15). We specify a parabolic
inflow velocity on the left boundary (peak velocity 1), outflow on the right boundaries, and
no-slip boundary conditions elsewhere. We compare the steady-state solutions at Re = 10
for the symmetric and antisymmetric pipes. Both velocity components and the pressure
are plotted in Figures (16)-(21). The outflow boundary conditions enforce that the mean
pressure across the outflow boundary is zero, causing the pressure gradient of the shorter
pipe branch to be greater [Rannacher,1999]. This results in greater flow going through
the shorter pipe branch than through the longer pipe branch. Our results reproduce this
expected behavior. The streamlines are shown for the symmetric pipe at Reynolds number
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Figure 13: Steady-wake pressure and viscous forces normalized by the dynamic force on the
cylinder as a function of Reynolds number. For Reynolds numbers less than ∼ 100, these
drag coefficients are expected to be inversely proportional to the Reynolds number.

10 and 100 in Figures (22) and (23). The size of the turbulent region again increases with
Reynolds number as expected.

5 Concluding Remarks

We have successfully created a CG solver for the Navier-Stokes equations and applied it to
several test problems. We deliberately looked at problems that are fairly simple and not too
computationally intensive. Our method can easily be extended to 3D, but would require more
computational resources. Higher Reynolds number flows require greater mesh resolution
due to thin-boundary layers that can form, thus requiring more computational power and
memory as well. In addition, a stabilization method such as Streamline Upwind Petrov-
Galerkin (SUPG), which introduce extra terms into the weak form to minimize spurious
oscillations in convection-dominated flows, may need to be employed for higher Reynolds
number flows.
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Figure 14: Dimensions of the bifurcated pipe
setup.

Figure 15: Dimensions of the asymmetric bi-
furcated pipe setup.
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Figure 16: Bifurcated pipe
flow u solution at Re = 10.
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Figure 17: Bifurcated pipe
flow v solution at Re = 10.
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Figure 18: Bifurcated pipe
flow p solution at Re = 10.
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Figure 19: Asymmetric bifur-
cated pipe flow u solution at
Re = 10.
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Figure 20: Asymmetric bifur-
cated pipe flow v solution at
Re = 10.
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Figure 21: Asymmetric bifur-
cated pipe flow p solution at
Re = 10.
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