
Chapter 2

Radiative quantities

In the radiative transfer approximation we can regard light as photons crisscrossing
through space. A photon has an energy and a polarization state, and it has a direction
of propagation. At any given time, in a given cubic centimeter of space, one can
count the number of photons of a given energy, polarization state and direction that
are present. Since usually the number of photons is very large, we typically measure
not the photon number but the total energy they represent. The typical quantities we
will be concerned with are the bolometric flux, intensity and mean intensity, and their
monochromatic versions.

2.1 Radiative flux
We can define the concept of flux in the most self-consistent way by defining an exper-
iment that measures this. Let us, as a “gedankenexperiment”, construct a box (“cavity”
or “Hohlraum”) with walls that are, on the inside, perfectly black: the walls absorb al
photons that impinge on them. On one side we put a small hole with a well-known
size. We call this hole the aperture. The entire setup is called a pinhole camera. Ra-
diation from the outside can enter the aperture and be absorbed by the walls of the
cavity. We assume that we know the heat capacity of the walls perfectly and that the
walls are perfectly isolated from the exterior. This means that as radiation enters the
cavity through the aperture, the cavity starts heating up. A thermometer can measure
the increase of the temperature T with time t. If we start from a sufficiently cold cavity,
then the thermal radiation from the walls escaping the cavity through the aperture can
be ignored compared to the radiation entering the cavity. Under that circumstance, the
increase of temperature of the cavity, dT/dt, combined with the known heat capacity
of the walls, gives a measurement of the total amount of radiation energy entering the
aperture per second. If we devide this by the surface area of the aperture, we get the
radiative flux: the energy per units of time per unit of surface area. In CGS units this
has the dimension of erg s−1 cm−2. The symbol for this is usually F.

The flux that we measure with this device typically depends on the direction in which
we point the device. If we point it straight at the sun, we measure a much larger flux
than if we point it away from the sun. And if we point it in an angle of 60 degrees
from the sun, we measure just cos(60o) = 0.5 times the flux as when we point it
directly at the sun. This is indicative of the vectorial nature of flux. The device we
constructed measures the component of the flux vector F that is perpendicular to the
surface of the aperture, i.e. it measures F = n · F, where n is the normal vector of the
aperture, pointing inward into the camera. By measuring the flux in three independent
directions we can reconstruct the full flux vector F.

The flux F is called the bolometric flux because it does not make any distinction be-
tween radiation of different wavelengths. It measures the total flux of radiation at
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all wavelengths. However, in many applications it is useful to measure flux for spe-
cific wavelengths only. One way to do this is to put a color filter in front of the
aperture: a piece of glass that only transmits light with wavelengths in some range
λ1 ≤ λ < λ1 + ∆λ and blocks all other radiation. If ∆λ # λ1 then the tempera-
ture increases much slower than before, because much less radiation energy enters the
aperture per second. In fact, for sufficiently small ∆λ, the radiation energy entering
the aperture per second scales linearly with ∆λ. The narrower the filter, the less energy
enters the aperture. If we do not want our measured quantity to depend on the width
of the filter, we can divide the measured flux by ∆λ and we get the monochromatic
flux. The reason for dividing by ∆λ is similar to the reason why we divided by the
surface area of the aperture: we want to measure a physical quantity, not a quantity
that depends on the experimentail details. The symbol for the monochromatic flux
measured by the device is Fλ, and the vectorial flux vector is Fλ. The monochromatic
and bolometric fluxes are related via

F =
∫ ∞

0
Fλdλ (2.1)

and similar for their vectorial forms. The monochromatic flux Fλ is thus the flux per
unit of wavelength. In CGS units this is the flux per cm, and the dimension is erg s−1
cm−3.

Most radiative transfer people, however, prefer a different form of monochromatic
flux: Fν, which is the flux per unit of frequency. In CGS units this is the flux per Hz,
and the dimension is erg s−1 cm−2 Hz−1. The relation with the bolometric flux is:

F =
∫ ∞

0
Fνdν (2.2)

It is important to realize that
Fν ! Fλ (2.3)

even if, correctly, ν = c/λ (where c is the speed of light). This is because the
monochromatic flux is a distribution function. It is the flux per unit of wavelength
(for Fλ) or per unit of frequency (for Fν). If we have a filter that transmits light with
wavelengths between λ1 and λ1 + ∆λ, then we can alternatively express this as a filter
transmitting light between frequencies of ν1 + ∆nu and ν1, where

ν1 =
c
λ1

and ν1 + ∆ν =
c

λ1 + ∆λ
(2.4)

Note that ∆ν < 0 for ∆λ > 0. For a narrow filter we write ∆λ→ dλ and ∆ν → dν and
we can write

dλ
dν
= −

c
ν2
= −

λ

ν
(2.5)

With this relation we find a relation between Fλ and Fν:

λFλ = νFν (2.6)

The minus sign disappears because by definition these fluxes are defined to be per
positive unit of frequency or wavelength respectively.

In this lecture we will always use Fν.

Note that for historic reasons there are many other units in which astronomers often
express a flux. One such unit of flux often used by radio astronomers is Jansky, where
1 Jy = 10−23 erg s−1 cm−2 Hz−1. Optical astronomers typically use magnitudes, which
is a logarithmic scale in which a flux is compared to a standard star (Vega). For a
detailed definition of this magnitude system please refer to astronomy introduction
books. We will not use these historic systems.
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2.2 Radiative intensity
The radiative flux vector contains some directional information, but that information
is very incomplete. In radiative transfer theory we usually work with another quantity,
called radiative intensity (in other fields of physics often called radiance). The symbol
for this is I for the bolometric case and Iν for the monochromatic case. Let us again
design a simple device to measure it. It is very similar to the flux measuring device,
but we add another chamber in front of it with an even smaller aperture than the one
in the primary cavity. This new small aperture is now the first aperture, while the
aperture of the primary cavity (with the thermometer) is now the second aperture.
Any radiation entering the first aperture that does not also pass through the second
aperture will be absorbed by the walls of the new chamber in front. We make sure
that this heat is quickly removed from the system. Only light that passes through
both apertures will enter the main cavity and induce a temperature increase there.
This means that the flux that we measure is only the flux from radiation originating
from a rather specific direction, namely the direction given by the line-up of the two
apertures. The flux should now be defined as the energy per second per unit surface
area of the first aperture. The second aperture (the entrance of the main cavity with
the thermometer) now has the function of selecting radiation from a certain direction
and blocking radiation from all other directions.

If the size of the first aperture is small compared to that of the second cavity, then we
can in fact easily calculate the total solid angle from which radiation is collected. If
the distance between the two apertures is L and the area of the second aperture (the
large one) is A, then the solid angle ∆Ω from which flux is gathered is:

∆Ω =
A
L2

(2.7)

If ∆Ω # 4π then the measured flux will be proportional to ∆Ω. So if we divide the
measured flux by ∆Ω we obtain a “flux per steradian” I:

I ≡
F
∆Ω

(2.8)

This is what we call the bolometric intensity. The units of I are erg s−1 cm−2 ster−1.
By adding a filter and dividing by ∆ν we obtain the monochromatic intensity Iν, which
is expressed in units of erg s−1 cm−2 Hz−1 ster−1.

The intensity is not a vectorial quantity. Instead it is a function of direction. If we
define the unit vector n to point from the small (first) aperture to the second (interior)
cavity, we can define the intensity as being a function of n:

I(n) resp. Iν(n) (2.9)

Note that if our choice of the aperture size is too large, our measurements will be
inexact. To get an accurate measurement the first aperture must be much smaller
than the second one, and the diameter of the second (interior) aperture must be much
smaller than L. The smaller the internal aperture is compared to L the higher the
angular resolution of the function I(n). In practice such a pinhole camera is very
inefficient since it throws away most of the incident light. The use of lenses will
vastly improve the sensitivity of such a device. But the purpose here is not one of
efficiency, but just as an illustration of the definitions of flux and intensity.

Aside from the uncertainties introduced by the wave-nature of light, the intensity Iν(n)
as measured at one location x in space contains almost infinite amount of angular
information. In fact, our eyes are cameras that measure Iν(n) at three frequencies (red,
green and blue), and the angular resolution of the images we see is quite staggering.
To overcome the limitation of the wave-nature of light we would have to increase our
camera: larger telescopes have larger angular resolution. So from a strictly physical
perspective the intensity function Iν(n) is a function with limited angular resolution,
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depending on the size of the camera. In the radiative transfer approximation, however,
we assume it to have infinite angular resolution and to be well-defined at each point x
in space:

Iν(x, n) (2.10)

It is thus a 6-dimensional function: It depends on frequency, on three spatial dimen-
sions and on 2 angular directions (note that while n has three components, only two
are independent).

The intensity function, even when considerd only at one single point in space, contains
an incredible amount of information. If one were to know the function Iν(x, n) at the
position of the Earth to infinite precision, it contains all the astronomical observations
we will ever be able to do (aside from time-dependent phenomena, of course). One
could say that large astronomical all-sky surveys such as the 2MASS infrared survey
measure this function for one (or a few) values of ν and one value of x (the position
of the Earth). In many radiative transfer problems, however, we must deal with the
intensity at many locations x and many frequencies ν simultaneously. This may give a
feeling for the complexity of the problem. Fortunately, for most of these problems we
do not have to calculate the angular dependence to such high resolution. This keeps
these problems tractable.

2.3 Angular coordinates
So far we used a unit vector n to denote direction. We thus write the direction-
dependency of intensity as I(n). However, this can sometimes be a bit too abstract.
The vector n should represent the two angular coordinates, but in fact it has 3 compo-
nents. Of course, the constraint that |n| = 1 removes the 3rd component, but it remains
somewhat implicit.

A more concrete way of writing direction is by using angles θ and φ. However, this
requires us to choose a reference direction. Let us choose the z-axis for that. This
choice breaks the symmetry of the problem, which is somewhat unelegant. But it
allows us to be more explicit in our writing of direction. We choose the angle θ to be
the angle between the n vector and the ez basis vector:

cos θ = n · ez (2.11)

We define the angle φ as the angle between the projected vector

ñ = n − (n · ez)ez (2.12)

and the ex basis vector
cos φ = ñ · ex

|ñ| (2.13)

where 0 < φ < π means that ñ · ey > 0.

Reversely, given θ and φ we can construct the components of n as

nx = sin θ cos φ (2.14)
ny = sin θ sin φ (2.15)
nz = cos θ (2.16)

Using θ and φ we can now express the intensity as

Iν(x, y, z, θ, φ) (2.17)

where x, y and z are the three spatial coordinates. This functional form is explicit, but
one must always keep in mind that the θ, φ coordinates are singular at θ = 0 and θ = π.
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For reasons that will become apparent soon, it is often convenient to use, instead of θ:

µ ≡ cos θ (2.18)

We then get

nx =
√

1 − µ2 cosφ (2.19)

ny =
√

1 − µ2 sinφ (2.20)
nz = µ (2.21)

and we can express the intensity as

Iν(x, y, z, µ, φ) (2.22)

In the rest of this lecture we use n, (θ, φ) and (µ, φ) interchangably, depending on what
is more convenient for the problem at hand. It will be clear from the context which of
these three notations we use.

2.4 Intensity is constant along a ray - in vacuum
The intensity I (or Iν) has an amazing, and extremely useful property: If we are fol-
lowing a ray of light in vacuum, then the intensity in the direction of the ray is constant
along that ray! Mathematically one can express this as

n · ∇Iν(x, n) = 0 (2.23)

where ∇ is the gradient operator and thus n · ∇ is the derivative taken in the direction
of n.

This means that if we measure the intensity Iν of the Sun from Earth, and we redo
the measurement on Mercury, we get the same answer. How can this be? It seems to
be in conflict with the known fact that the flux Fν from the sun scales with 1/r2, i.e.
inversely proportional to the distance squared. The key to this apparent paradox is that
if we make a photo of the Sun from Earth and then, with the same camera, a photo
of the Sun from Mercury, then on the latter picture the sun looks larger. It covers a
larger ∆Ω on the photo, i.e. it spreads its radiation over a larger number of pixels of
your image. Since the angular scale of the Sun scales as ∆Ω ∝ 1/r2 and so does the
flux Fν, their ratio stays constant with r. In other words (see Eq. 2.8): the intensity is
independent of r.

In fact, if you make a photo with a digital camera, or if you look at something with
your eyes, then what your image records is the intensity in each direction.

So how is this consistent with the fact that distant stars look dim? Indeed, even a
very distant star has the same intensity as the sun (if it has the same temperature).
However, in order to measure the intensity of the star, your telescope must have an
angular resolution that is sufficiently large to be able to resolve the surface of that star.
For most stars that is impossible. The stellar flux will be spread over a pixel that is
much larger than the projected size of the star on the image. This de-facto dilutes the
intensity, since the measured flux will then not be divided by the solid angle of the
star, but by the solid angle of the pixel. The intensity of the star therefore might look
weaker than the Sun, but that is merely an artifact of the finite angular resolution of
your telescope.

Eq. (2.23) can also be written as a differential equation along a straight line tangent to
the direction vector n. Pick any straight ray you wish, and define a coordinate s along
that ray that denotes a distance along that ray such that the ray is defined as

x(s) = x0 + sn (2.24)
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Then Eq. (2.23) can be cast into the form

dIν(n)
ds

= 0 (2.25)

or in other words, that Iν(n) is constant along that ray. This does not mean that Iν(n)
should be constant throughout space, since (a) it can be different along different par-
allel rays and (b) it can be different for different directions n.

The constancy of intensity along a ray plays a fundamental role in radiative transfer
theory, and Eqs.(2.23 and 2.25) stand at the basis of the radiative transfer equation
which we shall discuss in Section 3.2.

2.4.1 Mirrors and lenses: Intensity still stays constant

This constancy of intensity remains true even if the ray gets reflected off a mirror, even
if the mirror is curved. If you look at yourself in a concave mirror (e.g. a spoon) you
see yourself bigger, but your skin does not look brighter or dimmer. The same is true
if you use a magnifying glass: things are magnified, but remain as bright as before.
This all does not depend on details of the optical setup. The reason is simple: without
this constancy of intensity rule we would violate the rules of thermodynamics.

2.5 Moments of intensity
As mentioned at the end of Section 2.2, the richness of angular information packed in
the function Iν(x, n) can make the problem of radiative transer very hard to solve. But
it was also mentioned that often one can afford a much lower angular resolution and
thus make the problem more feasible. An elegant way of lowering angular resolution
in a controlled way is to expand the angular dependency of Iν into spherical harmonics.
The lowest order components represent the lowest resolution information while suc-
cessively higher order components contain information at successively higher angular
resolution. One of the disadvantages of a spherical harmonics expansion is that one
must specify an axis of reference, which breaks any possible rotational symmetries of
the problem.

An equivalent method of expansion, and one that does not introduce a preferential
reference direction, is the expansion into tensor moments. A complete and mathemat-
ically rigorous exposé of the expansion into tensor moments is given by Thorne (1981,
MNRAS, 194, 439).

For our purposes, however, we will remain far less complete. We will define only the
zeroth, first and second tensor moment of the radiation field (where, for notational
convenience, we will omit the dependence on x):

Jν =
1
4π

∮

Iν(n) dΩ (2.26)

Hν =
1
4π

∮

Iν(n) n dΩ (2.27)

Kν =
1
4π

∮

Iν(n) nn dΩ (2.28)

These are integrals over all directions with dΩ the solid angle and n the direction.

The zeroth moment Jν is called the mean intensity and is indeed the angular average
of Iν(n). If we are in a homogeneous and isotropic radiation field, then Jν = Iν.

The first moment Hν is a vectorial quantity that is, in fact, identical to the flux, apart
from a factor 1/4π:

Fν =
∮

Iν(n)ndΩ = 4πHν (2.29)

10



Often Fν and Hν are used interchangably, whichever turns out to be convenient in the
particular context. This quantity denotes the average flow of radiative energy. For a
homogeneous and isotropic radiation field Hν = 0.

The second moment Kν is a symmetric tensor of rank 2. It is the quantity that can be
interpreted as being responsible for radiation pressure, but it also has its uses when
radiation pressure is weak. For a homogeneous and isotropic radiation field Kν =
1
3IJν, where I is the unit rank-2 tensor.

We could define ever higher rank moment tensors, and for a complete description of
the radiation field we would indeed need to use an infinite series of moments. How-
ever, as we shall see later, for most purposes these first three moments are sufficient.
We will use the moment formalism later to derive the equations for radiative diffusion
(Section 4.5).

With the angular coordinates defined in Section 2.3 we can write the integrals of
Eqs. (2.26, 2.27, 2.28) in a more explicit form:

Jν =
1
4π

∫ +1

−1
dµ

∫ 2π

0
dφ Iν(µ, φ) (2.30)

Hi
ν =

1
4π

∫ +1

−1
dµ

∫ 2π

0
dφ Iν(µ, φ) ni (2.31)

Ki j
ν =

1
4π

∫ +1

−1
dµ

∫ 2π

0
dφ Iν(µ, φ) ni n j (2.32)

where i = 1, 2, 3 (denoting the directions x, y and z respectively) and ni are the com-
ponents of the n vector given by Eqs. (2.19, 2.20, 2.21).

2.6 Thermal radiation: The Planck function
Now suppose we take our cavity again, but close the aperture. We will soon obtain a
thermodynamic equilibrium at some temperature T inside the cavity. This also means
that the cavity will be filled with thermal radiation of temperature T , and the walls also
have that same temperature. The walls will continuously emit and absorb such thermal
radiation. The photon quantum states inside the cavity will then have an occupation
number according to Bose-Einstein statistics:

N =
1

ehν/kT − 1
(2.33)

where ε = hν is the energy of that quantum state. Since the density of quantum states
(per volume per frequency) is ρs = 4πgν2/c3 (with g = 2 for photons because each
photon of given energy hν can have two independent polarization states), we see that
the equilibrium energy density for light U(ν) in erg cm−3 Hz−1 is

U(ν) = 4πghν
3/c3

ehν/kT − 1
=
8πhν3/c3

ehν/kT − 1
(2.34)

Now, per sterradian (dividing by 4π) and passing through a surface of 1 cm2 per second
(multiplying with c) this gives the Planck function:

Bν(T ) =
2hν3/c2

ehν/kT − 1
(2.35)

Inside the thermal cavity the intensity of the radiation in any direction at any location
is then

Iν(n) = Bν(T ) (2.36)

This radiation field inside the thermal cavity is called blackbody radiation.
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If Eq. (2.36) holds for any direction at any location in the cavity, then apparently the
emerging intensity from the cavity walls must also be the Planck function Bν(T ). In
other words: the thermal emission from a thermal surface at temperature T is such
that the intensity seen from that surface is Iν = Bν(T ), independent of the direction
from which you look at that surface.

This knowledge can now also be used outside the context of a closed cavity. If we
have a perfectly thermally emitting black surface anywhere, we can be assured that
the intensity Iν seen from that surface from any direction equals Bν(T ), where T is the
temperature of that surface. This is what is meant with a blackbody emitter.

We can calculate the flux emitted by a thermal blackbody surface. Let us put the
thermal surface in the (x, y)-plane, so that the normal of that surface points upward
along the z-axis. We can then use Eq. (2.31) to compute the z-component ofHν:

Hν =
1
2

∫ +1

0
Bν(T )µdµ =

1
4Bν(T ) (2.37)

Note that the µ integration domain goes here from 0 to 1, instead of −1 to 1, because
we study here only the radiation emitted from the surface, which has µ > 0. The flux
Fν is then:

Fν = πBν(T ) (2.38)

When we integrate this over all frequencies, we get the bolometric flux:

F =
∫ ∞

0
Fνdν = π

∫ ∞

0
Bν(T )dν = σSBT 4 (2.39)

where σSB = 5.67×10−5 erg s−1 cm−2 K−4 is the Stefan-Boltzmann constant. Note, by
the way, that this gives the following expression for the bolometric Planck function:

B(T ) ≡
∫ ∞

0
Bν(T )dν =

σSB

π
T 4 (2.40)

Typically, a real surface is not a black body: it does not absorb all radiation that hits
it. Some of the radiation impinging onto it might get scattered back into the cavity:

Fscatν = ηνF impingeν = ηνπBν(T ) (2.41)

where ην is the fraction of the incoming light that gets scattered instead of absorbed.
It is called the albedo. To ensure that the emerging flux from the wall does not exceed
πBν(T ), which would violate thermal equilibrium, the efficiency of thermal emission
from the wall is accordingly reduced:

Fν = ενπBν(T ) (2.42)

where εν is the thermal emission efficiency given by

εν = 1 − ην (2.43)

Equations (2.42, 2.43) are also valid for a surface that is not facing a thermal cavity.

Objects in every day life have an albedo ην that varies with frequency ν, which gives
these objects color. As we know of every day experience, the albedo (and therefore
color) of most rough surfaces is approximately an angle-independent quantity. Such
surfaces are said to be approximately Lambertian. In detail, however, the albedo can
depend on the incedent and outgoing angles. In that case one could derive angle-
dependent generalizations of Eqs.(2.42, 2.43).
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