Chapter 4

What makes radiative transfer
hard, and how to solve it - An
introduction

If we would, at all times and at all locations, know the values of j, and a,, then what
we have learned in Chapter 3 would be enough to understand the topic of radiative
transfer. Of course, some technical details still have to be refined, and we have to
discuss all the “input physics” such as opacities and abundances of constituents of the
medium. But those would be manageable. When you hear that radiative transfer is a
very challenging topic, the reason is that in many cases we do not know the values of
Jv and/or a, in advance. The radiation field /,(x, n) that we wish to compute can affect
the medium in such a way as to modify j, and a,. We are then faced with a “chicken
or egg” effect: to compute /,(x,n) we need to know j,(x) and a,(x), and to compute
Jy(x) and @, (x) we need to know 7,(x, n).

And to make things worse: we cannot solve this problem for each ray separately,
because a change in j,(x) will affect the formal transfer equation for all rays passing
through x, i.e. rays with different direction vectors n. This is illustrated in the figure
in the margin. For our observation we are interested in the formal radiative transfer
along ray A, which we call the line of sight. We focus in this illustration on the j, and
a, in the little cell at the center of the cloud. In addition to ray, A, also rays B and C
pass through that cell. The intensity along those rays can therefore also affect j, and
a, in the cell. This ray coupling effect means that we are forced to solve the radiative
transfer problem for all rays at once. This is the true challenge of radiative transfer.

This challenge can also be expressed in terms of radiative cell coupling: the emission
generated in one volume element of a cloud (a “cell”) can travel to the other side of
the cloud and affect the conditions in a cell there. Information is thus exchanged be-
tween regions of the cloud that are distant from each other. For example: the radiative
cooling of one region can cause the radiative heating of another. While this may seem
like a separate problem from the ray coupling problem, it is actually the same. The
cell coupling and ray coupling problems are just two faces of the same problem.

4.1 The simplest example of ray coupling: Isotropic scattering

Let us consider the simplest radiative transfer problem in which such a ray coupling
plays a role. Suppose we have a medium consisting of small dust particles that can
scatter radiation in arbitrary directions. This process is called isotropic scattering,
because the outgoing direction of a photon has, by assumption, no dependence on
the direction of the photon before the scattering event. Let us also assume that the

26

Ray coupling

Radiative cell coupling

dust particles do not absorb nor emit any of the radiation, and let us focus on a single
frequency v (we omit any v indices for notational convenience). Let us also assume
that somewhere (either inside or outside of the cloud) there is a source of light, which
we will treat as an initial value for the intensity at the start of rays emanating from that
source.

The formal radiative transfer equation is then, as usual,
n- VIi(x,n) = j(x) — a(x)I(x,n) “4.1)

The emissivity j is responsible for injecting radiation into the ray, which occurs
through scattering. Since all photons that experience a scattering event have the same
chance to be scattered into the direction n, we only need to know how much radiation
is being scattered per unit volume and time: we do not need to worry about the angular
dependence of the incoming radiation. This means that the emissivity becomes:

1
Jjx) = a(x)ﬂ 9€I(X, n) dQ = a(x)J(x) 4.2)

where in the last step we used the definition of the mean intensity J (Eq. 2.26). This
allows us to write the formal transfer equation as

n-VI(x,n) = a(x) [% 9€I(x, n')dQ’ — I(x,n) 4.3)

or in more compact form:
n - VI(x,n) = o(x) [J(x) — I(x,n)] 44

Eq. (4.4) clearly demonstrates the “chicken or egg” effect that makes radiative transfer
so difficult: We need to know J(x) before we can integrate Eq. (4.4) along any ray, but
we need to know /(x, n) for all directions n to compute J(x).

4.1.1 The culprit: Multiple scattering

We can formulate this “chicken or egg” problem in another way by following light
back to its source. The photons that we observe when we look at the cloud may
have been scattered into the line of sight by a dust particle. Before that event, these
photons moved along another ray. But they might have in fact be scattered into that
ray by another scattering event, etc. Photons can scatter multiple times before they are
scattered into the line of sight. This is called the multiple scattering problem.

Note: The problem of isotropic multiple scattering can be considered a benchmark
problem of radiative transfer. Understanding how to tackle this problem provides a
solid basis for understanding the more complex radiative transfer problems in the next
chapters. We will therefore spend considerable time on this admittedly fairly idealized
problem.

Multiple scattering can be regarded in terms of recursion: Each successive scattering
event can be associated to one “chicken-egg” cycle: To compute J at some particular
point X, along the line of sight we would need to perform integrations of the formal
transfer equation along all rays that go through xo, i.e. varying n all over 4r steradian.
However, to be able to integrate the formal transfer equations along those rays we
will need to know J at other locations x # x¢ along these rays, these involve again
performing the transfer equation along all rays that go through x, varying n all over
47 steradian, etc.

How to solve this?

Exact analytical solutions to this problem are exceedingly rare. For a semi-infinite
homogeneous plane-parallel atmosphere being irradiated from the top, a solution is

27

Multiple scattering

R /) Light source

given by Chandrasekhar’s H-functions theory (from Chandrasekhar’s book “Radia-
tive Transfer”, 1950/1960, Dover). However, for most practical cases a numerical
approach is required, which is a challenge because of the high dimensionality of the
problem.

In this lecture we will discuss several classes of numerical methods to tackle this and
related problems. The main three classes of methods are: (1) Monte Carlo methods,
which simulate the multiple scattering process directly, (2) Discrete ordinate methods,
which solve the problem by dividing all coordinates, including the angles and the
frequency, into discrete grid points or grid cells, and (3) Moment methods, including
the diffusion method, which treat the angular and/or frequency domain in terms of its
moments. We will discuss all these classes of methods in detail in later chapters, but
we will already briefly introduce them in this chapter.

4.1.2 For 7 < 1: The single scattering approximation

For the case when the optical depth of the cloud is very low we can make an approx-
imation that makes the problem solvable either analytically or at least numerically
with little computational cost: We can then ignore the effect of multiple scattering,
and assume that every photon that scatters into the line of sight experienced no scat-
tering evens before that. This is the single scattering approximation. This approxima-
tion becomes better the lower the optical depth of the cloud is. Since, as we showed
above, each successive scattering event is associated with one “chicken-egg” cycle of
Egs. (4.1, 4.2), the single scattering approximation allows us to limit our efforts by:

1. integrating the formal transfer equation for all rays connecting the light source
to any of the points along the line of sight,
2. computing the j, along the line of sight
3. integrating the formal transfer equation along the line of sight to the observer.
While the procedure of integrating the transfer equation along all rays connecting

source and line of sight may still be difficult analytically, or require quite a bit of
computation time numerically, the effort is manageable.

4.1.3 A worked-out example of single scattering

To get a better feeling for the practical issues, let us work out a concrete example of
single scattering. Let us assume that we have a star of radius R, and temperature 7',
that radiates as a perfect blackbody emitter. Surrounding it is a spherically symmetric
cloud of dust. The density of the cloud of dust is given by the following formula:

)
o(r) = po (l) for > rp 4.5)
ro

and zero inside of 9. The scattering opacity is assumed to be independent of fre-
quency: «, = k and independent of density or temperature. We will take it constant.
We assume that the radial optical depth between the star and a point at distance r is
small enough that the single scattering approximation can be safely made:

7,(r) = Ky frp(r')dr' <1 (4.6)

ro
Let us assume that ryp > R, so that in good approximation we can treat the star as a
point source. The flux from the star is:

L, .
F,(r) =) with L, = 47R*7B(T.) 4.7

28

Single scattering approximation

Spherical envelope around a star

s
v ! Light source

v

o

For the computation of the scattering emissivity j, we need the mean intensity J,,
which is for this case:

J, = (for exactly outward-pointing radiation) 4.8)

so that
1

F,
Yan (4m)?
Now we must integrate this emissivity along a line of sight. Let us choose a line of

sight with an impact parameter b > ry. Let us choose our coordinate s along the ray
such that s = 0 is the closest approach. We can then write

= VP2 + 52 (4.10)

The integral of the formal transfer equation along the line of sight then becomes:

. 1
M =a & Luport 4.9)

1 oo ds
b
Igs(b)—(4)2Kv VpOOIm m

1 72 o dx
_ _ax 411
@y Vp0b3 L, 1+ “.11)

2
o

= — Kk Lypo— 3

32
assuming no background intensity. On an image we will thus see the scattered light
of the envelope decay as 1/b* away from the star. Since the p o 1/r? density profile
is what you would expect from a stellar wind (ballistic outflow), this is in fact a rea-
sonably realistic model for reflection nebulae around stars with dusty stellar winds.
In reality, as we shall see in Chapter 6, the isotropic scattering approximation is not
always a good approximation for light scattering off dust particles. But the 1/b* decay
of scattered light is, also in the case of anisotropic scattering, not a bad approximation.

4.14 Including absorption and thermal emission

While the multiple scattering problem formulated so far is an extremely challenging
problem to solve, it is somewhat idealized because we assumed that the dust parti-
cles do not absorb any radiation (they only scatter) nor do they thermally emit any
radiation. For water droplet clouds in the Earth’s atmosphere at optical wavelengths
this is a reasonable approximation. But there are many cases where some amount of
thermal absorption and emission is present in addition to the scattering. In the Earth’s
atmosphere this is, for instance, the case for aerosols. In astrophysics there are many
situations where both absorption/emission and scattering play a role. The dust in the
interstellar medium has this property, and so does the dust in circumstellar disks.

When we include absorption, then at every frequency v we have two kinds of opacity:
absorption opacity and scattering opacity:

a, = ™ + o5 (4.12)
We define the albedo as:
a,ical
= ab% + a,icat (413)

In some fields of physics a symbol « is used for albedo, but we already reserved that
for the extinction coefficient, in accordance with stellar atmosphere radiative transfer
conventions. Conversely we can define the photon destruction probability as:

a,abs

T — (4.14)

& = ab% + ascat

29

This quantity is often used in non-LTE radiative transfer theory in stellar atmospheres.
We clearly have
&=1-1n (4.15)

Also the emissivity j, can be seen as consisting of two contributions:
T (4.16)

where jS™ is the emissivity corresponding to the absorption coefficient @*. Note
that in this case no special symbols are defined for their ratios.

The source function is]
mis + scat

. e
s, =L _Th @.17)
@, @+ o™
We can rewrite this into the form
j?/mis jicat
S, =¢— +n,—
e e (4.18)

abs scat
=65, +n.5),

For isotropic scattering we have j5/a5 = J,. If the emission is thermal emission at
some temperature T, then we have jS™¢/a@® = B,(T). Then we can write the source
function as

S, =¢&B,(T)+n,J,

4.19)
=6B,(T)+(1-¢)J,

where the latter way of writing is the standard used in the community of stellar atmo-
spheres. The transfer equation remains (cf. Eq. 3.13):
dlI,
g5, @20
(where the explicit reference to s- and n-dependency is omitted for notational conve-
nience) which now becomes, if we insert Eq. (4.19):
dl,
I ay[6,B/(T)+ (1 —¢)J, —1,] 421
s
For €, = 1 we retrieve Eq. (3.11). For €, = 0 we retrieve Eq. (4.4). Equation (4.21) is
thus a true mix of the thermal emission/absorption and the scattering problem.

How does this change the nature of the problem? Clearly, if €, = 1, assuming that
we know what the temperature 7 is everywhere, then there is no “chicken or egg”
problem. The problem is most profound for €, = 0. So the problem is of moderate
complexity for 0 < €, < 1. If ¢, = 0.5, for instance, a photon can scatter not more
than a few times before it will be destroyed by absorption. Information can thus be
transported, on average, not farther than a few mean free paths before the radiation
field “forgets” that information. Whereas for €, = 0 a photon will scatter as long as
it takes to escape, and may thus traverse macroscopic distances through the cloud, for
€, = 0.5 radiative information travels only a few mean free paths from its origin before
it is deleted. As we shall see in later sections and chapters, the closer ¢, is to 0, the
harder the radiative transfer problem gets.

4.2 Monte Carlo methods (Introduction)

One of the main methods for solving the multiple scattering problem is called the
Monte Carlo method. It is named after the town of Monte Carlo, famed for its Grand
Casino. As with gambling, Monte Carlo methods are based on chance. The idea is to
follow the path of a photon from one scattering event to the next, and to use random

30

numbers to decide in which direction the photon will proceed after each scattering
event. We must also use a random number to find out where along the present path the
next scattering event will take place. We repeat this process for many tens of thousands
(millions?) of such photons, until we have a good statistical sample of paths that the
photons will follow.

The advantage of Monte Carlo methods is that they are easy to understand, since they
actually simulate the motion of photons. Also, it is easy to implement complicated
microphysics into Monte Carlo methods.

We will encounter various versions of Monte Carlo methods throughout this lecture.
They are all based on the same basic principles, but they are sufficiently diverse that
we will not devote a separate chapter to them. Instead we will discuss them separately
for dust thermal continuum transfer (Chapter 5), light scattering off small particles
(Chapter 6) and line transfer (Chapter 7).

In this section we will give an introduction to the method, applied here to the simple
multiple-isotropic-scattering problem. In most of what follows we assume that we
have a pure scattering problem, i.e. €, = 0, except if we explicitly state otherwise.

4.2.1 Finding the location of the next scattering event

Suppose we follow a photon that is, at present, located at position x in direction n.
How do we find out where it will have its next scattering event (assuming €, = 0)?
Because scattering is not a deterministic process, we cannot predict exactly where
this will be, but we know that it follows a Poisson distribution. In our Monte Carlo
approach we want to use a random number generator to find the optical depth 7 that
the photon will travel until the next scattering event. We know that this must have a
probability distribution

p(r)=e" (4.22)

This can be achieved by drawing a random number ¢ that is uniformly distributed
between 0 and 1, and computing the 7 according to:

T =—1In(¢) (4.23)

Sometimes you find the formula = — In(1 —¢) in the literature, which is equivalent. It
is slightly more correct, because typical random number generators generate & € [0, 1),
meaning, in theory, they could draw x = 0, in which case the In(¢) fails. However, if
you have a good random number generator, then the period is so tremendously large,
that the chance of ever drawing exactly O is negligible.

Once we have fixed the optical depth where the next scattering event takes place, we
must travel along the ray cell-by-cell until we arrive at this point. Each segment of ray
corresponds to some At (see the figure of Subsection 3.8.7). Every time we traverse
such a segment of ray, we subtract At from 7, i.e. we evaluate 7 « 7 — At. As we
pass along the ray, 7 decreases steadily, until we arrive at a segment of ray where At
is larger than the remaining 7. This is the segment where the next scattering event
will happen. The precise location will be a fraction of /At times the length of the
segment from its start.

It can also happen that we will never arrive at our next scattering event because the
photon packet escapes from the cloud. This is then the end of the journey for the
photon packet, and we will go on to trace the next photon packet.

If we have, in addition to scattering, also absorption (¢, > 0), then we must also
treat these absorption events and allow new photons to be generated through thermal
emission. This is not entirely trivial, so we defer it to Chapter 5.

31

4.2.2 Drawing a random scattering direction

Once a scattering event happens, a new direction must be drawn. One way to obtain
a random direction is to draw two uniformly distributed random numbers between 0
and 1, let us call them &; and &;, and to compute 6 and ¢ from them according to:

0 =acos(2¢, - 1) s ¢ =2né& 4.24)

It is important to understand that § = 7 &, would give a wrong distribution! The arc-
cosine comes from the fact that in a random distribution of directions, u = cos# is
uniformly distributed.

Another way to draw a random direction would be to draw three random numbers
between 0 and 1 &, & and &3, compute n, = 261 — 1,n, = 26 — land n, = 265 — 1

and compute n = /n3 +n2 +n2. If n > 1 we reject it, and go back to drawing three

new uniform random numbers and repeat the procedure. If n < 1, on the other hand,
we retain it and normalize the vector through n, < n./n,n, < n,/n and n, < n_/n.

4.2.3 The meaning of a “photon packet”

A star sends out of the order of 10* photons per second. It is clear that we cannot,
in our computer model, follow each of these photons. When we model a “photon” in
our Monte Carlo method, we actually tacitly assume that it represents many photons
at once. One can see this as if we follow a whole packet of photons instead of just
one: a “photon packet”. The approximation we make is that we assume that all these
photons in a single photon packet follow the same path.

If we look a bit closer, however, we see that the photon packet picture can be a bit
confusing for the problem of stationary radiative transfer we consider here. Intuitively
a packet would contain a certain number of photons, but in reality it contains a certain
number of photons per second. The star emits 10* photons per second, meaning
that if our Monte Carlo simulation involves 10° photon packets, then each packet
represents 10*’ photons per second. In other words: a Monte Carlo photon packet
does not represent a total energy, but represents a total luminosity (=energy/second).
If we model the Sun with 10° photon packets, then each packet represents a luminosity
of 1073 solar luminosities.

Note that if we would use the Monte Carlo method for time-dependent radiative trans-
fer (see Section 3.6) then a photon packet indeed represents an energy, or equivalently,
a number of photons.

424 How to make an image using Monte Carlo - a preview

Modeling how the photon packets move through the cloud is not yet the full story. In
the end we want to predict what we would observe if we look the cloud. This is not
trivial. Usually the observer is tiny compared to the object of interest, or is located “at
infinity” in a well-defined direction. The chance that a photon packet will find its way
from the source to the observer is small. Most photons will escape to outer space in
arbitrary directions, and miss the observer.

One brute-force way to overcome the “problem of the small observer” is by artificially
“enlarging” the observer to enhance the chance of capturing a photon packet. For an
observer at infinity one could assign a solid angle AQ around the direction of the
observer, and collect all photons that end up in that direction. The larger we choose
AQ, the more photon packets we collect, but the less accurate the result since we
thereby average over outgoing direction. To obtain a good result our observer needs to
collect a large number of photon packets, so that the noise on the result is small. This
noise is called Monte Carlo noise, and is a typical drawback of Monte Carlo methods.
The only way to reduce this noise is to increase the number of photon packets we use,

32

Photon collecting method

/’ Light source

Observer has
finite size or
solid angle

so that each photon packet corresponds to a smaller contribution to the result. There
are many other subtleties with this “photon collection method”, but we will defer this
to later chapters.

A related method, which is often used is to continuously “peel off” radiation from a
photon packet as it passes through the cloud, and compute what the observer would
see from this, including the extiction from each of these points to the observer. This is
a somewhat costly method but it works well.

Another approach is to reverse the problem. We start our photon packets at the ob-
server and trace the packets back along their rays. The scattering events are then no
longer “where to?” but “from where?” events. This technique is often used in 3-D
computer graphics rendering, but also in many scientific applications. However, if our
source of photons is small, we encounter the “problem of the small source”. So we
now have the opposite problem: how to ensure that we end up at the source? One
method, often employed, is to “force” the photon packet toward the source at the final
(i.e. in reality the first) scattering event. But how do we know if a scattering event is
the final (first) one? In fact, we don’t know that. So what we can do is to calculate at
every scattering event what the chance is that a photon from the source will scatter into
the ray. We continue this backtracing procedure until the next (i.e. in reality previous)
scattering event would be outside of our cloud. If our problem also includes thermal
emission/absorption (i.e. € > 0), and if this thermal emission far outshines any small
sources, then the “problem of the small source” is usually not so accute since then the
cloud itself is the source. Also, a non-zero €, means that we do not necessarily have
to backtrace a photon until we leave the cloud again, because in addition to scattering
events we can also encounter an emission event: this means that we have then arrived
at the origin of the photon, and our path ends (or better: it starts).

A final approach is the scattering source function approach. We follow each photon
packet as it moves through the cloud. As it does so, we add an appropriate contribution
of this photon packet to the scattering emissivity function j, of each cell it passes. The
length of the ray segment will be taken into account, so that if a photon packet passes
right through the middle of a cell, its contribution to that cell will be larger than if it
just “cuts a corner”. Once we have launched all photon packets, the function j,(x) is
known throughout the cloud. We can now render an image by integrating the formal
transfer equation along a pre-defined set of rays all ending at the observer. In the next
chapters we will discuss this method of the scattering source function in more detail,
including the appropriate formulas.

This list of methods is not exhaustive. A host of ideas have been tried out over the
many years. Each has its advantages and disadvantages. But the above list is, I think,
a reasonble overview of the most commonly used methods. Many special methods
can be considered versions of the above.

4.3 Discrete Ordinate methods (a short note)

The opposite of Monte Carlo Methods is discrete ordinate methods. These methods
solve the problem by dividing all coordinates, including the angles and the frequency,
into discrete grid points or grid cells. In a way they are “cleaner” than Monte Carlo
methods because they do not introduce Monte Carlo noise. But this can give a false
sense of comfort, because also discrete ordinate methods introduce errors due to lim-
ited resolution of 6 and ¢ - and these errors do not show up as conspicuous noise but
will remain hidden in a reasonable-looking answer. In that sense Monte Carlo meth-
ods will raise the alarm automatically if not enough computer power has been used,
while discrete ordinate methods will give an answer that might look reasonable, but
might be very wrong nonetheless. If done well, however, discrete ordinate methods
can have advantages over Monte Carlo methods, and produce indeed “cleaner” results.
But “doing it well” can be very challenging, and may require some experience from

33

Photon peeling method

’

Backtracing method

’

Scattering source function method

% i f) Light source

R /) Light source

v

the modeller.

There is no “discrete ordinate method” as such. It is a class of methods in which, in
addition to x, y, z, v also 6 and ¢ are discretized. This introduces several subtleties that
require special care. But these issues are perhaps hard to understand without some of
the background of the methods and their applications that employ the discrete ordinate
approach. We will therefore discuss them in later chapters, and focus in this chapter
on examples in 1-D.

44 Lambda Iteration (LI) and Accelerated Lambda Iteration
(ALI)

One of the cornerstones of radiative transfer theory is a very simple iteration method
called Lambda Iteration (LI). It sounds fancier than it is. In fact, it is presumably the
iteration scheme that you would intuitively develop yourself if someone would ask
you to solve the coupled set of equations, Eqs.(4.1,4.2), without you having any prior
knowledge of radiative transfer algorithms. It goes like this:

1. Make an initial guess for the mean intensity J,(x) (for instance, take it zero).

2. Integrate the formal transfer equation along a large number of rays, such that
close to every point x a sufficient number of rays pass by that we can make an
approximate calculation of the mean intensity J,(x).

3. Compute J,(x) at all locations, thereby computing the scattering emissivity
Jv(X).

4. Go back to 2, until J,(x) appears to be converged.

It is essentially a scheme that alternates between a global calculation (the transfer
equation) and a local calculation (computing the scattering emissivity). That’s all there
is to it! Indeed, this algorithm is so simple, at least from a conceptual viewpoint (a nu-
merical implementation is another matter altogether), that it has been re-invented over
and over again in the many different fields of physics and engineering, and thereby
goes by different names. We will, however, stick to the Lambda Iteration name, for
reasons that will become clear later.

Note that we have actually already “invented” this method ourselves in the text above,
perhaps even without being aware of it. Remember that in Section 4.1.1 we talked
about “chicken-egg cycles”. Well, each “chicken-egg cycle” is in fact one Lambda
Iteration cycle.

This brings us to a physical interpretation of Lambda Iteration: After the first iteration
we have treated single scattering. After the second iteration we have, in addition
to single scattering, also treated double-scattering. After the N-th iteration we have
treated all multiple scattering trajectories up to, and including, N-scattering.

This means that we can in fact get a rough prediction for the convergence of this
method. If we have € = 0 (only scattering) and we have a cloud of 7 > 1, then this
means that we can expect on average 7> scattering events before a photon escapes the
cloud (assuming the light source is somewhere inside the cloud). This means that we
would need at least Ny, = T2 iterations (presumably more) before we can be sure that
convergence is reached. If we have a moderate optical depth of, say, 7 = 100 this
would require at least 10000 iterations.

This shows the main drawback of Lambda Iteration: for scattering problems with zero
or very low absorption, and for moderate to high optical depth, Lambda Iteration can
converge extremely slowly. In fact, the slowness of convergence can sometimes be so
extreme that often people have mistakenly thought that convergence has been reached
even though it was not the case by far!

34

Of course, we have taken quite an extreme example: that of zero absorption. If € > 0
the number of scattering events experienced by a single photon will be reduced be-
cause the photon will eventually get absorbed. An estimate of the number of scattering
events experienced by a single photon, for the case of € > 0, is:

. 1
<Nscanerings> = min (Tgcap E) (4.25)

For Lambda Iteration to converge we need

N iter > <N scanerings> (426)

Given these somewhat pessimistic estimates, it may seem that it is hopeless to pur-
sue Lambda Iteration any further. There are two reasons why we will resist this
thought: (1) There are not many alternatives that are as easy to program and work
any better, and (2) there are clever techniques to dramatically speed up the conver-
gence of Lambda Iteration. We will introduce two techniques of acceleration that can
be used together: (a) approximate operator acceleration, also often called Accelerated
Lambda Iteration, and (b) Ng-acceleration.

44.1 The Lambda Operator

So what is this “Lambda Operator”? It is best described as a task: The task of com-
puting the mean intensity J at some point X knowing what the source function S, (x")
is for all x’. Of course in addition to S, (x"), we also have to know «,(x’) and any light
sources that may be present.

To find the mean intensity at all points x we have to apply it to each point. One could
call this the “full” Lambda Operator, in contrast to the “partial” Lambda Operator that
only calculates J, at one point (though these are not an official terms; I just invented
them for clarification).

So rather than a formal, abstract, operator, we can regard the Lambda Operator as a
C++ or F90 subroutine: You give it §,(x") for all x’, tell it where you want to know J,
and it will compute it for you. That is, the “partial” Lambda Operator subroutine will
do so. The “full” Lambda Operator subroutine will in fact compute it everywhere in
one go. In practice it will be clear from the context whether we mean the “partial” or
the “full” Lambda Operator.

With this new concept we can now write:
Jy =A[S,] (4.27)

The square brackets here mean that it is not a local operation, but involves integrals
over the entire domain. Note that for every frequency v this Lambda Operator is
different, because the a,(x’) is different.

Using Eq. (4.27) we can now rewrite the equation for the source function including
scattering and absorption (Eq. 4.19) as:

S, =¢B,(T)+ (1 -¢)ALS,] (4.28)

This is the mathematically abstract way of writing the “chicken or egg” problem of
multiple scattering in the presence of thermal emission/absorption.

Using Eq. (4.28) the Lambda Iteration process can be mathematically expressed as:
S = €BAT) + (1 — &)A[S”] (4.29)

where n is the iteration counter. We have now arrived at a mathematically clean way
of formulating the Lambda Iteration process.

35

"Partial" Lambda Operator

44.2 Worked-out example: The two-stream approximation for 1-D problems

Although the topic of developing accurate and efficient Lambda Operator subroutines
will be deferred to a later Chapter, it is useful to work out a very simple example.
Consider a 1-D plane parallel atmosphere (see Section 3.7). We put gridpoints at
positions zy/2, - - - ,Zn,+1/2,1.6. we have N, + 1 gridpoints. For the angle u we take just
two gridpoints:

1
U = +—— (4.30)

V3

This is called the two-stream approximation. Of course, this two-point sampling of
the entire angular span of —1 < ¢ < +1 is extremely sparse, and one might be worried
that this will cause this Lambda Operator to be very inaccurate. However, it turns out
that the two-stream approximation is surprisingly accurate! In Section 4.5 we will find
out why, and what the reason for the strange numbers +1/ /3 is.

p.=-— and

We can now construct a “full” Lambda Operator subroutine in the following way. We
first integrate the formal transfer equation of a single ray (Eq. 3.22) with u = u, =
1/ /3 from the bottom of the atmosphere to the top. While doing so, we store the
intensity /, along the way at each grid point — call these /. ;1/2. Next we integrate
the formal transfer equation of a single ray with u = u_ = —1/ /3 from the top to
the bottom. While doing that we store the intensity /_ at each grid point — call these
I_i+172. We now loop over all grid points again and calculate

1
Jiv1p2 = 3 (-1 + L) (4.31)

That’s it.

Now let us see how the Lambda Iteration method behaves in this two-stream approx-
imation. Let us define the following dimensionless multiple scattering problem. We
have a 1-D plane parallel atmosphere with vertical coordinate z ranging from z = 0 to
z = 1. The total extinction coeflicient a(z) is defined as
a(z) = 107°% (4.32)
so that (0) = 10° and a(1) = 107!, and in between it is an exponential decay. The
Planck function is taken to be B = 1 everywhere. We have a constant photon destruc-
tion probability €. At the z = 0 boundary we set I, = J = B while at the z = 1
boundary we set I_ = 0, i.e. we have a free outflow of radiation and no inflow.

Let us see how the method works for the case € = 107!, i.e. not a very challenging
problem. In the margin figure you can see the convergence. The thick red line is the
converged solution. It shows that we clearly need > 10 iterations to get convergence,
even for this rather simple test case.

Now let us apply the method to slightly nastier problem: e = 1072, which is still
not nearly among the worst cases. Again the result is shown in the margin figure.
You can see that after 100 iteration the solution has not even nearly converged yet.
Many hundreds of iterations are, in fact, necessary. This demonstrates the weakness
of Lambda Iteration. Clearly we must find ways to improve the convergence. These
methods will be discussed below: ALI and Ng acceleration.

4.4.3 Lambda Operator as a matrix

For what follows, it will be useful to go one level further in the mathematical ab-
straction of the concept of Lambda Operator. Suppose we divide the cloud up in
N = Ny x N, x N, grid cells. Or almost' equivalently, we place N = N, X N, X N, grid

! As we shall see later, there is a fundamental difference between grid cells and grid points. For now we
will brush over this difference, to not over-complicate things at this point.

36

0.8

0.6

s/B

0.4

-
10 10° 10° 10' 10° 107 1077
T T T T T T T

e=0.1

Alg=LI
QdrOrder=3
Niter=100

L L L L
0.0 0.2 0.4 0.6 0.8 1.0

z
-
10* 10° 10° 10' 10° 107 1077
T
1.0 €=0.01
Alg=Ll]
0.8 QdrOrder=3 -
Niter=100

points (sampling points) in the cloud. Let us give each grid point a unique ID number:
i=ic+ (@, — DN+ (i; = 1)NN, (4.33)
where i, € [1,N,],i, € [1,N,]and i; € [1,N;]. The ID iisnow i € [1, N].

The “partial” Lambda Operator for cell i is now a function of the source function § ; of
all cells j (including j = i itself). Moreover, it is a linear function, because the formal
transfer equation is linear in the source function. We can thus formally write:

N
Ji=AiIST= D AyS; (4.34)
j=1

When we apply our Lambda Operator as a subroutine, we never really calculate the
coeficients A;; explicitly. We just integrate the transfer equation along rays and inte-
grate the intensities over solid angle. However, deep down the mathematical truth is
that we calculate the sum shown in Eq. (4.34).

If we regard the sequence of numbers (S, --,Sy) as a vector in an N-dimensional
linear space, and we do the same for (Ji,---,Jy), then A;; are the elements of an
N x N matrix. It is the matrix coupling every grid point to every grid point. The act of
applying the Lambda operator to S is then a matrix multiplication:

Ji A o A (S
=l o] (435)
Iy Ant -+ Ann)\Sw

The “partial Lambda Operator” is one row of this matrix, while the “full Lambda
Operator” is the complete matrix.

In most circumstances it is utterly unpractical to explicitly calculate the matrix el-
ements of the Lambda Operator. Consider a 3-D radiative transfer problem on a
100 x 100 x 100 grid. This means that N = 10° and that we have 10'> matrix ele-
ments. Just the storage of this matrix is already practically impossible, let alone doing
any reasonable calculations with it.

The reason why we introduce the Lambda Operator Matrix is twofold: (1) it shows
even better the formal mathematical nature of the operator, and the linear nature of
Eq. (4.28), and (2) it will allow us to develop a powerful “boosted version” of Lambda
Iteration called approximate operator acceleration or accelerated lambda iteration.

444 Accelerated Lambda Iteration

Suppose that we have an infinitely big and infinitely powerful computer, so that we do
not have to worry about the size of the A;; matrix, nor about the computing time to
manipulate it. Let us revisit the radiative transfer equation in the form Eq. (4.28):

S, =¢6B,(T)+ (1 -¢)A[S,] (4.36)

We can write this in vector/matrix form (where we drop the index v for notational
convenience):
S=eB+(1-¢eAS 4.37)

The objective of the radiative transfer problem is to solve for S. The classical Lambda
Iteration scheme is to start with some guess S% and then iterate

S = B + (1 - e)AS" (4.38)

until convergence. But if we have infinite computing power, we might as well solve
Eq. (4.37) with brute force, using linear algebra. For that we rewrite Eq. (4.37) in the
form:

[1-(1-¢eA]S=€B (4.39)

37

One row of the 16x16 Lambda Operator matrix

The left hand side is the product of a matrix M given by
M=[1-(1-eA] (4.40)
and the vector S. Eq. (4.39) is thus the typical standard form of a matrix equation:
MS =€B 441

which is in fact a huge set of coupled linear equations. This can be solved by inverting
the matrix:
S=eM'B (4.42)

or by making use of standard software libraries for solving matrix equations to solve
S straight from Eq. (4.39).

Of course this exercise is entirely hypothetical, because even for relatively small grids
this would require huge computing time. But for understanding what follows it is
important to understand this idea.

The idea behind Accelerated Lambda Iteration is to construct an approximate operator
A’ that has the following properties:
e A* should be easy to store in a computer

e The matrix equation M*S = €B with M* = 1 — (1 — €)A* should be relatively
easy to solve

e A" should be an approximation of the full A

e At gridpoints i where it is difficult to assure that A* is a sufficiently good ap-
proximation of A (for instance in optically thin regions), A* should have the
property of approaching A:.‘j —0Vj.

Typically, in contrast to the full Lambda Operator A, the approximate operator A* is
not just a subroutine, but is in the form of truly tangible matrix elements. However,
the matrix A;‘j should be a sparse matrix, i.e. most of its elements should be zero,
because otherwise we would need our “infinitely powerful computer” to handle it. We
will discuss some typical choices of A* in a minute, but let us first see how we can use
such an approximate operator to speed up the convergence of the Lambda Iteration.

What we do is split the full Lambda Operator in two parts:
A=(A-AN)+ A" (4.43)
Inserting this into Eq. (4.37) yields
S=eB+(1-e)(A-A)S+(1-eA'S (4.44)

We now bring only the easy-to-solve matrix to the other side, and leave the difficult-
to-solve matrix on the right-hand side:

[I-(1-eA"]S=eB+(1-e)(A-A)S (4.45)

This still leaves a contribution of S on the right-hand side, so we cannot directly solve
this. So we now re-introduce the Lambda Iteration scheme:

[1-(1-eA*]S"! = €B + (1 — €)(A — A*)S" (4.46)

which is now so-to-speak a (A — A*)-Iteration scheme. For each iteration step we solve
the above matrix equation. Slightly more explicitly, we define the matrix

M =[1-(1-eA"] (4.47)

38

Full Lambda Operator matrix (6x6)

Local Approximate Operator

and our matrix equation, to be solved at each iteration step, becomes
M*S™! = B + (1 — €)(A — A%)S" (4.48)

Since M™* is a sparse matrix, it can be easily stored in a computer. And there are
many libraries of subroutines to solve sparse matrix equations, even for vectors with
millions of components. So this is a doable task. In each iteration step we must
thus compute A S”, for which we use the Lambda Operator subroutine, and we must
compute A*S", for which we use the sparse matrix A*. We now iterate this procedure
until convergence.

This method is called approximate operator acceleration of the Lambda Iteration pro-
cedure. The full iteration scheme is called Accelerated Lambda Iteration, or ALIL. It
was originally proposed by Cannon (1973, Astrophysical Journal, 185, 621).

It turns out that, if we make a clever choice of A*, we can dramatically accelerate the
convergence.

So: What constitutes a good choice of A*? The simplest choice is:
A* = diag(A) (4.49)

This is called a local operator, because it involves only the matrix elements that couple
each grid point i with itself (j = 7). The nice thing about such a local operator is that it
it produces an M* matrix that is trivial to invert, as it is a diagonal matrix. Loosely one
can say that A* is the part of the A operator that deals with photons that scatter twice
or multiple times within the same cell. It is, so to speak, the cell “self-coupling”. This
may sound like a let-down: We do lots of effort to treat non-local transfer of radiation,
and as an approximation of A we take the self-coupling part of the radiative transfer.
However, it is this self-coupling at high optical depths (i.e. when the optical depth of
a grid cell 7; is much larger than 1) that causes the excessively slow convergence of
Lambda Iteration. Loosely expressed: with Lambda Iteration we follow photons as
they scatter hundreds of times in a single cell: Since we are not interested anyway in
what a photon does at sub-cell resolution, this is a complete waste of computer time.
Choosing A* = diag(A) means that we extract this self-coupling from the iteration
scheme and instead solve the self-coupling part analytically.

Let us investigate more concretely how this works. As we shall show later (Section
4.4.5), the expression for diag(A) in the limit that A7 > 1 is:

2
diag(A) ~ 1 - — (for At >1) (4.50)
At?
We take A* = diag(A). With this, the matrix M* (Eq. 4.47) becomes
M=1-1-eA"=1-(1-¢ll 2). +2 4.51)
B o= € AT2) € A7? '
for At > 1 and € < 1. Eq. (4.48) then becomes

-1
S = (e + Aiﬁ) (EB +(1—e)XA - A*)S") (4.52)

which is a factor of 1/(e+2/A1?) speed-up in convergence, which can be a pretty large
boosting factor.

The remaining operator, (A — A*) transports photons over distances of at least one grid
spacing. We thus no longer waste time following the photon’s sub-cell scatterings: we
can concentrate our iteration scheme on the real deal: transport over large distances.
This is why the ALI method converges much faster than classical Lambda Iteration.

The local approximate operator method dates back to Olson, Auer & Buchler (1986,
J. Quant. Spectros. Radiat. Transfer 35, 431), and is often referred to as the OAB
method.

39

A-Ax for local approximate operator

There is, however, a drawback of the local approximate operator: it becomes less
effective the finer the grid spacing is. This can be easily understood. The smaller the
grid cell for the same physical object, the smaller the optical depth of each cell, while
the total optical depth of the object stays the same (we simply have more grid cells).
Since the boosting factor 1/(e + 2/At?) becomes smaller as AT becomes smaller, the
ALI method becomes less effective.

To overcome this drawback one can introduce a tridiagonal operator, where not only
the self-coupling of each gridpoint is included, but also the coupling to the direct
neighbors. This kind of approximate operator tends to overcome the problem of the
grid cell size, because it essentially reduces to the diffusion operator for high optical
depth (see Section 4.5 for the diffusion approximation). It does, however require the
use of sparse matrix equation solver libraries (see Section 4.7).

4.4.5 Worked-out example: ALI for two-stream transfer in 1-D

Let us work out an example in a 1-D plane-parallel atmosphere using the two-stream
approximation (see Sections 3.7 and 4.4.2). Let us compute the diagonal of the
Lambda Operator. Since we do not have the Lambda Operator in matrix form, we
have to ask ourselves the question: how does each gridpoint affect itself? We have
to write down the transfer equation in exactly the way our integration algorithm inte-
grates it.

As we will find out soon (see Section 4.4.8 below), we must use the third-order quadra-
ture formula (Section 3.8.4), otherwise the converged solution will be wrong. Let us
focus on grid point i + 1/2, and its neighbors i — 1/2 and i + 3/2. We get (using
Eqgs. 3.38,3.39):

Loivip = Lij1p @™ 4ty 0108 ic1)2 + s in12S iv1/2 + Wi ir1/2S 132 (4.53)
Ly = L e™™ u_i1nSian +vois1nS i + woipi 28 io1/2(4.54)
where
At = V3 (Zix1/2 = Zi-1/2) (4.55)
(and likewise for At;,1). From this we can compute J;;12:
1

Jiv12 = 3 (I_iv12 + Liiv1)2)

(4.56)

1
—At; —At;
=sli-1pe T4 EI—,i+3/26 T (U2 + Woin1/2)S o172

+ Wiv1/2 + U is172)S iv1/2 + Wajs12 + U iv172)S is3)2

In principle we should now continue to work out /. ;1,7 in terms of 1, ;3> and I_ ;3,2
in terms of I_;,s,». But for high optical depth (A7 > 1) these extra terms will vanish,
as they will be proportional to ¢™*7. And since we anyway need A* only for such
high-At cases, this omission will not be problematic at all. So let us omit these terms,
and thus make the computation of the A* substantially easier:

A /2i-1/2 = %(u+,i+1 2+ W iv1)2) 4.57)
Ny = %(U+,i+1/2 + 0_i+1/2) (4.58)
A?+l/2,i+3/2 = %(w+,i+1/2 + U_jr1/2) (4.59)

and all other elements of A* are zero. This would be our full tridiagonal approximate
operator. If we put Ay, », ;,, =0and A, , .5, = 0 we obtain our local approximate
operator. Since we calculate u. j.1/2, U+ 172 and w, ;41 anyway during our upward
integration, and u_;.1/2, U—;+1/2 and w_ ;1,2 during our downward integration, it is
easy to construct these matrix elements.

40

Tridiagonal Approx Operator (1-D RT)

-
10* 10° 10° 10' 10° 107 1077
1.000 T T T
€=0.001
Alg=LI
QdrOrder=3
Niter=100
0.100
o
o~
»
0.010
0.001
0.0 0.2 0.4 0.6 0.8 1.0
z
-
10* 10° 10° 10' 10° 107 1072
1.000 = T T T
€=0.001
Alg=ALl:loc
QdrOrder=3
Niter=100
0.100
o
o~
»
0.010F
0.001 .
0.0 0.2 0.4 0.6 0.8 1.0
z
-
10 10° 10° 10' 10° 107 107%
1.000 T T T
€=0.001
Alg=ALl:tri
QdrOrder=3
Niter=100
0.100 F
o
N
2]

0.010

0.001

L L L L
0.2 0.4 0.6 0.8 1.0

Most ALI-based codes use local operators, because diagonal matrices are trivial to in-
vert. If we include the off-diagonal elements the solution of Eq. (4.48) at each iteration
step becomes a non-local problem. This is more challenging.

In the margin you see results for our standard test problem (see Section 4.4.2), this
time with € = 107, You can see that, while Lambda Iteration (LI) goes nowhere,
ALI with a local approximate operator does a good job and ALI with a tridiagonal
approximate operator converges even faster.

Let us now study the behavior of our approximate operator for AT — co. Let us, for
convenience, assume that At; = At and call this A7. With ™27 — 0, Egs. (3.43,
3.44,3.45) become:

ep — 1 s e1 > At -1 s ey = AT> —2AT+2 (4.60)
and Eqgs. (3.40,3.41,3.42) become:
er — 3Ate 1 1

= t o T as T 4.61
LT 0TTOAR T TAR oA (4.61)
2Ate; —en 2
e =l-— 4.62
v AT2 AT2 ()
er — Ate; 1 1
= T oAo = — ~ i 4.63
N