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rules of physics computer simulations

General Conservation Law(s)
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We model physical phenomena by conservation laws.

® conservation of mass
® conservation of momentum
® conservation of total energy

etc.

This gives rise to partial differential equations.

Their solution can only be found by approximating the solution
by numerical discretisation.



Euler equations of compressible gas dynamics:
Pt + (pu)x — () conservation of mass

(pu)s + (pu2 + p)z =0  conservation of momentum

E; + (u(E 4 p))x — () conservation of total energy

1
closure relationship - equation of state:  E = % + §PU2 polytropic gas

In order to study the numerical discretization of such equations we first study simpler
equations.



Advection equation

qt + ugy = 0

True solution: g(z,t) = g(x — ut,0)

Assume u > 0 so flow is to the right.




Numerical methods use space- and time discretization:

;

tn

At =k
\

t=0

Ax = h

Li—1 LTq Titl ;
the state of the gas is given initially

we then need to determine it at later times.



Finite difference method
Based on point-wise approximations:
G 2oz, tx), with o; =ib, tw=mnk
Approximate derivatives by finite differences.

Ex: Upwind methods for advection equation ¢; + ug, = 0:
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Finite volume method (linear equation)

Based on cell averages:

1 Lit1/2

T

D H/ q(x,ty) dx
Li-1/2

Update cell average by flux into and out of cell:

Ex: Upwind methods for advection equation ¢q; + ug, = 0:
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Finite volume method (nonlinear equation): ¢: + f(¢). =0

9
ot

: Tidl/2
Integral torm: f q(:ﬂ, 'E'] dr = f{q(‘ri—lfﬂu t” o I(Q(Ii—l-lfﬂs t’”

Ti-1/2

Integrate from ip 0 tpp1 =

; b1
] B i) / Gl /! F(@(@i1/2:8)) — F(@(@ip1/2:8)) dt
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: d w1 h i+1/2 i—1,/2 Q; = E/x q(z,t,)dz
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Numerical flux: F;‘_”Z =2 ;;j; flag(zi_q2,t))dt.



Godunov’s method for advection
()i defines a piecewise constant function
qmﬂ(ilf,tn) = Q? for Ti_1/2 o Tit1/2

Discontinuities at cell interfaces = Riemann problems.

q: + ugq, = 0 u >0 u <0
R I -
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Godunov’s method
(0! defines a piecewise constant function
qmﬂ(:lf,fn) = Q,? for Ti_1/2 o e Tiy1/2

Discontinuities at cell interfaces = Riemann problems.

1
QrT

Y
tnt1 : : : :
tn \/ \/ v \/
L"wf"J

Q;’L

q"(T;—1/2,t) = ¢V(Qi—1,Qi) fort >ty

][t
PPy =1 f Fa(Qy, @) dt = F(¥(Q11, Q).



First order REA Algorithm

. Reconstruct a piecewise constant function ¢"(z, t,,) defined
for all z, from the cell averages @)7'.

q"(z,ty) = Q7 forall z € C;.

. Evolve the hyperbolic equation exactly (or approximately)
with this initial data to obtain ¢"(x,t,,1) a time k later.

. Average this function over each grid cell to obtain new cell
averages

1 ;
Q?H = Ef q"(z,tnht1) d.

Ci



In our

& Graduiertenkolleg
kﬁqi\ "Theoretische Astrophysik und Teilchenphysik"
Y

in Wurzburg involving particle physics, astrophysics and mathematics

among other things we model the temporal evolution of compressible flow.



Many phenomena in continuum mechanics may be modelled as
systems of hyperbolic conservation laws:

oU(x,t)
ot

- VF(U(z,t)) =0

Their solutions need to be considered together with some
admissibility condition,
also called entropy condition.



analogy: dynamical system
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Candidates for admissibility:

® second law of thermodynamics: the solution
should satisfy an additional differential
inequality, entropy inequality

® take into account viscous effects: take limit of
vanishing viscosity

We shall use the following admissibility (or entropy) condition:

(pp(s))e + div(pug(s)) <0

where ¢ is an appropriately chosen convex functional.



Approximate this by a Godunov scheme

pgntl [l
L
g U T
n+1 n At C n C n
Uz’ U _l_h_[F (U 7,—|—1) F ( i— 17U )]_07 hi:xz’—i—%_xi—%
where the discrete solution satisfies
At
+1
n(U;""") —nU;") + h—[GC(Un iv1) — G UL, U] <0
1 discrete entropy inequality

Such an a priori bound ensures that we compute physically relevant
shocks.



For gas dynamics we want to also have:

if p” > 0 and e™ > 0, then p"™! > 0 and ™! > 0.
POSITIVITY

Phil Roe 1981 introduced an approximate Riemann solver
by a local linerization of the flux which is consistent and conservative.



Shock tube problem
at time —~

t:O < Pl ’LL[ZO, pl,:l ) p’l“a u’l“:oa pTO

membrane at r = ()

pressure density
. 3 1 3
at time ¢t = 1 —L
25¢ 1 25¢
2r 1 27
1.5} 1 1.5} 1
1| / d
2 ' 0 1' 2 2 0 i 2 :
I - aXlS

shock wave

velocity particle paths in x-t plane
0.5} ' ' T '
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0.1} 0.0
. T - axis
" " " " " O " n n "
-2 -1 0 1 2 -2 -1 0 1 2

This is called a Riemann problem.



For the Euler equations Roe’s approximate Riemann solver
consists of three constant states separated by jumps.

waves for the f
system of
gasdynamics

approximate waves

Harten, Hyman 1983 entropy fix



Harten, Lax, van Leer 1983 even simpler approximate Riemann solver

with only two waves, called the “HLL” solver.
Toro et.al. 1994 for gas dynamics improved this by inroducing a middle wave,
the “HLLC” solver.
Siliciu (~1996), Coquel (~1998), Coquel & KI. (1999)

noticed that the HLLC solver could be improved by a relaxation approach.

The resulting approximate Riemann solver was

® more accurate
® entropy consistent

® positivity preserving



outline of what follows:

® |.we have developed new Riemann solvers

® 2. we tested them in an astrophysics code

literature:

to |.:
Bouchut, Klingenberg, Waagan: “A multiwave Riemann solver for MHD”, part |, part 2,

Numerische Mathematik, 2007

to 2.: Klingenberg, Waagan, Schmidt, “Numerical comparisons of Riemann solvers”,
Journal Computational Physics, 2007



Boltzmann equation

interacting particles are modelled at a “microscopic” level

distinguish between particles with different velocities U

density distribution f(t, T, v) Boltzmann (1844 — 1906)

evolution equation is given by the so called Boltzmann equation:

collision term



use this to obtain a PDE description

description by physicaly measurable quantities, like p, v, 1T

these can be found by taking moments of Boltzmann

get the evolution equations of the moments:

Oy F’ + O Fl = 0
Oy F;; + O Fip = 0
Ot F +  OuFijk = Py

(‘9tFZ-1...Z-N —+ 8szlsz — Pil""iN




for example Grad’s |3 moment expansion:

Euler

Otp + Orpv =10
Orpv + Oy (pv”> + pi+ o) =0
O (pv? + 3p) + 0, (pv® + B5pv H- 200 + 2q) = 0 |
Or(300* + o) + 0u(3pv° + gpv + Sov + {5q) = —5 Bpo
O (pv> + B5pv + 200 + 2q) + 05 (pv* + 8pv? + 5ov? + %qv—k%@p + 70))
= —%Bp(%q + ov

can identify small parameter such that this is of the form

1

n
Knudsen number (small)



we mimic this procedure as follows:

embed your system of conservation laws into a more co
model

this is reminscent of extended thermodynamics

the enlargarged system has a small parameter ¢ > 0 s.th.

e >0 enlarged system
e =0 original system pt + (pu)z =0
(pw)t + (pu” + )y = O
Ey+ [(E+m)u]z =0

(pm)t + (pru + c*u)z = p

mplete

p— T

€



For smooth solutions of the Euler equations
Pt ‘|‘2 (pu)z =0
(pu)t + (pu” +p)z =0
E, + (u(E —I—p))x =0

we can write an evolution equation for the pressure:

(pp)e + (pup)sz + P’ (p)uz = 0

Replace p by a new dependant variable 7 and let ¢ replace the soundspeed p+/p’(p)
p— T

(pm)e + (pmu + c*u)y = p Siliciu (1995), Coquel, K. (1999)

€

One advantage of the extended system is that by making the pressure a new dependent variable
it easy to solve the Riemann problem for the homogeneous part of the extended system.
Also the constant c replaces the soundspeed, which is a nonlinear function.

The choice of ¢ determines the “stability’ of this relaxation:

“subcharacteristic condition” c > p\/D'(p)



t

wave speeds for the system of extended gasdynamics:

U (multiplicity 2)

waves for the original system of gasdynamics



additional [

dependent
variables of the
extended system

phase space:

m =
L equilibrium
manifold
pt + (pu)z =0

(pw)s + (pu® + )z =0
Ei+ [(E+m)u]z =0

y (o) (pmu + cPu) = P
©

/

the solution of
the original

system lives (pU)t + (,0U2 - p)a:
here Et 4 (u(E +p))x

N

dependent variables of the original system

pyu, B

Pt T (Pu)az

|
o oo



additional Numerical procedure in phase space:

dependent

variables of the O(n+ 1)At™
extended system

projection equilibrium
manifold

evolution

nAt

the solution of dependent variables of the original system
the original
system S lives
here
This results in a numerical method for the original system.



It is possible to extend the entropy S of the original system of gas dynamics to an entropy Sea:tended

of the system of extended gas dynamics

such that for €

T

Lgex

— 0

tend

the extended entropy converges to the original entropy.

led

SGJ

tended

equilibrium
manifold

p,u, b



this procedure translates Riemann solvers for the extended system to
Riemann solvers for the original system

® preserves p > ()

® can handle vacuum

® this ensures that the “second law of thermodynamics” is
staisfied by the numerical solution of our original system



more generally:

U = (p,pu, E)

Given a system of conservation laws U + f(U)a; =0
= (p, pu, E, )

we associate with it an extended system of balance laws Yy + A(w)x — (lb)

and an equilibrium mapping: ) = M (U) and a linear operator L
M(U) = (p, pu, E, p)

such that LM(U) — U

The fluxes of the two systems are connected by the relation LAMU)) = f(U)

This defines approximate Riemann solvers for the original system.



Given an entropy pair for the equilibrium equation (7, G)

Let the extended system have an entropy pair (7{,G) such that

and the inequality holds H(M (L)) < H(Y) for any ¢

Francois Bouchut

Then this entropy extension will ensure that the
approximate Riemann solver deduced for the equilibrium

Nonlinear Stability
equation will be entropy consistent with respectto 7).

of Finite Volume Methods

for Hyperbolic

Conservation Laws

and Well-Balanced Schemes
for Sources

2005

Frontiers in Mathematics REIGETE



We will apply these ideas to the Magnetohydrodynamics (MHD)
Equations

Bouchut, Klingenberg, Waagan: A multiwave approximate Riemann solver for
ideal MHD based on relaxation | - theoretical framework, Numerische
Mathematik (2007)

ionized compressible gas subject to magnetic fields

couple the Euler equations of compressible gas dynamics
to equations for magnetic fields

Ideal MHD: Ignore resistivity (“viscous effect”) == hyperbolic
system.

New issues:
e Coupled with elliptic constraint V - B = 0.
* Nonstrictly hyperbolic

* Nonconvex (not strictly hyperbolic) = compound waves



Conservation laws of MHD

. 3

g | pu

ot | B
| B

In components:

— o

7
pu
pu
puw

Bl=z) |
Bl
B(2)

+V-

u (E == %BE) — B(T}{:HH(I] + ’UBEH} /5 'H.FBEEJ)




One-dimensional MHD

Qt+f(Q)m:0

Note that

3,
Y oplz) _
ot B ¢

Inl-D, V- B = 0 means B®) = constant.
Variations in B(*) remain stationary.

1-D equations reduce to 7-wave system for

G = (p, pu, pv, pw, BY) , B®) E)

1

Jacobian matrix has 7 eigenvalues (wave speeds)

u, uxecs, uUxLcy, udes



Waves in one-dimensional MHD

8 o g
(a1
U Cf

entropy waves — contact discontinuities
slow magnetosonic waves

Alfvén waves
fast magnetosonic waves

A s us A [

Magnetosonic waves are genuinely nonlinear



The divergence of B

—

In theory V - B = 0.

True att = 0 = true for all time.

Numerical methods may not preserve this.

Various approaches:

* Don’t worry about it
(ok for smooth solutions to order of method)

* Divergence-cleaning — projection onto V - B=0

* Constrained transport:
Staggered grids and updating formula that preserves

—_

V:-B=0

e 8-wave solver — advect V - B away



wave speeds for the original system of MHD:

t
u,-C
Uyx-Va x XS (multiplicity 2)
Ux-Ct x o
S/e
O/Q
/AN
[5 NG
X

the Powell 8-wave structure



The extended system for MHD:




wave speeds for the system of extended magnetohydrodynamics:

U — — U (multiplicity 4)

Cs
U+ —




A three wave approximate Riemann solver is obtained by:
Set ¢ = ¢4 = ¢y

Theorem

The approximate Riemann solver defined by this 3-wave relaxation is positive and
defines a discrete entropy inequadlity if for all intermediate states we have:

1 B2
Py
p2  ci
Bt + B2 B.b|* [ 1 B2
LT DB1 Dy L ()1 by
2 co | —\ ’ p2 2



The proof of the discrete entropy inequality

n n n mn n mn At S S
PG (s(pr T er ) — pRd(s(or o)) + 7= (Gry — Gry) <0

is given in Bouchut, KI.,Waagan (2006).

A formal derivation of this for smooth solutions is available by a Chapman-Enscog expansion.
Write:' T = p+ 2B? — 1B2+g(e)+0(e?) T = —ByBy++g1e+0(€?)

Insert this into the extended system

(pm)e + [pru+ (c5 + ¢ — c2)u — cab-uils = p
—BCEBJ_ — T L

€

(pmi)e + (pmiu + cou — cobu), = p



This gives

pr+ (pu)z =0 _
(pu)e + (pu +7), = ( el Bi)) o+ (BaBL = ) (us), | +0()
(pus)ic+ (o 70 = e | (BB = By, + (% - BwL| + 0@
Er+[(E4+mu+m-uyl, = e[u (Cg il Cj ~C —(pp' + BY) | up +u(B,BL — ixb) (Un) sz
+uy - (BeBL — izb)’ux +uy (% — B)(ul)z| +O(e)

(B1)e+ (Biu— Byuy), =0

The entropy is evolved by an equation of the type

nU)t+GU)x — G[UI(U)D(U>U:B]$ — _€D<U)t77”(U)U:L’ Uy

The conditions of the theorem then ensure entropy dissipation.



slow

fast Alfvén  magneto-
magnetosonic wave sonic  contact
f A S u S A f
Cl ™., 4
w— - U+ —
D P

*
.0
*
*
*
*

left going wave

*
*

X

the three wave solver superimposed onto the exact 8-wave solution



When devising a numerical scheme we need to get concrete speeds of the
waves out of the inequality in the theorem.

Bouchut, Klingenberg, Waagan: A multiwave approximate Riemann solver for
ideal MHD based on relaxation Il - numerical aspects, manuscript (2006)

Theorem:

For the three wave solver the following relaxation speeds are sufficient to guarantee
positivity and entropy stability:

Ty — T
c; = pla? +ap; | (u; — up) s ( )+
Pl\/_+ PrQqr

cr = pras + apy | (ug — ur )4 (m —Tr)+
T\ pfr + Pllql
0

where a=-"-— and o} «) are given by a complicated formula.




We have also found a seven wave approximate solver.

again we can prove entropy consistency under some complicated
“subcharacteristic”’ condition

We have explicit formulas for the speeds.



/-wave solver
5-wave

exact
solver

3-wave solver

HLL

o o1 02 03 04 05 06 07 08 09 1 B,=—sin(27x)
X

p=10 p=1.0

B, = —cos(2mx)

v =sin(2rz) w = cos(27x)

stationary left-going Alfven wave

B, =10, ~v=5/3.



We tested such a new approximate Riemann solver in an astrophysics code:

PROMETHEUS

developed in Garching since 1989 (Muller) ported to FLASH (in Chicago) and still
used today.

This code solves the hydrodynamic equations and has additional physical effects
implemented.

Klingenberg, Schmidt, Waagan: Numerical comparison of Riemann
solvers for astrophysical hydrodynamics, Journal of Computational
Physics (2007)



PROMETHEUS - modified

PROMETHEUS (preliminary)

PPM

(piecewise parabolic method) PPM with our Riemann solver

This uses an “exact” Riemann solver. This uses our approximate Riemann solver.

It is higher order accurate.




Our approximate Riemann solver satisfies the entropy condition

and it also ensures that density will not become negative.

The PPM method in PROMETHEUS can not guarantee this.

Thus PPM with our Riemann solver can not guarantee this.

Hence we have also changed the numerical method in
PROMETHEUS which makes the method higher order accurate.

PROMETHEUS - modified:

our Riemann solver, made higher order such that positivity is preserved

a new time integration was implemented (Runge-Kutta)



we compared these two codes:

® in one space dimension: particular Riemann problems
® in two space dimensons: mixing layers

® in three space dimensions: driven fully developed turbulence



density

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

PROMETHEUS

Reference
PPM-HLLC

PPM

the modified code smears out a

little more

one space dimension:

Riemann problems

Reference
RK-HLLC
------- RK-exact
PROMETHEUS -
modified

0.4 0.5 0.6 0.7 0.8 0.9




This Riemann
problem has
two strong
rarefaction
waves going

apart creating a
low density
region.

- velocity

“exact)

PROMETHEUS

desity larger on next page

PROMETHEUS -
modified




density

< .

PROMETHEUS -
modified

2.

| VEPROMETHEUS produces negative density |
L e




two space dimensions:

Richtmeyer-Meshkov instability

Shock ; 1
Eefraction IFrunsmictced shovk

(b (d)



PROMETHEUS PROMETHEUS -
modified:



10 ~ F | | | | |.
107"+
v 107"° PROME{-’&{S
S 107t |
E / PROMETHEUS -
105L ' modified
1070+
""" 05 06 07 08 09 1 11 12

The growth of instability is similar for both codes

as seen here by transversal component of kinetic energy



three space dimensions fully developed turbulence

DrivenFlow_3 000

Integrail Time = 0.00 —~ HiBER g
=ty ]
vier: D ity L —

03000
Iere 1.024
Il Qa7ar

Le=r: chfedsar
Mon Moy 14 16:42.52 2005

Wolfram Schmidt, J. Niemeyer, Federrath (2006)



DB: iso2Ma353_0008 hierarchy
Cycle: 367  Time:025

Caontour
Var: Varticity

325.0
. —2500
—175.0

Max: 1034,
Min: 04871

1.0
Wolfram Schmidt, J. Niemeyer (2006)

user; schrmidt
Maon Dec 19 14:48:29 2006



<(pv)2>1/2/<pcg>

~

N

O

o0

PROMETHEUS - — Ma = 17.9, { = 0.1, ad

: modified Ma = 17.9, ¢ = 0.1, ad (RK) -
:_ PROMETHEUS _:

......... S e S S S B S S
) 1 % 3 4 )

time evolution of root mean squared Mach number



- Ev(k)/(poV2)

(27 /al)

1071E A S %
- Ma=17.9 ¢=0.1 ad ]
F— t=50 — .
- —— t=45 = _O -
102 —— t=40 _=—| = PROMETHEUS
F—— t=35 M ]
[ —— t=30 | ]
1073 20— =
107% = E
: E PROMETHEUS -
N ) modified
07F — 1071 E T T I %
A = ] Ma=17.9 ¢=0.1 ad RK ]
WO*B% 1 L L 1 W — t=5.0 - 7
-2 _ f—
0.1 1.0 100 . OTTF —— =45 3
(L/2m) - k B F =l
k is wave number S B (=00
X 1073y ——— =30
< F ——— t=2.5
LT - —— t=20
e WO*J — t=1.38
. o o — E- 1 E
time histories of ST
o S e
transversal energy spectra & . o =l
S =038
E t=05
[ ——— t=0.3
10-6 1 L 1 Lo
0.7 1.0 10.0

Christoph Federrath

(L/2m) - k kis wave number



conclusion:

dissipativity of PROMETHEUS is independent of Mach number

dissipativity of PROMETHEUS-modified is less for higher than for lower Mach
numbers

We conclude that PPM is accurate with respect to the Riemann solver.

Our approximate Riemann solver is at least 20% more efficient, though.
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