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1. Magnetic Braking of an Alligned Rotor 40 pt

Consider a uniform gaseous disk of density ρcl and half-thickness Z rotating rigidly
with an initial angular velocity Ω0. Furthermore assume the disk is threaded with
a magnetic field ~B of strength B0, initially uniform and parallel to the rotation
axis. The magnetic field links the disk with the external medium of density ρext

which is initially at rest. Assume axisymmetry and use cylindrical coordinates
(R,ϕ, z) for the calculations.

(a) Derive the evolution equations for the toroidal magnetic field Bϕ and the an-
gular velocity Ω (where vϕ = R Ω) outside of the disk, i.e. |z| > Z, assuming
that the radial velocity vr and the poloidal velocity vz are negligible small
(compared to the Alfvén velocity).

(b) Show that the evolution of the external medium can be expressed by the wave
equation
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4π ρext is the Alfvén velocity in this medium.

(c) Derive the evolution equation of the angular velocity at the surface of the
disk, i.e. |z| = Z, using the torque per unit area, N = R B0 Bϕ/4π, which
the magnetic field exerts on the surface of the disk. Result:
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(d) Combine equations (1) and (2) to calculate the spin-down time of the disk.
[Use the solution of equation (1) at the disk surface |z| = Z.]

2. A Simple Approach to Magnetorotational Instability 35 pt

The simplest system that displays the magnetorotational instability is an axis-
symmetric differentially rotating gaseous disk in the presence of a weak vertical
magnetic field, i.e. ~B0 = Bz~ez. We assume the disk is initially homogeneous with
density ρ0 and has no radial or vertical motions, i.e. ~v0 = vϕ~eϕ. In the following



we consider a fluid element that is displaced from its appropriate circular orbit
by a small distance ~x = xR~eR + xϕ~eϕ, where the displacement follows a vertical
oscillation ∝ exp(ikz). We neglect the effects of viscosity and study time evolution
of the system with perturbations induced as described above. As in the previous
assignment we use a cylindrical coordinate system.

(a) Derive the equations of magneto-hydrodynamics for this system to linear

order for the quantities δρ, δP , δ~u, and δ ~B, which are perturbed density,
pressure, velocity and magnetic field, respectively. Consider the velocity ~u
which denotes the deviation of the true fluid velocity ~v at any location from
the azimuthal circular velocity RΩ(R)~eϕ,

uR = vR , uϕ = vϕ −RΩ(R) , uz = vz , (3)

and where Ω(R) is the circular velocity at radius R.

The result is,
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where κ is the epicyclic frequency,
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which usually has values in the range Ω ≤ κ ≤ 2Ω. To close this set of
equations we take the usual equation of state,
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(b) Using equations (4) to (12) relate δ ~B to the displacement vector ~x. (Recall
that d~x/dt = ~u and d/dt → iω in Fourier space.)

(c) We now can substitute the magnetic field terms in the equations of motion.
Show that these equations describe the R and ϕ component of the displace-
ment vector as a set of coupled damped oscillators. Use these equations to
find the criterion for instability. Discuss your result.


