Assignment \#8: due Tuesday, Dec. 11
 Theoretical Astrophysics

Winter 2007/2008
lecturer: Ralf Klessen, ZAH/ITA, Albert-Ueberle-Str. 2, 69120 Heidelberg

1. Magnetic Braking of an Alligned Rotor

Consider a uniform gaseous disk of density ρ_{cl} and half-thickness Z rotating rigidly with an initial angular velocity Ω_{0}. Furthermore assume the disk is threaded with a magnetic field \vec{B} of strength B_{0}, initially uniform and parallel to the rotation axis. The magnetic field links the disk with the external medium of density $\rho_{\text {ext }}$ which is initially at rest. Assume axisymmetry and use cylindrical coordinates (R, φ, z) for the calculations.
(a) Derive the evolution equations for the toroidal magnetic field B_{φ} and the angular velocity Ω (where $v_{\varphi}=R \Omega$) outside of the disk, i.e. $|z|>Z$, assuming that the radial velocity v_{r} and the poloidal velocity v_{z} are negligible small (compared to the Alfvén velocity).
(b) Show that the evolution of the external medium can be expressed by the wave equation

$$
\begin{equation*}
\frac{\partial^{2} \Omega}{\partial t^{2}}=v_{\mathrm{A}, \mathrm{ext}}^{2} \frac{\partial^{2} \Omega}{\partial z^{2}} \tag{1}
\end{equation*}
$$

where $v_{\mathrm{A}, \text { ext }}=B_{0} / \sqrt{4 \pi \rho_{\mathrm{ext}}}$ is the Alfvén velocity in this medium.
(c) Derive the evolution equation of the angular velocity at the surface of the disk, i.e. $|z|=Z$, using the torque per unit area, $N=R B_{0} B_{\varphi} / 4 \pi$, which the magnetic field exerts on the surface of the disk. Result:

$$
\begin{equation*}
\frac{\partial^{2} \Omega_{\mathrm{cl}}}{\partial t^{2}}=\left.\frac{1}{Z} \frac{\rho_{\mathrm{ext}}}{\rho_{\mathrm{cl}}} v_{\mathrm{A}, \mathrm{ext}}^{2} \frac{\partial \Omega}{\partial z}\right|_{|z|=Z} \tag{2}
\end{equation*}
$$

(d) Combine equations (1) and (2) to calculate the spin-down time of the disk. [Use the solution of equation (1) at the disk surface $|z|=Z$.]

2. A Simple Approach to Magnetorotational Instability

The simplest system that displays the magnetorotational instability is an axissymmetric differentially rotating gaseous disk in the presence of a weak vertical magnetic field, i.e. $\vec{B}_{0}=B_{z} \vec{e}_{z}$. We assume the disk is initially homogeneous with density ρ_{0} and has no radial or vertical motions, i.e. $\vec{v}_{0}=v_{\varphi} \vec{e}_{\varphi}$. In the following
we consider a fluid element that is displaced from its appropriate circular orbit by a small distance $\vec{x}=x_{R} \vec{e}_{R}+x_{\varphi} \vec{e}_{\varphi}$, where the displacement follows a vertical oscillation $\propto \exp (i k z)$. We neglect the effects of viscosity and study time evolution of the system with perturbations induced as described above. As in the previous assignment we use a cylindrical coordinate system.
(a) Derive the equations of magneto-hydrodynamics for this system to linear order for the quantities $\delta \rho, \delta P, \delta \vec{u}$, and $\delta \vec{B}$, which are perturbed density, pressure, velocity and magnetic field, respectively. Consider the velocity \vec{u} which denotes the deviation of the true fluid velocity \vec{v} at any location from the azimuthal circular velocity $R \Omega(R) \vec{e}_{\varphi}$,

$$
\begin{equation*}
u_{R}=v_{R}, \quad u_{\varphi}=v_{\varphi}-R \Omega(R), \quad u_{z}=v_{z} \tag{3}
\end{equation*}
$$

and where $\Omega(R)$ is the circular velocity at radius R.
The result is,

$$
\begin{align*}
-\omega \frac{\delta \rho}{\rho}+k \delta u_{z} & =0, \tag{4}\\
-i \omega \delta u_{R}-2 \Omega \delta u_{\varphi}-i \frac{k B_{z}}{4 \pi \rho} \delta B_{R} & =0, \tag{5}\\
-i \omega \delta u_{\varphi}+\frac{\kappa^{2}}{2 \Omega} \delta u_{R}-i \frac{k B_{z}}{4 \pi \rho} \delta B_{\varphi} & =0, \tag{6}\\
-\omega \delta u_{z}+k \frac{\delta P}{\rho} & =0, \tag{7}\\
-\omega \delta B_{R} & =k B_{z} \delta u_{R}, \tag{8}\\
-i \omega \delta B_{\varphi} & =i k B_{z} \delta u_{\varphi} \tag{9}\\
\delta B_{z} & =0, \tag{10}
\end{align*}
$$

where κ is the epicyclic frequency,

$$
\begin{equation*}
\kappa^{2}=\frac{1}{R^{3}} \frac{d\left(R^{4} \Omega^{2}\right)}{d R} \tag{11}
\end{equation*}
$$

which usually has values in the range $\Omega \leq \kappa \leq 2 \Omega$. To close this set of equations we take the usual equation of state,

$$
\begin{equation*}
\frac{\delta P}{P}=\gamma \frac{\delta \rho}{\rho} . \tag{12}
\end{equation*}
$$

(b) Using equations (4) to (12) relate $\delta \vec{B}$ to the displacement vector \vec{x}. (Recall that $d \vec{x} / d t=\vec{u}$ and $d / d t \rightarrow i \omega$ in Fourier space.)
(c) We now can substitute the magnetic field terms in the equations of motion. Show that these equations describe the R and φ component of the displacement vector as a set of coupled damped oscillators. Use these equations to find the criterion for instability. Discuss your result.

